
Issue 4 - May 2012 - Formal Verification of Critical Aerospace Software
 AL04-10 1

Mastering Complexity

Formal Verification of Critical
Aerospace Software

V. Wiels, R. Delmas,
D. Doose, P.-L. Garoche,
J. Cazin, G. Durrieu
(Onera)

E-mail: virginie.wiels@onera.fr

Embedded software is implementing more and more functions in aeros-
pace, including critical ones. Model Driven Engineering has changed

software life cycle development by introducing models in the early steps of
software development. Verification and validation is essential, at model and
at code levels, and still mostly done by simulation and test. However, for-
mal methods, which are based on the analysis of the program or software
model, are being transferred to industry for verification of critical software.
This paper presents the context of aerospace software development, a brief
overview of formal methods and of the associated industrial practice, and the
work done at Onera on formal verification of critical Aerospace software at
model and at code levels. This work addresses four themes:
	 •	Specifics of application of formal methods to aerospace;
	 •	Model driven engineering at platform level;
	 •	Cooperation of analysis techniques;
	 •	Automating test using formal methods.
 Each of these four themes is a research domain in itself; it is thus impos-
sible in a single paper to provide a detailed state of the art and an exhaustive
list of research challenges for each of them. This paper rather aims at giving
a broad vision and at presenting work done at Onera in these domains.

Figure 2 - Evolution of the volume of embedded software

The same thing is happening in the space domain; the number of
embedded computers is still much smaller than in aeronautics, but it
is growing and will continue to do so. In addition to control functions,
satellites and spacecrafts now embed complex management func-
tions (mode management, load, communication, etc). Some func-
tions are critical, such as the one responsible for docking to the space
station in the ATV (Automated Transfer Vehicle).

Aerospace context

Aerospace systems have experienced significant and continual evo-
lution over the last 30 years. Digital technologies have become more
mature, reliable and efficient and have been introduced inside aircraft
for the implementation of more and more functions, including critical
ones, as shown in figure 1.

Figure 1 - Embedded functions

Software is essential in the implementation of these functions. For
example, the avionics systems in the Airbus A380 include more than
100 millions lines of code. Figure 2 gives an idea of the evolution of
the volume of embedded software.

Control
Utilities

Cabin IFE

A/G
communication

Energy Avionics

Cabin Crew
Operations

Passengers
Applications

120

100

80

60

40

20

0

Serveral hundred

A300 A310 A320 A330/A340 A380

Software
Volume
(Mo)

Software Volume (Mo)

Issue 4 - May 2012 - Formal Verification of Critical Aerospace Software
 AL04-10 2

Software engineering

In this context, special attention must be given to software engineering
in order to master software complexity and ensure the correct execu-
tion of software executing critical functions. Classically, software de-
velopment is decomposed into several steps: requirements, design,
coding and verification and validation (essentially by test, unit test and
integration test), as represented on figure 3.a.

Figure 3 - a) Classical software development cycle / b) MDE software deve-
lopment cycle

Verification and validation is an essential step for critical software and
represents more than 50% of software development costs. Another
important rule is that the later an error is detected, the more costly it
is to correct it [1].

This is one of the main reasons for the advent of Model Driven Engi-
neering (MDE) in software development. In traditional software deve-
lopment, the reference is the code. In MDE, the reference is a model
that is developed before the code (and from which the code can in
some cases be automatically generated). This model can be simu-
lated and thus verified against requirements. If the code generator is
qualified, unit test can be removed and replaced by verification on the
model.

Verification and validation means

Software verification and validation is still mainly achieved by means
of simulation and testing. However, these methods are not exhaus-
tive, and still very labor-intensive and costly. They may also reach the
limits for specific verification objectives. Alternative techniques exist
and are being transferred: formal methods [2]. These methods do
not require execution of the software and are based on mathematical
analysis of the code or the model. They have the advantage of being
automated and exhaustive. Onera has chosen formal methods for the
verification of critical aerospace software.

