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Embedded software is implementing more and more functions in aeros-
pace, including critical ones. Model Driven Engineering has changed 

software life cycle development by introducing models in the early steps of 
software development. Verification and validation is essential, at model and 
at code levels, and still mostly done by simulation and test. However, for-
mal methods, which are based on the analysis of the program or software 
model, are being transferred to industry for verification of critical software. 
This paper presents the context of aerospace software development, a brief 
overview of formal methods and of the associated industrial practice, and the 
work done at Onera on formal verification of critical Aerospace software at 
model and at code levels. This work addresses four themes: 
	 •	Specifics of application of formal methods to aerospace;
	 •	Model driven engineering at platform level;
	 •	Cooperation of analysis techniques;
	 •	Automating test using formal methods.
 Each of these four themes is a research domain in itself; it is thus impos-
sible in a single paper to provide a detailed state of the art and an exhaustive 
list of research challenges for each of them. This paper rather aims at giving 
a broad vision and at presenting work done at Onera in these domains.

Figure 2 - Evolution of the volume of embedded software

The same thing is happening in the space domain; the number of 
embedded computers is still much smaller than in aeronautics, but it 
is growing and will continue to do so. In addition to control functions, 
satellites and spacecrafts now embed complex management func-
tions (mode management, load, communication, etc). Some func-
tions are critical, such as the one responsible for docking to the space 
station in the ATV (Automated Transfer Vehicle). 

Aerospace context 

Aerospace systems have experienced significant and continual evo-
lution over the last 30 years. Digital technologies have become more 
mature, reliable and efficient and have been introduced inside aircraft 
for the implementation of more and more functions, including critical 
ones, as shown in figure 1.

Figure 1 - Embedded functions 

Software is essential in the implementation of these functions. For 
example, the avionics systems in the Airbus A380 include more than 
100 millions lines of code. Figure 2 gives an idea of the evolution of 
the volume of embedded software.
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Software engineering

In this context, special attention must be given to software engineering 
in order to master software complexity and ensure the correct execu-
tion of software executing critical functions. Classically, software de-
velopment is decomposed into several steps: requirements, design, 
coding and verification and validation (essentially by test, unit test and 
integration test), as represented on figure 3.a.

Figure  3 - a) Classical software development cycle / b) MDE software deve-
lopment cycle

Verification and validation is an essential step for critical software and 
represents more than 50% of software development costs. Another 
important rule is that the later an error is detected, the more costly it 
is to correct it [1].

This is one of the main reasons for the advent of Model Driven Engi-
neering (MDE) in software development. In traditional software deve-
lopment, the reference is the code. In MDE, the reference is a model 
that is developed before the code (and from which the code can in 
some cases be automatically generated). This model can be simu-
lated and thus verified against requirements. If the code generator is 
qualified, unit test can be removed and replaced by verification on the 
model. 

Verification and validation means

Software verification and validation is still mainly achieved by means 
of simulation and testing. However, these methods are not exhaus-
tive, and still very labor-intensive and costly. They may also reach the 
limits for specific verification objectives. Alternative techniques exist 
and are being transferred: formal methods [2]. These methods do 
not require execution of the software and are based on mathematical 
analysis of the code or the model. They have the advantage of being 
automated and exhaustive. Onera has chosen formal methods for the 
verification of critical aerospace software.

Formal methods 

A formal method is defined by a formal notation together with a formal 
analysis technique (definition taken from [3]). A notation is formal if 
it has non-ambiguous, mathematically defined syntax and semantics. 
The formal analysis technique then allows automated computation of 
properties of systems modeled using the formal notation. 

Brief overview of existing techniques

The first work on formal methods dates back to the 60’s with Hoare 
logic, to prove the correctness of programs [8], [9]. Many different 
formal notations and analysis techniques have been defined. Our 
goal here is not to give a detailed state of the art report, we refer the 
reader to the formal methods wiki (http://www.formalmethods.wikia.
com) which gives many references. Formal notations can be broken 
down into programming languages, formal modeling languages that 
are usually dedicated to a specific type of application (such as syn-
chronous languages for reactive systems) and formal notations for 
the expression of properties (such as temporal logics). 

