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Since their early development in the 1970’s with the introduction of fly-by-wire 
technology, control systems have considerably evolved. Thanks to powerful 

on-board computers whose capacities have undergone an exponential growth over the 
past thirty years, together with the development of enhanced sensors and actuators, 
the complexity of aerospace control systems is almost no longer bounded today. This 
is true at least from a technological viewpoint. Control engineers should, however, keep 
in mind that there are many risks in developing unnecessarily complex systems whose 
validation will become a real issue. In this world, where technological constraints 
have been considerably relaxed and where autonomous systems have become a 
universal Holy Grail, a good balance must be found between the design and validation 
phases in the development of control systems. Some complexity is inevitable during 
the design phase to cope with that of the plant itself, as well as with the required level 
of autonomy. However, complexity must be controlled, so that the validation phase 
remains as quick and cheap as possible.

In this general context of rapidly growing complexity, the development of efficient control 
design and analysis tools has become a critical issue. Here again, the exponential growth 
in computing capacity has played a key role and contributed to a rapid development of 
many fields in control theory. As a result, if one focuses at least on the linear control 
framework and its numerous extensions (such as robust control theory, parameter-varying 
control and adaptive control, to cite a few), a high level of maturity is now reached.

However, the gap between theory and practice remains to be filled. This is the main 
focus of this thirteenth issue of Aerospace Lab, which is dedicated to the most 
recent techniques for the design and validation of Aerospace Control Systems, with 
a particular emphasis on Matlab-oriented tools and toolboxes together with realistic 
applications. This issue is also strongly connected to the SMAC (Systems Modeling 
Analysis & Control) toolbox developed by ONERA.

Advanced design and analysis tools

The constantly growing "complexification" of aerospace control sys-
tems reinforces the need for advanced but user- friendly design and 
analysis tools. Within the control community, both in academic and 
industrial worlds, Mathworks™ with its MATLAB/SIMULINK™ prod-
uct is the undisputed world-leader in this field.  It provides a flex-
ible and powerful object-oriented environment for control system 
design and analysis, using both Mathworks-provided11 and external 
toolboxes. Among those, this special issue of the Aerospace Lab 

1	 Such as the Control and Robust Control toolboxes.

journal, through various aerospace applications, will focus on the 
following:

•	 SMAC toolbox: http://w3.onera.fr/smac

This toolbox developed by ONERA includes several modeling, 
analysis and control libraries, which are illustrated in various 
contributions of the present issue [2, 5, 7, 10]. The core of 
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this toolbox is the Linear Fractional Representation (LFR) ob-
ject, which enables a wide class of uncertain systems to be 
captured in a unified framework perfectly well suited to many 
design and robustness analysis techniques. Among the nine li-
braries that are currently available with the SMAC toolbox, four 
are of particular interest in this issue:
–– SMAC/GSS: this library interfaced with Simulink, based on 

the gss object (generalized state-space), is dedicated to LFT 
modeling, reduction and interconnections.

–– SMAC/SMART: this library, devoted to linear time-invariant 
(LTI) robustness analysis, implements a collection of efficient 
tools to compute accurate robustness margins for complex 
systems involving numerous states and uncertainties.

–– SMAC/IQCFD: this library, based on the Integral Quadratic 
Constraints (IQC) theory can be viewed as an extension of 
SMART to systems including sector nonlinearities. The com-
putational burden is then higher, but a specific implementa-
tion makes this tool quite attractive for large order systems.

–– SMAC/SAW: this library implements two complementary 
techniques for design and analysis of anti- windup systems, 
in order to better understand and then alleviate the effects of 
saturations in control systems. Thanks to its Simulink inter-
face, this tool is quite user-friendly.

•	 LPVtools: http://www.aem.umn.edu/SeilerControl/software.shtml

This toolbox, developed by the University of Minneapolis, is dedi-
cated to the class of Linear Parameter Varying (LPV) systems 
that frequently appear in aerospace applications. Note that LPV 
systems can always be represented in the aforementioned LFR 
format. Thus, strong connections and complementarity exist be-
tween LPVtools, which is illustrated in [6] and the SMAC toolbox.

