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T his paper is about optimization under uncertainty, when the uncertain parameters  
 are modeled through random variables. Contrary to traditional robust approaches, 

which deal with a deterministic problem through a worst-case scenario formulation, 
the stochastic algorithms presented introduce the distribution of the random variables 
modeling the uncertainty. For single-objective problems such methods are currently 
classical, based on the Robbins-Monro algorithm. When several objectives are involved, 
the optimization problem becomes much more difficult and the few available methods 
in the literature are based on a genetic approach coupled with Monte-Carlo approaches, 
which are numerically very expensive. We present a new algorithm for solving the 
expectation formulation of stochastic smooth or non-smooth multi-objective optimization 
problems. The proposed method is an extension of the classical stochastic gradient 
algorithm to multi-objective optimization, using the properties of a common descent 
vector. The mean square and the almost-certain convergence of the algorithm are 
proven. The algorithm efficiency is illustrated and assessed on an academic example.

Introduction

Manufacturers are ever looking for designing products with better 
performance, and higher reliability at lower cost and risk. One way to 
address these antagonistic objectives is to use multi-objective optimi-
zation approaches. However, real-world problems are rarely described 
through a collection of fixed parameters and uncertainty has to be 
taken into account, whether it appears in the system description itself, 
or in the environment and operational conditions. Indeed, the system 
behavior can be very sensitive to modifications in some parameters 
[1, 2, 3]. This is why uncertainty has to be introduced in the design 
process from the start. Optimization under uncertainty has undergone 
important advances since the second half of the 20th century [4, 5] 
and various approaches have been proposed, including robust optimi-
zation, where only the bounds of the uncertain parameters are used, 
and stochastic optimization where uncertain parameters are mod-
eled through random variables with a given distribution and where 
the probabilistic information is directly introduced into the numerical 
approaches. In that context, the uncertain multi-objective problems 
are written in terms of the expectation of each objective. Consider-
ing single objective stochastic optimization problems, a large variety 
of numerical approaches [6, 7] can be found in the literature, with 
the first results appearing in the late 50's [4, 8, 5]. With regard to 
aerospace applications, optimization problems under uncertainty are 

either considered as robust optimization problems or as reliability 
ones. In both cases, the numerical procedures that are the most fre-
quently used are purely deterministic ones: this is indeed the case for 
robust optimization, since it is written as a "worst case" deterministic 
optimization problem, but it is also true when reliability is addressed. 
In this last situation, the chance constraint is transformed into a deter-
ministic constraint using FORM or SORM approximations [9]. In both 
cases classical deterministic algorithms, such as the SQP algorithm 
[10], are eventually used to numerically solve the optimization prob-
lem. There is another route: it uses the probabilistic distribution of 
the random variables modeling the uncertainty [11, 12, 13]. There 
are two main approaches: the stochastic gradient algorithm, based 
on stochastic approximations such as the Robbins Monro algorithm 
[14, 15, 16], which is a descent method, and a second one based on 
scenario approaches [17, 18], the latter being more frequently applied 
for chance-constrained problems.

After briefly presenting the now-classical stochastic gradient  
algorithm, we illustrate its potential for being used in structural 
optimization on a reliability optimization problem in aeroelasticity.  
We pursue this by presenting the problem of optimizing several objec-
tive functions when uncertainty, modeled through random variables, 
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is introduced in part of the objective function. After providing some 
necessary mathematical elements for comprehension of the method, 
we present a general algorithm based on the existence of a descent 
vector common to each objective, which can be used in a broad con-
text: for regular or non-regular, convex or non-convex objectives, with 
or without constraints. An illustration on the optimal design of a sand-
wich will highlight the efficiency of the proposed approach compared 
to that of classical genetic algorithms.