Formal methods

A formal method is defined by a formal notation together with a formal
analysis technique (definition taken from [3]). A notation is formal if
it has non-ambiguous, mathematically defined syntax and semantics.
The formal analysis technique then allows automated computation of
properties of systems modeled using the formal notation.

Brief overview of existing techniques

The first work on formal methods dates back to the 60’s with Hoare
logic, to prove the correctness of programs [8], [9]. Many different
formal notations and analysis techniques have been defined. Our
goal here is not to give a detailed state of the art report, we refer the
reader to the formal methods wiki (http://www.formalmethods.wikia.
com) which gives many references. Formal notations can be broken
down into programming languages, formal modeling languages that
are usually dedicated to a specific type of application (such as syn-
chronous languages for reactive systems) and formal notations for
the expression of properties (such as temporal logics).

Analysis techniques are typically presented under three categories
[3]: model checking, deductive techniques and abstract interpre-
tation, even if the borders between techniques are not as strict as
they used to be. Model checking explores all possible behaviors of a
formal model to determine whether a specified property is satisfied.
Deductive methods involve mathematical arguments, such as mathe-
matical proofs, to establish a specified property of a formal model.
Abstract interpretation is a theory for formally constructing conser-
vative representations of the semantics of programming languages.

State of industrial practice

Formal models are now used in different application domains [4],
[6] e.g. the SCADE language is used for the design of command
and control systems in aerospace. Automated code generation from
models is also common. There are an increasing number of indus-
trial experiments on the application of formal analysis techniques to
the verification of software. Model checking is beginning to be used
operationally in the railway domain, where correct-by-construction
approaches based on B have been used for several years now e.g.
for the development of the control software for the Paris metro [7].
Certification credits for the use of formal methods in aeronautics have
been obtained by Airbus for the A380 software [13], [14]. Rockwell
Collins has been using model checking for the validation of require-
ments [12], [11]. Early on, NASA was investigating the use of formal
methods for the certification of critical systems [5] and has several
research teams working on formal verification (Robust Software engi-
neering at Ames, Langley; Formal methods, Laboratory for Reliable
Software at JPL).

Onera work

Onera work in formal verification of software has been around four
themes:
	 •	Specifics	of	application	of	formal	methods	to	Aerospace
 (methodological work to integrate these new verification means
 into industrial processes while taking into account certification
 constraints);

Requirements

VerificationRequirements

Integration test

Design Unit test

Code

Design Unit test

Code

Integration test

a)

b)

Issue 4 - May 2012 - Formal Verification of Critical Aerospace Software
 AL04-10 3

	 •	Model	driven	engineering	at	platform	level;
	 •	Cooperation	of	analysis	techniques;
	 •	Test	automation	using	formal	methods.	

Specifics of application of formal methods to Aerospace

Certification is a structuring constraint in aeronautics. The certifica-
tion standard for software is DO-178B/ED-12B. This standard does
not prescribe a specific development process but identifies four pro-
cesses in the software development cycle: the requirement process
producing High Level Requirements (HLR) from System Require-
ments; the Design process producing Low Level Requirements (LLR)
and software architecture from HLR; the coding process producing
source code from software architecture and LLR; the integration pro-
cess producing executable object code from source code. DO-178B
identifies verification objectives for each of the four processes, as
synthesized on figure 4.

Version B of DO-178 was released in 1992 and software develop-
ment has changed significantly since then. So EUROCAE and RTCA
decided to prepare an update of the standard in 2005. DO-178C was
released in December 2011 and proposes, in addition to the core
document, four technical supplements addressing qualification of
tools, object-oriented technologies, model-based design and formal
methods. Onera has been active in the writing of the formal methods
supplement [3]. This document explains how formal methods can be
used for the verification of certified software and proposes adapted
verification objectives taking into account the differences with classi-
cal verification techniques such as testing. A summary presentation
of this supplement can be found in [15].