Analysis techniques are typically presented under three categories 
[3]: model checking, deductive techniques and abstract interpre-
tation, even if the borders between techniques are not as strict as 
they used to be. Model checking explores all possible behaviors of a 
formal model to determine whether a specified property is satisfied. 
Deductive methods involve mathematical arguments, such as mathe-
matical proofs, to establish a specified property of a formal model. 
Abstract interpretation is a theory for formally constructing conser-
vative representations of the semantics of programming languages.

State of industrial practice
 
Formal models are now used in different application domains [4], 
[6] e.g. the SCADE language is used for the design of command 
and control systems in aerospace. Automated code generation from 
models is also common. There are an increasing number of indus-
trial experiments on the application of formal analysis techniques to 
the verification of software. Model checking is beginning to be used 
operationally in the railway domain, where correct-by-construction 
approaches based on B have been used for several years now e.g. 
for the development of the control software for the Paris metro [7]. 
Certification credits for the use of formal methods in aeronautics have 
been obtained by Airbus for the A380 software [13], [14]. Rockwell 
Collins has been using model checking for the validation of require-
ments [12], [11]. Early on, NASA was investigating the use of formal 
methods for the certification of critical systems [5] and has several 
research teams working on formal verification (Robust Software engi-
neering at Ames, Langley; Formal methods, Laboratory for Reliable 
Software at JPL).

Onera work
 
Onera work in formal verification of software has been around four 
themes: 
	 •	Specifics	of	application	of	formal	methods	to	Aerospace
    (methodological work to integrate these new verification means
    into industrial processes while taking into account certification
    constraints);
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	 •	Model	driven	engineering	at	platform	level;
	 •	Cooperation	of	analysis	techniques;
	 •	Test	automation	using	formal	methods.	

Specifics of application of formal methods to Aerospace 

Certification is a structuring constraint in aeronautics. The certifica-
tion standard for software is DO-178B/ED-12B. This standard does 
not prescribe a specific development process but identifies four pro-
cesses in the software development cycle: the requirement process 
producing High Level Requirements (HLR) from System Require-
ments; the Design process producing Low Level Requirements (LLR) 
and software architecture from HLR; the coding process producing 
source code from software architecture and LLR; the integration pro-
cess producing executable object code from source code. DO-178B 
identifies verification objectives for each of the four processes, as 
synthesized on figure 4.

Version B of DO-178 was released in 1992 and software develop-
ment has changed significantly since then. So EUROCAE and RTCA 
decided to prepare an update of the standard in 2005. DO-178C was 
released in December 2011 and proposes, in addition to the core 
document, four technical supplements addressing qualification of 
tools, object-oriented technologies, model-based design and formal 
methods. Onera has been active in the writing of the formal methods 
supplement [3]. This document explains how formal methods can be 
used for the verification of certified software and proposes adapted 
verification objectives taking into account the differences with classi-
cal verification techniques such as testing. A summary presentation 
of this supplement can be found in [15].
 
This work on certification standards is essential to be able to trans-
fer formal methods to industrial practice, as is the work on methods 
that Onera is doing in collaboration with industrial partners such as 
Airbus. Having an appropriate formal notation and an efficient analy-
sis technique is necessary but absolutely not sufficient to be able to 
take advantage of all the benefits of these new verification methods. 
Methodological work is mandatory and includes the identification 
of the requirements that can be verified formally, their formalization 

and the definition of specific verification strategies for the software 
in question. Onera has been working with Airbus on these aspects at 
both model and code levels [17], [10], [13].