Single-Objective Stochastic Optimization

The following deterministic optimization problem 

 ( ) ( ){ }| 0, ; , : ;Argmin n nf x g x x X f g X≥ ∈ → ⊂    (1)

is a classical problem for any regular objective function f and  
constraint function g . However, when random parameters 

( ) ( ) ( )( )1= ,..., d
dξ ω ξ ω ξ ω ∈  defined on a probability space 

( ), ,Ω    are introduced into either one or both functions f  and g , the 
meaning given to the random problem must be specified: 

 ( )( ) ( )( ){ }, , 0,Argmin f x g x x Xξ ω ξ ω ≥ ∈  (2)

Depending on the nature of the practical applications considered, 
there are several approaches to deal with stochastic optimization 
problems. For instance, without being limited to these options, one 
can consider working with either: 
•	 a mean value description:

( )( ) ( )( ){ }, , 0Argmin f x g xξ ω ξ ω    ≥    

•	 a worst case scenario:
( )( ) ( )( ){ }, , 0,Argmin f x g xξ ω ξ ω ω  ≥ ∀ ∈Ω 

•	 a robust context:
( )( ) ( )( ) ( ){ , , 0, ,Argmin f x g x F Fξ ω ξ ω ω  ≥ ∀ ∈ ⊂ Ω    

[ ]}0 0, 0,1p p= ∈

•	 or a chance-constraint formulation: 
( )( ) ( )( ){ }0, , 0Argmin f x g x pξ ω ξ ω   ≥ ≥      

denoting the mathematical expectation as .

The Stochastic Gradient Approach

Let ( ), ,Ω    be an abstract probabilistic space, and : dξ Ω →   a ran-
dom vector. We denote as µ the distribution of the random variable ξ , 
and as   its image space ( )ξ Ω . Let 1,..., ,...kξ ξ  be independent copies 
of the random variable ξ , which will be used to generate independent 
random samples with the distribution µ. We consider the case where 
the constraints and the optimization parameters are deterministic. In the 
stochastic optimization problem (the objective function is defined as the 
mathematical expectation of the random quantity ( )( ),f x ξ ω ): 

 ( ) ( ) ( )( )*

ad
= ; = ,Argmin

x X

x J x J x f x ξ ω
∈

    (3)

adX  denotes the admissible space. There exists a stochastic exten-
sion of the standard deterministic gradient method that is particularly 
suited to this problem: it does not necessitate the estimation of the 
expectation in relation (3) to be built at each optimization step. 

The algorithm of the stochastic gradient method uses optimiza-
tion iteration instead, in order to build an estimate of the gradient 
expectation:
•	 Choose 0x X∈  and > 0kγ  for k ∈. 
•	 Draw 1nξ +  under the law of ξ  independently from kξ  for k n≤ . 
•	 Update 

 ( )( )1 1= ,n n n x n nX x f xγ ξ+ +− ′  (4)

•	 Project over the feasible space adX  

 ( )1 ad 1=n nX
x X+ +Π  (5)

adX
Π  defines the projection operator on the feasible space adX . The 
series ( )nγ  must be divergent, and the series ( )2

nγ  convergent. Typi-
cally, ( )=n a n bαγ + , ] ]0.5,1α ∈ . Like its deterministic version, the 
sequence ( )nx  converges to the solution *x  of the problem under the 
Robbins-Monroe assumptions applied to xf ′ [14]. When the gradient 
is easily available the method is very efficient (see the discussion 
section and Figure 10). Some results on convergence speed and 
enhancements can be found in the book [19].

An Aeroelasticity Illustration

Flutter Equation

We consider the classical context of aeroelasticity, where the aerody-
namic forces are calculated using a linearized assumption together 
with a doublet-lattice method [20], where the airplane structure is 
described through a finite-element model, and when uncertainty is 
introduced in the mass and stiffness matrices through a vector valued 
random variable ξ . The finite-element discretization for the aeroelastic 
analysis can be formulated in the frequency domain as follows: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

21 0
2

T T T

T

L p M K

V A p V R

ξ ξ ξ ξ ξ ξ ξ

ρ ξ ξ ξ

 Φ Φ + Φ Φ

+ Φ Φ =  

(6)

where M and K are the structural mass and stiffness matrices, ρ is 
the air density, V is the flow speed, A is the aerodynamic load matrix 
and Φ is the modal basis of the structure ( M, K ). Assuming the air-
flow speed V to be constant, the solution p ∈ of the flutter equation 
depends on the aerodynamic parameter ρ and on the uncertain 
parameters ξ . The sign of the real part ( )pℜ  specifies the stability of 
the coupled system. We define the critical pressure qc as the smallest 
pressure value q such that ( )( ) = 0p qℜ , if any. The critical pressure 
depends on the uncertain parameters ξ  and, therefore, is itself a ran-
dom variable. The vectors L and R are the associated pseudo left and 
right eigenvectors. The dimension of Problem (6) is equal to the num-
ber of eigenmodes retained for the aeroelastic analysis.