This work on certification standards is essential to be able to trans-
fer formal methods to industrial practice, as is the work on methods
that Onera is doing in collaboration with industrial partners such as
Airbus. Having an appropriate formal notation and an efficient analy-
sis technique is necessary but absolutely not sufficient to be able to
take advantage of all the benefits of these new verification methods.
Methodological work is mandatory and includes the identification
of the requirements that can be verified formally, their formalization

and the definition of specific verification strategies for the software
in question. Onera has been working with Airbus on these aspects at
both model and code levels [17], [10], [13].

This methodological work may reveal needs for new techniques,
to complement formal analysis. For example, when working on the
definition of a method to apply model checking to SCADE models,
we noted that a lot of time was spent on the understanding of the
counter-examples provided by the model checker. We proposed an
automated technique and an associated tool to extract from the coun-
ter examples the meaningful information and present it to the user in
a comprehensible way [16].

Model Driven Engineering at platform level

The anticipated spectrum of applications of model driven engineering
in aerospace embedded systems design is not restricted to critical
flight control software. Indeed, MDE approaches can be used at dif-
ferent conceptual design levels, from aircraft level to platform level
down to software components level.

Onera has ongoing projects to support the design of embedded plat-
forms through model driven approaches. In their current state, plat-
form models are dedicated to the study of performance or dysfunctio-
nal aspects (or even other non-functional aspects such as electrical
consumption or weight). Models help in the formalizing of the different
components and architectural concepts around which the execution
platform is built, as well as attributes according to which the perfor-
mances and safety of the platform are assessed. In such models the
properties capturing resource allocation requirements and safety rela-
ted requirements can be formally expressed and automatic tools such
as SAT, Pseudo-Boolean or SMT solvers can be used either to verify
manual designs or to generate correct-by-construction resource allo-
cations or platform configurations.

In addition, model based specifications can valuably subsume natural
language specifications, not only in the design process, but also in
the procurement process between contractors and sub-contractors.
Models may in the near future become critical assets on which the
whole system design process will rely.

Figure 4 - DO-178B verification objectives.

A-3.2 Accuracy & Consistency
A-3.3 HW Compatibility
A-3.4 Verifiability
A-3.5 Conformance
A-3.3 HW Compatibility
A-3.7 Algorithm Accuracy

A-4.8 Architecture Compatibility

A-4.9 Consistency
A-4.10 HW Compatibility
A-4.11 Verifiability
A-4.12 Conformance
A-4.13 Parition Integrity

A-5.2 Compliance

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy &Consistency

A-5.7 Complete & Correct A-6.5 Compatible With Target

A-6.1 Compliance
A-6.2 Robustness

A-5.1 Compliance
A-5.5 Traceability

A-6.3 Compliance
A-6.4 Robustness

A-4.2 Accuracy
& Consistency
A-4.3 HW Compatibility
A-4.4 Verifiability
A-4.5 Conformance
A-4.3 HW Compatibility
A-4.7 Algorithm Accuracy

A-4.1 Compliance
A-4.6 Traceability

A-3.1 Compliance
A-3.6 Traceability

Compliance: with requirements
Conformance: with standards

System
Requirements

High-Level
Requirements

Software
Architecture

High-Level
Requirements

Source Code

Executable
Object Code

A7 Verification of verification
(Functional & Structural coverage)

Issue 4 - May 2012 - Formal Verification of Critical Aerospace Software
 AL04-10 4

A remarkable indication of this trend is the Topcased software suite
[www.topcased.org], an open-source, Eclipse-based Integrated
Development Environment dedicated to embedded systems applica-
tions. Onera was involved in the original Topcased project, and is now
involved in its successor project OPEES [www.opees.org]. Onera
contributions to OPEES consist in providing a theoretical framework,
tools and associated methodologies to enable formal verification and
automatic model synthesis for users of MDE processes.