This methodological work may reveal needs for new techniques, 
to complement formal analysis. For example, when working on the 
definition of a method to apply model checking to SCADE models, 
we noted that a lot of time was spent on the understanding of the 
counter-examples provided by the model checker. We proposed an 
automated technique and an associated tool to extract from the coun-
ter examples the meaningful information and present it to the user in 
a comprehensible way [16].
 
Model Driven Engineering at platform level

The anticipated spectrum of applications of model driven engineering 
in aerospace embedded systems design is not restricted to critical 
flight control software. Indeed, MDE approaches can be used at dif-
ferent conceptual design levels, from aircraft level to platform level 
down to software components level.

Onera has ongoing projects to support the design of embedded plat-
forms through model driven approaches. In their current state, plat-
form models are dedicated to the study of performance or dysfunctio-
nal aspects (or even other non-functional aspects such as electrical 
consumption or weight). Models help in the formalizing of the different 
components and architectural concepts around which the execution 
platform is built, as well as attributes according to which the perfor-
mances and safety of the platform are assessed. In such models the 
properties capturing resource allocation requirements and safety rela-
ted requirements can be formally expressed and automatic tools such 
as SAT, Pseudo-Boolean or SMT solvers can be used either to verify 
manual designs or to generate correct-by-construction resource allo-
cations or platform configurations.

In addition, model based specifications can valuably subsume natural 
language specifications, not only in the design process, but also in 
the procurement process between contractors and sub-contractors. 
Models may in the near future become critical assets on which the 
whole system design process will rely.

Figure  4 - DO-178B verification objectives.
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A remarkable indication of this trend is the Topcased software suite 
[www.topcased.org], an open-source, Eclipse-based Integrated 
Development Environment dedicated to embedded systems applica-
tions. Onera was involved in the original Topcased project, and is now 
involved in its successor project OPEES [www.opees.org]. Onera 
contributions to OPEES consist in providing a theoretical framework, 
tools and associated methodologies to enable formal verification and 
automatic model synthesis for users of MDE processes.

Meta-models and semantics

Meta modeling proceeds by defining class diagrams (e.g. UML, 
Ecore) and annotating the diagrams with declarative constraints 
(e.g. OCL) to formalize the invariants of the class diagrams. Such 
meta-models usually describe the category of acceptable systems 
or system configurations. Once the meta-model is obtained an ins-
tance of the meta-model can be created (which would correspond 
to a particular system or system configuration). Two questions natu-
rally arise in this modeling process. Firstly, a validation problem: does 
the meta-model adequately capture all informal requirements without 
error, ambiguity or redundancy? Secondly, a verification problem: are 
instances correct with respect to the meta-model and its constraints? 
The following sections give a quick overview of the state of the art of 
existing validation and verification techniques, and finally introduce 
the research objectives and current work at Onera.

Validation

At the meta-level, generic properties can be investigated, of which the 
following two are the most important:
	 •	Constraints	consistency:	 the	absence	of	 logical	contradiction	
between constraints that would entail an empty set of instances of the 
meta-model; 
	 •	Constraint	non-redundancy:	there	should	exist	instances	which	
show that each constraint can be satisfied/falsified independently of 
the others, proving that each constraint adds its own independent 
semantic contribution to the meta-model. 

Tool support is available for such validation tasks: UMLtoCSP [20], 
UML2Alloy [19], KodKod [18], etc. which all employ constraint satis-
faction techniques to generate witnesses of the above properties. Yet, 
the integration of these tools in major IDEs is sub-par and tools are 
not easy to use (incompatible data formats, etc).

Verification

At the instance level, we can make sure an instance is structurally 
faithful to class diagram constraints (valid types and cardinalities for 
references). MDE technology allows the creation of instance editors 
from a DSL specification and creating instances using these editors 
prevents a lot of basic structural errors; furthermore, any remaining 
error can be detected using static checkers.