Gradient Calculation

We shall address the problem of optimizing the mass distribution of a 
given number of concentrated masses , = 1,im i q of the finite element 
model, in order to maximize the critical pressure value. We shall 
denote by m the vector ( )1= ,..., qm m m . Therefore, we shall need to 
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evaluate the gradients 
i

p
m

∂
∂

 and 
p
q

∂
∂

. The derivation of such quantities 

is classical [21, 22]; they are obtained by differentiating Equation (6): 

 
( )

2

2
=

12
2

T T

i

T Ti

Mp L R
mp

m L pM qV A p V R

∂Φ Φ
∂∂ −

∂  ′ ′Φ + Φ  

 (7)

 
( )

( )

2

2

1
2=

12
2

T T

T T

L V A p V Rp
q L pM qV A p V R

Φ Φ∂ −
∂  ′ ′Φ + Φ  

 (8)

where A′ stands for the derivative of A. These two relations will allow 
the derivation of the critical pressure gradient expression. For each 
mass distribution m, the critical pressure is defined by 

( )( ), = 0cp m qℜ  . Using the implicit function theorem in the neigh-
borhood of a point ( )0 0, cm q , under the assumption that p is a regular 
function, there exists a function φ  such that ( ) = cm qφ  (with 

( )0 0=cq mφ ). Moreover, in the neighborhood of ( )0 0, cm q , we have, for 
each mass point mi : 

 ( ) ( )
( )

( )

0 0

0 0

0 0

,
= =

,

c
ic

i i
c

p m q
mqm m

m m p m q
q

φ
 ∂ℜ ∂ ∂∂ −

∂ ∂  ∂ℜ  ∂ 

 (9)

The aerodynamic load matrix is modeled by a matrix-valued rational 
function using the "Minimum State" approach [23]. The analytical 
expression of the aerodynamic matrix gradients can then be readily 
derived, since their calculation involves rational function differentiation.

Wing Model

The goal of this section is to show numerically the applicability of 
these two algorithms to an aeroelastic optimization problem. We 
shall consider a finite-element model of a simple wing and introduce 
uncertainty in several structural parameters. We consider then two 
different optimization problems: the first one involving a probabilistic 
objective function and deterministic constraints, which will be solved 
using the stochastic gradient algorithm, and the second one, which 
is a chance constraint optimization problem, and which will be solved 
using the stochastic Arrow-Hurwicz algorithm. 

Description of the Model

We consider a wing model that was defined as a wind-tunnel model 
similar to a heavy-carrier airplane wing, in order to evaluate and com-
pare different CFD codes among various partners in the late ‘80s 
[24]: Aerospatiale, ONERA, DLR and MBB. The structural model 
is given in Figure 1. It is a stick model with concentrated masses. 
This model has the advantage of being numerically more tractable 
for testing stochastic algorithms. During the design and optimization 
stages, stick models are, in fact, used by manufacturers because 
they give a clear and synthetic overview of the structure properties. 
The stick model, including the super element modelling the mounting 
bracket, is defined with 93 beams and 97 concentrated masses mi . 

The root and tip chord lengths are, respectively, equal to 0.42 m and 
0.10 m. The sweep angle is equal to 32 degrees, and the span length 
is equal to 1 m.