Meta-models and semantics

Meta modeling proceeds by defining class diagrams (e.g. UML,
Ecore) and annotating the diagrams with declarative constraints
(e.g. OCL) to formalize the invariants of the class diagrams. Such
meta-models usually describe the category of acceptable systems
or system configurations. Once the meta-model is obtained an ins-
tance of the meta-model can be created (which would correspond
to a particular system or system configuration). Two questions natu-
rally arise in this modeling process. Firstly, a validation problem: does
the meta-model adequately capture all informal requirements without
error, ambiguity or redundancy? Secondly, a verification problem: are
instances correct with respect to the meta-model and its constraints?
The following sections give a quick overview of the state of the art of
existing validation and verification techniques, and finally introduce
the research objectives and current work at Onera.

Validation

At the meta-level, generic properties can be investigated, of which the
following two are the most important:
	 •	Constraints	consistency:	 the	absence	of	 logical	contradiction	
between constraints that would entail an empty set of instances of the
meta-model;
	 •	Constraint	non-redundancy:	there	should	exist	instances	which	
show that each constraint can be satisfied/falsified independently of
the others, proving that each constraint adds its own independent
semantic contribution to the meta-model.

Tool support is available for such validation tasks: UMLtoCSP [20],
UML2Alloy [19], KodKod [18], etc. which all employ constraint satis-
faction techniques to generate witnesses of the above properties. Yet,
the integration of these tools in major IDEs is sub-par and tools are
not easy to use (incompatible data formats, etc).

Verification

At the instance level, we can make sure an instance is structurally
faithful to class diagram constraints (valid types and cardinalities for
references). MDE technology allows the creation of instance editors
from a DSL specification and creating instances using these editors
prevents a lot of basic structural errors; furthermore, any remaining
error can be detected using static checkers.

Secondly, we can verify that an instance satisfies all constraints
(OCL) of the meta-model. Tools for OCL verification exist (Dresden,
Topcased, etc.) and allow the discovery of violations. The perfor-
mance of these tools is often no better than average (interpretation
techniques vs. code generation techniques) and in some contexts
there are difficulties in scaling up to real world applications.

Research challenges

This recent state of the art report shows that a lot is already avai-
lable for MDE users. Yet, two questions remain open today in MDE:
how to assist the creation of large and correct-by-construction ins-
tances (think thousands of objects under complex constraints)? How
to create instances which make sense from an engineering point of
view?

These two questions have given birth to a research work on auto-
matic instance synthesis from a metal-model with optimization of
quantitative criteria. An Onera proposal is to use modern and robust
combinatorial optimization techniques (Max-SAT, Pseudo-Boolean
optimization, SMT solving or CSP solving) to synthesize instances of
a meta-model which:
 - Satisfy all hard constraints of the meta-model.
 - Optimize user provided quantitative criteria.
 - Can be used to extend existing (and possibly flawed) instances
 to valid instances.
 - Help the users to explore the design-space by proposing
 alternative solutions to a single problem.
 - Scale up to industrial applications.

Model transformation for verification and for code generation

Onera is currently working on a generic model transformation fra-
mework to import and translate meta-models and instances to a port-
folio of constraint satisfaction engines, as shown on figure 5.

Figure 5 - SCARE framework

For more details about this technology and its possible uses, please
consult the following references: [23], [22], [21].

Cooperation of analysis techniques

While formal techniques are slowly appearing in industrial practice,
the ecosystem of methods applicable to a system has yet to become
more structured. For a specific description level, either at model level
with synchronous data-flow languages (Lustre, Simulink, etc.), or at
code level (C, Ada, etc.), a variety of formal analysis tools are avai-
lable. Each of these tools targets a range of properties and, until now,
the relationships between them has been only marginally investigated.
A direction of research at Onera is focused on an effective combi-
nation of techniques to improve both the efficiency and spectrum of
formal verification for embedded systems. Gathering different tech-
niques into an integrated framework means the end-user has access
a simpler view of what properties can or cannot be analyzed with
respect to the available tool set. This research is being developed
through two sub-themes with different partnerships.

Scare

Model
Instance

Constraints
Optimization

Pb-Solvers
-minsat+

-Sat4J
-wbo
-...