Secondly, we can verify that an instance satisfies all constraints 
(OCL) of the meta-model. Tools for OCL verification exist (Dresden, 
Topcased, etc.) and allow the discovery of violations. The perfor-
mance of these tools is often no better than average (interpretation 
techniques vs. code generation techniques) and in some contexts 
there are difficulties in scaling up to real world applications.

Research challenges

This recent state of the art report shows that a lot is already avai-
lable for MDE users. Yet, two questions remain open today in MDE: 
how to assist the creation of large and correct-by-construction ins-
tances (think thousands of objects under complex constraints)? How 
to create instances which make sense from an engineering point of 
view?

These two questions have given birth to a research work on auto-
matic instance synthesis from a metal-model with optimization of 
quantitative criteria. An Onera proposal is to use modern and robust 
combinatorial optimization techniques (Max-SAT, Pseudo-Boolean 
optimization, SMT solving or CSP solving) to synthesize instances of 
a meta-model which:
 - Satisfy all hard constraints of the meta-model.
 - Optimize user provided quantitative criteria.
 - Can be used to extend existing (and possibly flawed) instances  
    to valid instances.
 - Help the users to explore the design-space by proposing 
   alternative solutions to a single problem.
 - Scale up to industrial applications.

Model transformation for verification and for code generation

Onera is currently working on a generic model transformation fra-
mework to import and translate meta-models and instances to a port-
folio of constraint satisfaction engines, as shown on figure 5. 

Figure 5 - SCARE framework

For more details about this technology and its possible uses, please 
consult the following references: [23], [22], [21]. 

Cooperation of analysis techniques
 
While formal techniques are slowly appearing in industrial practice, 
the ecosystem of methods applicable to a system has yet to become 
more structured. For a specific description level, either at model level 
with synchronous data-flow languages (Lustre, Simulink, etc.), or at 
code level (C, Ada, etc.), a variety of formal analysis tools are avai-
lable. Each of these tools targets a range of properties and, until now, 
the relationships between them has been only marginally investigated.
A direction of research at Onera is focused on an effective combi-
nation of techniques to improve both the efficiency and spectrum of 
formal verification for embedded systems. Gathering different tech-
niques into an integrated framework means the end-user has access 
a simpler view of what properties can or cannot be analyzed with 
respect to the available tool set. This research is being developed 
through two sub-themes with different partnerships.
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Theoretical combination framework and application at code level

We are doing this work in cooperation with INPT and Airbus. We pro-
pose a theoretical framework that gives us a general way to reason 
about a block of code annotated with a formal specification, typically 
a Hoare triple {Precondition} Sequence of Instructions {Postcondi-
tion}.

Most of the analysis techniques can be expressed either as forward 
analyses that over-approximate the reachable states of the code, 
or as backward analyses that under-approximate the co-reachable 
states of the code starting from a specific property. The formalization 
of these mechanisms (see figure 6) allows us to demonstrate how to 
implement the collaboration of techniques.

 
Figure 6 - Forward and backward analyses

Reinforcing the knowledge of an analysis by the intermediate infor-
mation computed by the other allows a strengthening of the global 
results.
 
These ideas have been implemented on C code analysis tools, by 
combining an abstract interpreter, that over-approximates the col-
lecting semantics (in a forward setting), and a weakest-precondition 
engine, under-approximating the behavior of the program with respect 
to the Post property [24].

Combination of k-induction and abstract interpretation at model 
level

In cooperation with the University of Iowa and Rockwell Collins, this 
research focuses on the verification of safety properties on Lustre pro-
grams. SAT or SMT [25], [26] based verification approaches such as 
k-induction [27] give good results on programs with a mostly discrete 
state space (boolean, bounded integers). However, when numerical 
computations are involved (real/float computations) the formalization 
of the property to be proved often needs to be strengthened using 
auxiliary lemmas to make it inductive with respect to the system’s 
transition relation. When attempted manually the discovery of such 
lemmas is time consuming and hinders the efficiency and scalability 
of formal verification. Automating lemma discovery hence appears 
crucial to allowing end-users to apply formal verification on industrial 
cases.