A flutter analysis is performed using a doublet-lattice method for 
computing the aerodynamic matrix. In Figure 2, the frequency and 
damping evolution of the first bending mode (23.4 Hz) and first tor-
sion mode (31.85 Hz) with respect to the pressure are shown. The 
first torsion mode becomes unstable for 412 10cq ≈ × . 
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Figure 2 – Flutter diagram for the AMP wing

Optimization of the Critical Pressure

The illustration goal is to test and assess the gradient-based method 
applied to our simple stick model. The optimization problem purpose 
is to modify the value of each of the 89 mass points lying on the 
wing, in order to increase the value of the critical pressure. The mass 
points defining the mounting bracket are not considered. Several con-
straints are introduced. The first one is to keep the global mass of the 
model constant. The other set of constraints is related to the range of 
variation of each mass point: their value must stay within a bounded 
interval in order to avoid physical aberration (negative or null mass). 
The optimization problem is then written as: 

 ( )( ) [ ]
=1

, | = ; , ,Argmax
N

c j i i i
j

q m m c m a b iξ ω
    ∈ ∀    

∑  (10)
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Figure 1 – AMP stick model
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The feasible space

( ) [ ]{ }ad
1 =1

= = ,..., | = ; , ,
NN

N j i i ij
X m m m m c m a b i∈ ∈ ∀∑

is convex. The gradient-based algorithm iterates on the values of vec-
tor m and is written: 

 ( )1
ad 1= ,n n nc

n nX

qm m m
m

γ ξ+
+

∂ Π +  ∂
 (11)

The divergent series ( γn ) is chosen as: 1

2

K
K n+

, where K1 and K2 are 

parameters that need to be tuned. Indeed, these two parameters have 
an impact on the convergence speed. For this particular application, 
only a couple of tests were necessary to obtain an acceptable conver-
gence speed. More precisely, we have taken K1 =0.01 and K2 =100. 
Under classical assumptions [19], the gradient-based algorithm con-
verges to the best solution, either almost surely or as a mean square 
for the norm ( )2 Ω .

In the numerical experiment, seven regions of the stick model have 
been considered, for which a random stiffness coefficient iξ  is intro-
duced in order to model the stiffness uncertainty of each region. 
Those seven regions (indicated in Figure 1 by the letters A through G) 
contain the beams connecting the mass points lying on a same chord. 
The uncertainty is modeled as a uniform random variable over 

,0 ,00.75 ,1.25i iξ ξ × × , where ,0iξ  are the stiffness nominal values 
for each region. Eighty nine grid mass points mj are chosen as opti-
mization parameters, and a maximum variation of 25% of the initial 
values: ,0 ,00.75 ,1.25j j jm m m ∈ × ×  is allowed.

Five hundred iterations of the stochastic gradient algorithm have been 
considered. In order to illustrate the quality of the optimization result, 
we have performed an uncertainty propagation study by drawing 
1000 random stiffness realizations for the initial and final mass con-
figurations and by constructing the critical pressure histogram.

The critical pressure histogram corresponding to the initial values 
of the optimization parameters is represented on the left in Figure 3, 
and that corresponding to the final values is on the right. The gain 
obtained is clearly visible. This result shows that the critical pressure 
of the wing can be significantly increased by modifying the mass 
distribution, without modifying the total weight. Such a result can be 
interesting for updating the numerical model of a wing with uncertain 
parameters, in order to match an experimental critical speed value for 
a wind tunnel mockup.

The locus of the wing centers has hardly been modified by the opti-
mization procedure.

Multi-Criteria Stochastic Optimization

Let m functions fi : 
n × →  , i=1,...m depending on uncertain 

parameters be modeled trough a random vector ( )W ω . We consider 
the following stochastic optimization problem:

( )( ) ( )( ) ( )( ){ }1 2, , , ,..., ,min mnx
f x W f x W f x Wω ω ω

∈

          


    (12)

More precisely, we want to construct the associated Pareto set: multi-
objective optimization is based on the notion of Pareto-optimal and 
weak Pareto-optimal solutions. Consider m convex functions fi : 

n → , i=1,... m and the unconstrained optimization problem 

 ( ) ( ){ }1 ,...,min mnx
f x f x

∈
 (13)