OPB
File

CSP:
-Choco

-Ilog

Ecore
Model

DSL
Instance

Issue 4 - May 2012 - Formal Verification of Critical Aerospace Software
 AL04-10 5

Theoretical combination framework and application at code level

We are doing this work in cooperation with INPT and Airbus. We pro-
pose a theoretical framework that gives us a general way to reason
about a block of code annotated with a formal specification, typically
a Hoare triple {Precondition} Sequence of Instructions {Postcondi-
tion}.

Most of the analysis techniques can be expressed either as forward
analyses that over-approximate the reachable states of the code,
or as backward analyses that under-approximate the co-reachable
states of the code starting from a specific property. The formalization
of these mechanisms (see figure 6) allows us to demonstrate how to
implement the collaboration of techniques.

Figure 6 - Forward and backward analyses

Reinforcing the knowledge of an analysis by the intermediate infor-
mation computed by the other allows a strengthening of the global
results.

These ideas have been implemented on C code analysis tools, by
combining an abstract interpreter, that over-approximates the col-
lecting semantics (in a forward setting), and a weakest-precondition
engine, under-approximating the behavior of the program with respect
to the Post property [24].

Combination of k-induction and abstract interpretation at model
level

In cooperation with the University of Iowa and Rockwell Collins, this
research focuses on the verification of safety properties on Lustre pro-
grams. SAT or SMT [25], [26] based verification approaches such as
k-induction [27] give good results on programs with a mostly discrete
state space (boolean, bounded integers). However, when numerical
computations are involved (real/float computations) the formalization
of the property to be proved often needs to be strengthened using
auxiliary lemmas to make it inductive with respect to the system’s
transition relation. When attempted manually the discovery of such
lemmas is time consuming and hinders the efficiency and scalability
of formal verification. Automating lemma discovery hence appears
crucial to allowing end-users to apply formal verification on industrial
cases.

Our proposal materializes as a parallel analysis framework for Lustre
programs in which each analysis can communicate its own interme-
diate information to the others: discovered invariants, potential inva-
riants, counter-examples to the induction step of a proof, heuristics
about relationship between state variables. The exchanged informa-
tion is used to drive and tune the analysis of the different tools. Abs-
tract interpretation is used to provide bounds on the state variables
and to generalize counter-examples, while k-induction is used to
validate any proposed invariants and to discharge the principal proof
objective. The main components of the engine and their interactions
are presented in figure 7.

Assume P0

Assert
Q1 Q2

Post

Reach (Pre)

Q0

P1 P2

l l’

I IPre

¬I-1¬ ¬I-1¬

Functional &Temporal
System Specification

(SMT)

Safety Properties
(SMT)

Abstract
Interpreter
LFP (GFP)

Abstract
Interpretation

Properties
(SMT)

Compound Model
(SMT)

Potential Lemmas
(SMT)

Domain
Refinement

Queries

Minimal Cause
Analyser

Step
CEX

Minimal Cause (s) extraction

K-Induction engine with bitblasting

K-Unrolled
Base Instance

(SMT)

Base
CEX

SMT Solver

SMT Solver

K-Unrolled
Step Instance

(SMT)

Figure 7 - Cooperation between model checking and abstract interpretation

Issue 4 - May 2012 - Formal Verification of Critical Aerospace Software
 AL04-10 6

Test automation using formal methods

Formal verification will not replace all the tests but can help in automa-
ting the test process that is still often very manual. Test is composed
of three activities: definition of test scenarios, execution of the scena-
rios and oracle (did the test fail or pass?)

A lot of work has been done on automated test generation from formal
specifications [30], [31]. Test scenarios are generated from a formal
model of the software requirement in order to test the correctness of
the code with respect to the requirements. Automated test generation
can also be used to test a design model with respect to requirements.
Onera has worked with Airbus on test generation techniques and
methods as well as on the definition of relevant structural coverage
criteria for SCADE models [28], [29]. Special attention has to be given
to the methods used in order to respect the constraints imposed by
DO-178B that forbid the use of structural testing.