Our proposal materializes as a parallel analysis framework for Lustre 
programs in which each analysis can communicate its own interme-
diate information to the others: discovered invariants, potential inva-
riants, counter-examples to the induction step of a proof, heuristics 
about relationship between state variables. The exchanged informa-
tion is used to drive and tune the analysis of the different tools. Abs-
tract interpretation is used to provide bounds on the state variables 
and to generalize counter-examples, while k-induction is used to 
validate any proposed invariants and to discharge the principal proof 
objective. The main components of the engine and their interactions 
are presented in figure 7. 
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Test automation using formal methods

Formal verification will not replace all the tests but can help in automa-
ting the test process that is still often very manual. Test is composed 
of three activities: definition of test scenarios, execution of the scena-
rios and oracle (did the test fail or pass?)

A lot of work has been done on automated test generation from formal 
specifications [30], [31]. Test scenarios are generated from a formal 
model of the software requirement in order to test the correctness of 
the code with respect to the requirements. Automated test generation 
can also be used to test a design model with respect to requirements. 
Onera has worked with Airbus on test generation techniques and 
methods as well as on the definition of relevant structural coverage 
criteria for SCADE models [28], [29]. Special attention has to be given 
to the methods used in order to respect the constraints imposed by 
DO-178B that forbid the use of structural testing. 

Onera has also worked on automation of the oracle for the test of 
SCADE models. SCADE models are tested against functional requi-
rements (written in natural language) on specific simulation environ-
ments. Test scenarios are manually defined by testers, then they are 
executed on the simulator and finally the tester decides if the test 
results are correct with respect to the expected results specified in the 
requirements. The oracle can be done online, or offline by looking at 
the execution traces of the test. We have proposed a formal language 
for the expression of test objectives derived from the requirements 
and an analysis technique to automatically verify that the execution 
traces are correct with respect to the test objective. It has been ap-
plied on Airbus critical avionics software [32].
 
This work on trace analysis can be seen as a run-time verification 
approach. Run-time verification is a research field that proposes the 

use of formal methods in a lightweight fashion in order to verify pro-
perties on execution of the software (www.runtime-verification.org). 
Most of the contributions propose techniques to monitor the program 
while it is executing and detect violations of the properties; but a pos-
teriori approaches also exist that verify the properties on the program 
traces [33].
 

Future work 

Future work in software formal verification at Onera is going to be 
focused on three themes.

1) We will continue to investigate the cooperation between different 
verification techniques, in order to improve efficiency of the verifica-
tion and augment the spectrum of properties that can be addressed 
by formal methods.
 
2) We are going to work on the definition of an optimized verification 
process across the different development levels. This theme is broad 
and long term, we will conduct research on the following aspects in 
particular:
	 •	use	of	invariants	from	continuous	mathematical	models	to	ease	
verification of software (cooperation with Georgia Tech);
	 •	combination	of	static	and	dynamic	analyses:	 test	and	 formal	
methods will be used in future software verification processes, but 
research still needs to be done to find smart ways of combining them.

3) We plan to work on incremental techniques to take into account of 
software evolutions. In Aeronautics, successive versions of software 
are verified before being embedded in the aircraft, but also during 
maintenance. Defining efficient techniques for incremental verification 
would be very interesting in this context  

Acronyms 

MDE (Model Driven Engineering)
ATV (Automated Transfer Vehicle)
HLR (High Level Requirements)
LLR (Low Level Requirements)
SAT (Satisfiability)

SMT (Satisfiability Modulo Theories)
OPEES (Open Platform for the Engineering of Embedded Systems)
UML (Unified Modeling Language)
OCL (Object Constraint Language)
IDE (Integrated Development Environment)
CSP (Constraint Satisfaction Problems)
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