A solution *x  of Problem (13) is Pareto-optimal if no point x such that 
( ) ( )* = 1,...,i if x f x i m≤ ∀  and ( ) ( )*<j jf x f x  for an index 

{ }1,...,j m∈  exists. It is weakly Pareto-optimal if no point x such that 
( ) ( )*< = 1,...,i if x f x i m∀  exists. A complete review of multi-objec-

tive optimization can be found in [25]. Before continuing with the 
algorithm description that will be used to solve the previous problem, 
we shall recall definitions of some notions appearing in the context of 
non-smooth analysis and multi-objective optimization. Throughout 
the paper, the standard inner product on n  will be used and denoted 
as ,〈⋅ ⋅〉, with the norm being denoted as ⋅ .

Some Definitions and Results in Convex Analysis

Definition 1 – A function : nf →  is locally Lipschitz-continuous 
at point x if there exists scalars > 0K  and > 0ε  such that, for all 

( ), ,y z B x ε∈  
 ( ) ( )f y f x K y z− ≤ −

where ( ),B x ε  denotes the open ball of center x and radius ε. 

Definition 2 – A function : nf →   is convex if for all , nx y ∈  
and [ ]0,1λ ∈  the following inequality holds: 

 ( )( ) ( ) ( ) ( )1 1f x y f x f yλ λ λ λ+ − ≤ + −

Definition 3 – The directional derivative at x along the direction nv ∈  
of a function : nf →  is defined by the limit: 

 ( ) ( ) ( )
0

; = lim
t

f x tv f x
f x v

t↓

+ −
′

Any convex function f  is continuous and differentiable almost every-
where. Moreover, there exists at each point x a lower affine function 
that is identical to f  at x. This affine function defines the equation of a 
plane called a tangent plane. When the function f  is differentiable at x, 
there is only one tangent plane characterized by the gradient ( )f x∇ . 
When f  is non-differentiable at x, there exists an infinity of tangent 
planes that define the subdifferential.

Definition 4 – The subdifferential of a function : nf →  at x is the set 

 ( ) ( ) ( ){ }= : ,n nf x s f y f x s y x y∂ ∈ ≥ + − ∀ ∈   (14)
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Figure 3 – Random critical pressure distribution before and after optimization
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This set is non-empty, convex, closed and reduced to ( )f x∇  when f  
is differentiable. The following result allows the notion of subdifferen-
tial to be used for characterizing the optima of convex functions. 

Theorem 1 ([26]) – Let : nf →  a convex function. The following 
statements are equivalent  

•	 f  is minimized at x* : ( ) ( )* nf y f x y≥ ∀ ∈ , 

•	 ( )*0 f x∈∂ , 

•	 ( )*, 0 nf x d d≥ ∀ ∈′  . 

When the function is no longer convex, but is locally Lipschitz-contin-
uous, the directional derivative defined in Definition 3 does not neces-
sarily exist and a generalized directional derivative must be consid-
ered. Moreover, the notion of subdifferential has to be replaced by 
the notion of Clarke subdifferential [27]. The Clarke subdifferential at 
point x is the set containing all of the convex combinations of limits of 
gradients at points located in the neighborhood of x : 

 ( ) ( ) ( ){ }= ;lim i i i
i

f x conv f x x x and f x exists
→∞

∂ ∇ → ∇  (15)

In order to define the Clarke subdifferential more formally, we give the 
definition of a generalized directional derivative in a first step: 

Definition 5 – Let : nf →  be a locally Lipschitz-continuous func-
tion. The generalized directional derivative of f at x in the direction 

nv ∈  is defined by: 

 ( ) ( ) ( )
; 0

; = limsupo

y x t

f y tv f y
f x v

t→ ↓

+ −

Definition 6 – Let : nf →  be a locally Lipschitz-continuous func-
tion. The Clarke subdifferential of f at x is the set ( )f x∂  of vectors 
defined by: 

 ( ) ( ){ }= : ;n o T nf x s f x v s v v∂ ∈ ≥ ∀ ∈   (16)

Theorem 1 cannot be generalized to arbitrary non-convex functions: a 
locally Lipschitz continuous function f has a local minimum at x* if 

( )*0 f x∈∂ , but it is not a sufficient condition. There exist, however, 
classes of functions for which the result still holds, it is the case, for 
instance, of f  0 -pseudoconvex functions, which are defined by: 

Definition 7 – A locally Lipschitz-continuous function : nf →  is 
f  0 -pseudoconvex if 

 ( ) ( ) ( ), , < ; < 0n ox y f y f x f x y x∀ ∈ ⇒ −  (17)

Common Descent Direction

The algorithm presented in the next section is based on the existence 
and construction of a descent direction. We first recall its definition. 