Onera has also worked on automation of the oracle for the test of
SCADE models. SCADE models are tested against functional requi-
rements (written in natural language) on specific simulation environ-
ments. Test scenarios are manually defined by testers, then they are
executed on the simulator and finally the tester decides if the test
results are correct with respect to the expected results specified in the
requirements. The oracle can be done online, or offline by looking at
the execution traces of the test. We have proposed a formal language
for the expression of test objectives derived from the requirements
and an analysis technique to automatically verify that the execution
traces are correct with respect to the test objective. It has been ap-
plied on Airbus critical avionics software [32].

This work on trace analysis can be seen as a run-time verification
approach. Run-time verification is a research field that proposes the

use of formal methods in a lightweight fashion in order to verify pro-
perties on execution of the software (www.runtime-verification.org).
Most of the contributions propose techniques to monitor the program
while it is executing and detect violations of the properties; but a pos-
teriori approaches also exist that verify the properties on the program
traces [33].

Future work

Future work in software formal verification at Onera is going to be
focused on three themes.

1) We will continue to investigate the cooperation between different
verification techniques, in order to improve efficiency of the verifica-
tion and augment the spectrum of properties that can be addressed
by formal methods.

2) We are going to work on the definition of an optimized verification
process across the different development levels. This theme is broad
and long term, we will conduct research on the following aspects in
particular:
	 •	use	of	invariants	from	continuous	mathematical	models	to	ease	
verification of software (cooperation with Georgia Tech);
	 •	combination	of	static	and	dynamic	analyses:	 test	and	 formal	
methods will be used in future software verification processes, but
research still needs to be done to find smart ways of combining them.

3) We plan to work on incremental techniques to take into account of
software evolutions. In Aeronautics, successive versions of software
are verified before being embedded in the aircraft, but also during
maintenance. Defining efficient techniques for incremental verification
would be very interesting in this context

Acronyms

MDE (Model Driven Engineering)
ATV (Automated Transfer Vehicle)
HLR (High Level Requirements)
LLR (Low Level Requirements)
SAT (Satisfiability)

SMT (Satisfiability Modulo Theories)
OPEES (Open Platform for the Engineering of Embedded Systems)
UML (Unified Modeling Language)
OCL (Object Constraint Language)
IDE (Integrated Development Environment)
CSP (Constraint Satisfaction Problems)

References

[1] Software for Dependable Systems: Sufficient Evidence? National Research Council (U.S.). Committee on Certifiably Dependable Software Systems, Daniel
Jackson, Martyn Thomas, Lynette I. Millett editors, 2007.
[2] M. HINCHEY, J. P. BOWEN, E. VASSEV - Formal methods. Philip A. Laplante (ed.), Encyclopedia of Software Engineering, Taylor & Francis, 2010,pp. 308-320.
[3] Formal Methods Supplement to DO-178C and DO-278A. RTCA, 2011
[4] J. RUSHBY - Automated Formal Methods Enter the Mainstream. Communications of the Computer Society of India, Vol. 31, No. 2, May 2007, pp. 28-32.
Formal Methods Special Theme Issue.
[5] J. RUSHBY - Formal Methods and their Role in the Certification of Critical Systems. Technical Report CSL-95-1, March 1995. Also available as NASA
Contractor Report 4673, August 1995, and issued as part of the FAA Digital Systems Validation Handbook (the guide for aircraft certification)
[6] Y. A. AMEUR, F. BONIOL, V. WIELS - Toward a wider use of formal methods for aerospace systems design and verification. International Journal on Software
Tools for Technology Transfer (STTT). Volume 12, issue 1, 2010
[7] P. DEMM, P. DESFORGES, M. MEYNADIER - An industrial success in formal development. Proceedings of FM99. LNCS1708
[8] C. A. R. HOARE - An axiomatic basis for computer programming. Communications of the ACM, 12(10): 576–580,583 October 1969
[9] R. W. FLOYD - Assigning meanings to programs. Proceedings of the American Mathematical Society Symposia on Applied Mathematics. Vol. 19, pp. 19–31. 1967
[10] T. BOCHOT, P. VIRELIZIER, H. WAESELYNCK, V. WIELS - Model Checking Flight Control Systems: the Airbus Experience. ICSE companion, 2009
[11] S. MILLER, M. WHALEN, D. COFER - Software Model Checking Takes off. Communications of the ACM, Volume 53, N° 2. 2010