Definition 8 – A vector d is called a descent direction if 0 > 0t∃ , such 
that ( ) ( )<f x td f x+  for all [ ]00,t t∈ . 

For smooth functions it is well known that the opposite direction of the 
gradient is a descent vector. In the non-smooth convex or non-convex 
context, not all elements of the subdifferential are a descent vector.

There are several techniques to construct such a descent vector: 
proximal bundle methods [28, 29, 30], quasisecant methods [31], or 
gradient sampling methods [32, 33]. Considering now m functions 

1,..., mf f , we show that there exists a vector d  that is a descent direc-
tion for each function. Its construction is based on properties of the 
following convex set C :

Lemma 1 ([36]) – Let C be the convex hull of either  

•	 the gradients ( )if x∇  of the objective functions when they are 
differentiable, 

•	 or the union of the subdifferentials ( )if x∂ , = 1,...,i m when 
they are non-differentiable but convex, or 

•	 the union of the Clarke subdifferentials ( )if x∂ , = 1,...,i m if they 
are non-convex. 

Then, there exists a unique vector * = A p Cp prgmin ∈  such that 

 
2* * * *: =T Tp C p p p p p∀ ∈ ≥

The existence of the common direction d and its construction is given 
by the following theorem: 

Theorem 2 ([36]) – Let C be the convex set defined in Lemma 1 and 
let p* be its minimum norm element. Then, either we have

•	 * = 0p  and the point x is Pareto-stationary or 

•	 * 0p ≠  and the vector *p−  is a common descent direction for 
every objective function. 

We now have sufficient elements to present the SMGDA (Stochastic 
Multi-Gradient Descent Algorithm) algorithm.

The SMGDA Algorithm

As written problem (12) is a deterministic problem, but the objec-
tive function expectations are seldom known. A classical approach, 
the sample average approximation (SAA) method, is to replace each 
expectancy by an estimator built using independent samples wk of 
the random variable W, [34, 35]. The algorithm that we propose does 
not need the objective function expectancy to be calculated, and is 
based only on the construction of a common descent vector. Let w 
be given in Ω, and consider the deterministic multi-objective optimi-
zation problem: 

 ( )( ) ( )( ) ( )( ){ }1 2, , , ,..., ,min mnx
f x W f x W f x Wω ω ω

∈
 (18)

Pursuant to Theorem 2 there exists a descent vector common to each 
objective function ( )( ), , = 1,...,kf x W k mω  at point x.

The common descent vector depends on x and w, and therefore will 
be considered as a random vector denoted by ( )d ω  defined on the 
probability space ( ), ,Ω   .

The Algorithm

We now list the successive steps of the algorithm that we propose.
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1. Choose an initial point x0 in the design space, a number N of 
iterations and a σ -sequence 2: = ; <k k kt t t∞ ∞∑ ∑ , 

2. At each step k, draw a sample wk of the random variable 
( )kW ω  , 

3. Construct the common descent vector ( )kd w  using Theorem 2 
and the gradient sampling approximation method, 

4. Update the current point : ( )1=k k k kx x t d w− + .

The last step of the algorithm defines a sequence of random variables 
on the probability space ( ), ,Ω    through the relation

 ( ) ( ) ( ) ( )( )1 1= ,k k k k kX X t d X Wω ω ω ω− −−  (19)

Initializing the algorithm with different points in the admissible space, 
for instance using a random or quasi-random distribution, allows dif-
ferent points located on the Pareto front to be constructed. This pro-
cedure is entirely parallelizable.

Theorem 3 ([36]) – Under a set of assumptions, 

1. The sequence of random variables ( )kX ω  defined by Relation 
(19) converges in a mean square towards a point X * of the 
Pareto set: 

 ( ) 2
= 0lim k

k
X Xω

→+∞

 −   

2. The sequence converges almost surely towards X *. 

 ( ){ }, = = 1lim k
k

X Xω ω
→∞

 ∈Ω  

Illustration: Optimal Designs of a Sandwich Plate with 
Uncertainties

We consider a sandwich panel whose constitutive materials are given 
but their mechanical properties are uncertain: solid foams present 
random, disordered micro-structure, while a honeycomb core may 
present uncertain geometrical characteristics, which may result in a 

distinct scatter and unpredictability of the macroscopic material prop-
erties. These uncertainties will be introduced into the optimization 
problem by means of random variables.

More precisely, in this application we consider a three-layer non-sym-
metric sandwich panel with aluminum skins and a regular hexagonal 
honeycomb core. The mechanical properties of the plate are described 
by the Young modulus ( ).E , the elastic resistance ( ).σ  and the mass 
density ( ).ρ  of the upper and bottom skin and of the core constitutive 
material. We introduce the honeycomb wall thickness/length ratio 
R = t .

The relations yielding the honeycomb core material properties from 
its geometrical description and from its constitutive material proper-
ties are given in [37] and are recalled in Table 1.

R = t l

Rρ = ( ) ( )( )
3 R

2cos 1 sin
cρ

θ θ+ 

RE = RE cc
ρ ρ

Rσ = ( )
5
35.6 R cσ

Table 1: Core material property function of R

Two objectives are considered in the design process: 
•	 Minimization of the mass per unit of surface 

 = t t tu u c c b bM ρ ρ ρ+ +  (20)

•	 Maximization of the critical force leading to a failure mode when 
two modes are introduced: Mode ,1cF  leading to the core inden-
tation and Mode ,2cF  leading to the lower-skin plastic stretching. 
We shall then consider the failure mode cF , which appears first: 

 
( )

{ },
= 1,2

= minc c i
i

F F  (21)

b

l

t
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Figure 4 – Three-layer sandwich material beam
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( )( )
,1 ,2

4 t t t t / 2
= 2 t ; =

4
b c u b

c u c u c c b

b
F b ab Fσ σ σ σ

+ +
+   (22)

This last objective function is not differentiable, due to the presence 
of the minimum function.

Four design parameters are considered: the three thickness parame-
ters of the sandwich plate ( )t , t , tu b c  and the honeycomb wall thick-

ness/length ratio R = t 
  



. We shall denote by ( )= t , t , t ,Ru b cx  the 

vector containing the four design parameters. Two types of con-
straints are introduced into the problem, the first are bounding con-
straints on each design variable, which are handled using a projection 
method on the convex feasible set C defined by these constraints: 

 [ ] [ ] [ ]t ,t cm t cm Ru b c∈ 0.03, 14  ; ∈ 0.05, 32  ; ∈ 0.01, 0.2

The second type is an inequality constraint for the total thickness e of 
the sandwich material: 

 = t t t 0.25u b ce + + ≤

In the following numerical application, this last constraint is handled 
by introducing the exact penalty term [26] 

 ( ) { }= min 0,1 .25g x r e× −  (23)

into each objective function, where r is a penalty term. Classically, an 
increasing sequence = , = 1,2,...qr p q  is used, with q being the 
smallest integer for which the constraint is satisfied. For this applica-
tion we have chosen = 10qr .