Issue 4 - May 2012 - Formal Verification of Critical Aerospace Software
 AL04-10 7

[12] S. MILLER, A. TRIBBLE, M. WHALEN, M. HEIMDAHL - Proving the Shalls: Early Validation of Requirements through Formal Methods. Software Tools for
Technology Transfer, volume 8, number 4. 2006
[13] J. SOUYRIS, V. WIELS, D. DELMAS, H. DELSENY - Formal Verification of Avionics Software Products. Formal Methods 2009
[[14]D. DELMAS, J. SOUYRIS - Astrée: From Research to Industry. SAS 2007: 437-451.
[15] D. BROWN, H. DELSENY, K. HAYHURST, V. WIELS - Guidance for Using Formal Methods in a Certification Context. Proceedings of ERTSS 2010
[16] T. BOCHOT, P. VIRELIZIER, H. WAESELYNCK, V. WIELS - Paths to Property Violation: a structural approach for analyzing counter-examples. 12th IEEE High
Assurance Systems Engineering Symposium (HASE’10), November 2010.
[17] O. LAURENT, P. MICHEL, V. WIELS - Using Formal Verification Techniques to Reduce Simulation and Test Effort. FME 2001: 465-477
[18] E. TORLAK, D. JACKSON - Kodkod: A relational model finder. TACAS 2007. http://dx.doi.org/10.1007/978-3-540-71209-1_49.
[19] K. ANASTASAKIS AND B. BORDBAR AND G. GEORG, I. RAY - UML2Alloy: A Challenging Model Transformation. 10th International Conference on Model
Driven Engineering Languages and Systems 2007. LNCS 4735, Springer.
[20] J. CABOT, R. CLARISO, D. RIERA - Verification of UML/OCL Class Diagrams using Constraint Programming. ICSTW ‘08. IEEE Computer Society.
[21] R. DELMAS, T. POLACSEK, D. DOOSE - Utilisation de techniques SAT/PseudoBool pour la synthèse de modèles corrects par construction dans le cadre
IDM. In Génie Logiciel, volume 97, Juin 2011
[22] R. DELMAS , T. POLACSEK , D. DOOSE, A. FERNANDES-PIRES - IDM: Vers une aide à la conception. Inforsid 2011
[23] R. DELMAS, T. POLACSEK, D. DOOSE - Supporting Model Based Design. MEDI 2011. LNCS Springer-Verlag.
[24] Onera, IRIT. Projet CAVALE - Collaboration d’analyses - Choix techniques et mise en œuvre. Technical report, janvier 2011
[25] C. BARRETT, R. SEBASTIANI, S. SESHIA, C.TINELLI - Chapter on Satisfiability Modulo Theories. A. Biere, H. van Maaren and T. Walsh editors, Handbook
on Satisfiability. IOS Press, February 2009
[26] C. BARRETT, A. STUMP, C. TINELLI - The SMT-LIB Standard: Version 2.0. Proceedings of the 8th International Workshop on Satisfiability Modulo
Theories, 2010.
[27] T. KAHSAI, C. TINELLI - PKIND: a Parallel k-Induction Based Model Checker. Proceedings of 10th International Workshop on Parallel and Distributed
Methods in verifiCation, Snowbird, USA, 2011. EPTCS
[28] O. LAURENT, C. SEGUIN, V. WIELS - A Methodology for Automated Test Generation Guided by Functional Coverage Constraints at specification level.
ASE 2006: 285-288
[29] A. LAKEHAL, I. PARISSIS - Structural Coverage Criteria for Lustre/SCADE Programs. Software Testing, Verification and Reliability (STVR), Wiley Inters-
cience, 19(2):133-154, 2009
[30] PAUL E. AMMANN, PAUL E. BLACK, W. MAJURSKI - Using Model Checking to Generate Tests from Specifications. Proceedings of 2nd IEEE International
Conference on Formal Engineering Methods (ICFEM’98), IEEE Computer Society, pages 46-54
[31] M. STAATS, M.W. WHALEN, M. P.E. HEIMDAHL, A. RAJAN - Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness. NFM 2010
[32] G. DURRIEU, H. WAESELYNCK, V. WIELS. LETO - A Lustre-based Test Oracle for Airbus critical systems. Formal Methods for industrial Critical systems
(FMICS) - L’Aquila, Italy, September 2008
[33] H. BARRINGER, A. GROCE, K. HAVELUND, M. SMITH. - Formal Analysis of Log Files. Journal of Aerospace Computing, Information, and Communication,
Volume 7 - Issue 11, 2010