We now introduce uncertainty in some parameters of the sandwich 
material. More precisely, 20% uncertainty is considered for the upper 
and bottom skin elastic resistance value: 

 ( ) ( )( )1, = 1,1u b Alu Uσ σ σ × +   (24)

where U1 is a uniform random variable on [ ] [ ].2,.2 .2,.2− × −  and 
where = 350 Alu MPaσ  is the nominal value. A second uncertain 
parameter is introduced: the value of the honeycomb angle 

( )2= 1 Uθ θ + , where U2 is a uniform random variable on [ ].2,.2−  and 
where = 6θ π . We shall denote by [ ]1 2= ,U Uξ  the vector containing 
the various random variables introduced in the problem, which are 
assumed to be independent. In order to take into account these 
uncertainties in the design process, the following stochastic multi-
objective problem is considered: 

 ( ) ( ){ } ( ), subject to 0.25min c
x

M x F x e x
∈

  −  ≤   


   (25)

This problem is rewritten using the exact penalty formulation:

 ( ) ( ) ( ) ( ){ },min c
x

M x rg x F x rg x
∈

− − −      

   (26)

In order to compare the efficiency of the method assessed to the classi-
cal genetic algorithm NSGA-II, the expectancies appearing in Problem 12 
are estimated, to be used in NSGA-II, through a sample-average method: 

 ( ) ( )
=1

1, ,
N

i
i

f x f w
N

ξ ξ  ≈  ∑  (27)

where iξ  are independent samples of the random variable ξ . The 
number N of samples plays a crucial role in the efficiency of the 
algorithm: an excessively small value will give a wide confidence 
interval and a poor estimate of the objective function, while an exces-
sively high value will dramatically increase the computational cost 
(see Figure 5). 

In order to compare the two algorithms, we have chosen to compare 
results obtained for the same number of function calls ( ), if w ξ . In the 
case of SMGDA, this number includes the number of starting points 
and the number of iterations per initial point. In the case of NSGA-II it 
includes the size of the initial population, the number N used for esti-
mating the objective functions, and the number of generations.

In the numerical illustration, the SMGDA algorithm is initiated from 50 
starting points in 4  and around 250 iterations were necessary to 
reach convergence. The same population number (50) is used for 
NSGA-II. The σ -sequence ( )= .03 3 10kt k× +  is used in this illustra-
tion. Figures 6 and 7 illustrate the Pareto sets obtained by the two 
algorithms. The constraint is represented in the design space by a 
plane. Both methods give solutions that comply with the constraints. 
Variable R is represented in the figure by a variation of color according 
to the color scale in Figure 6. For a low number of function calls, 
NSGA-II coupled with a Monte Carlo estimator gives a less good 
result than SMGDA. It needs about one hundred times more calls to 
the objective functions to reach an identical Pareto set. 

In order to evaluate the effect of uncertainty on the objective functions 
considered at optimal design points x* located on the Pareto front, we 
have estimated the distribution of the random vector 

( )( ) ( )( )* *( , , ,cM x F xξ ω ξ ω−  for two points x1
* and x2

*, by generat-
ing 105 samples of the random vector W. The corresponding proba-
bility distributions are drawn in Figure 8 and Figure 9, where the posi-
tion of the chosen point x* is indicated on the inner figure. The blue 
and red dots on the graph denote the mode of failure obtained for 
some of the samples used to estimate the distribution. A first result 
that can be drawn is that the distribution obtained is not a classical 
one, but there is no reason to obtain a classical distribution. The sec-
ond observation is that the effect of the uncertainties is more impor-
tant for the critical force objective than for the mass objective. Such a 
result could be valuable during the design stage of the material, know-
ing the high sensitivity of the critical force optimal value to uncertain 
parameters.

optimizer

model

parameter ξ   
sampling

optimal design

optimization 
loop

sampling loop

Figure 5 – Stochastic genetic optimization framework
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Conclusion

Although the stochastic gradient algorithm is now a classical 
approach to deal with uncertain single-objective design optimization 
problems, it is much more difficult to deal with multiple uncertain 
objectives. The most classical approaches are based on the use of 
genetic algorithms, such as NSGA coupled with a scenario method, to 
construct estimates of the objective expectations, but their usefulness 

is limited by the numerical cost induced by the estimator loop. Con-
versely, the SMGDA algorithm does not rely on the expectation esti-
mation and converges relatively rapidly toward the Pareto boundary. It 
can, moreover, be entirely parallelizable. An illustration on the design 
optimization of a sandwich plate has shown its potential usefulness 
for engineering problems 
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