AUTHORS

Virginie Wiels has been a research scientist at Onera since
1998 and her research interest is in the use of formal methods
for the verification of critical embedded systems. She is leading
the LAPS research unit, focusing on Languages, Architectures
and Proofs for embedded Systems. She was research scientist
at the NASA IV&V center in Fairmont, USA from 1997 to 1998,
working on formal verification of NASA space shuttle embedded

software. She graduated from the Ecole Nationale Supérieure d’Electronique,
Electrotechnique et d’Informatique in Toulouse (ENSEEIHT). She received her
PhD degree in computer science from the Ecole Nationale Supérieure d’Aéro-
nautique et d’Espace (ENSAE) in 1997. She received her Habilitation à Diriger
des Recherches (HDR) from the Institut National Polytechnique in Toulouse
(INPT) in 2007.

Rémi Delmas graduated from ENSMA in 2000 and obtained a
Computer Science Ph.D. from ENSAE in 2004. From 2005 to
2009 he worked as an R&D engineer at Prover Technology on
the design, implementation and certification of model checking
tools for railway control systems. Rémi Delmas joined Onera
in late 2009. His current research focuses on the combination
of formal verification methods for reactive software, and on the

use of combinatorial optimization techniques to automate the design of safe-
by-construction embedded architectures.

Issue 4 - May 2012 - Formal Verification of Critical Aerospace Software
 AL04-10 8

Pierre-Loïc Garoche is a research scientist at Onera. His work
is mainly focused on the use of formal methods in critical
embedded systems development in a certified context. He gra-
duated from the École Normale Supérieure de Cachan, France,
and received his PhD degree in Computer Science from the
University of Toulouse, France in 2008.

Jacques Cazin has been with INRIA until 1983, then with
Onera where he was successively research engineer, head of
a research unit focused on the design and validation of com-
puter systems, director of the information processing and
modeling department (DTIM). In 2007 he left the department
management and returned to research work. For 35 years he
conducted research in technical fields as varied as computer

languages, operating systems, software engineering, computer security,
safety, embedded systems, with a particular and continuous interest in for-
mal approaches and methods. Jacques graduated from the École Nationale
Supérieure de l’Aéronautique et de l’Espace (ENSAE) in 1975 and received a
Masters in computer science from the same school in 1976.

David Doose is a research scientist at Onera. His research inte-
rest is mainly in Model Driven Engineering, synthesis of design
solutions based on constraint solving and real time analyses of
embedded systems. He graduated from the University of Tou-
louse, and received his PhD degree in Computer Science from
the University of Toulouse, France in 2006.

Guy Durrieu is a research scientist at Onera. His research inte-
rest is mainly in the use of simulation, test and formal methods
for the verification of critical systems, in particular from the
performance point of view. He graduated from the University
of Toulouse, and received his PhD degree in Computer Science
from the University of Toulouse, France in 1977