•	 R-ROMULOC: http://projects.laas.fr/OLOCEP/romuloc/

This toolbox, mainly developed by LAAS-CNRS in collabora-
tion with the IEIIT-CNR (Politecnico di Torino, Italy) and at the 
Institute for Control Science (Moscow, Russia) is intended to 
gather multiple theoretical results obtained recently in Robust 
Control and Randomized Methods. The aim is to have some 
simple functions for manipulating uncertain systems and build-
ing LMI optimization problems related to robust multi-objective 
control problems. Both deterministic and probabilistic methods 
are considered, as illustrated in [4].

•	 SATAW-Tool: http://homepages.laas.fr/queinnec/sataw-tool.html

This toolbox (SATuration AWare Tool), developed by I. Queinnec 
and S. Tarbouriech at the LAAS-CNRS, implements various the-
oretical results regarding the presence of saturation elements 
in the control loop, for both analysis and control design opera-
tions. Note that strong connections exist between these tools 
and the SAW Library from the SMAC toolbox, as shown in [7].

A brief summary

This thirteenth issue of the Aerospace Lab journal is composed of 
ten original papers, with a good balance between design and analysis 
oriented contributions.

The first paper [1] presents an overview of structured H∞ control 
theory and a non-smooth optimization-based approach to solve 
this difficult non-convex problem. The proposed algorithm has been 
implemented in the hinfstruct and systune routines provided with the 
MathWorks Robust Control Toolbox. Various possible extensions are 
discussed in the paper, such as multi-model design. This is further 
illustrated in the following two papers [2, 3] dedicated to nonlinear 
and gain-scheduled control applications, respectively. Challenging 
applications of structured H∞ control to future European launchers 
are also described in [8]. An alternative design approach is then pro-
posed in this special issue, with a contribution describing the appli-
cation of mixed randomized and robust control tools [4]. The main 
interest of such a strategy is to relax part of the conservatism induced 
by fully deterministic methods. In short, the main idea is to avoid 
low-performance controllers that are unnecessarily robust against 
unlikely situations. The last design-oriented contribution focuses on 
the impact of saturations in control systems with an application to 
anti-PIO (pilot-induced-oscillation) systems [7]. Various anti-windup 
design algorithms available with SATAW-Tool and SMAC/SAW are 
proposed and evaluated.

As mentioned above, a significant part of this issue is also dedicated 
to recent analysis tools taking into account various aspects of the 
closed-loop systems to be analyzed, such as:

•	 Nonlinear elements: this can be treated by IQC analysis [5, 
10]. The main drawback of this approach is the computa-
tional load, which has thus deserved specific attention in the 
proposed algorithms, which are described and illustrated with 
realistic examples.

•	 Parameter-varying elements: based on the LPV framework, an 
original approach is detailed in [6] to compute robustness mar-
gins for linear parameter-varying systems. One of the potential 
applications of the proposed algorithm is the stability analysis 
of systems with fast time-varying dynamics, such as launch-
ers, for example.

The above tools are very useful to “pre-validate” control systems and 
usually provide constructive information for further improving con-
trol laws. Their application is usually restricted to simplified versions 
of the closed-loop plant. Optimization and oriented simulation-based 
approaches are therefore required for further validation of complex 
systems. This aspect is discussed in the last paper [9], in the context 
of a flexible launcher 
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DOI: 10.12762/2017.AL13-01 T he H∞ control problem was posed by G. Zames in 1981 [1], and various attempts 
to address it had been made over the years. Ultimately, in 2006, the authors 

presented their solution, which is based on a tailored non-smooth optimization 
technique [2]. In this treatise we present the rationale of H∞ control, give a brief 
history, and recall the milestones reached before our 2006 solution. We clarify why our 
novel approach is welcomed in the high-tech and aerospace industry. Recent MATLAB 
functions, hinfstruct and systune, based on work by Apkarian, Noll and 
Gahinet (The MathWorks) are available in the Robust Control Toolbox, since R2010b 
and R2012b respectively.

What has Rosetta got to do with H∞-control?

The Rosetta space probe developed by the European Space Agency 
was launched on March 2, 2004 with an Ariane-5 launcher, and its 
lander module Philae was successfully placed on the comet 67P/
Churyumov-Gerasimenko by November 12, 2014. What is less 
known is that in 2011 an unexpected off-pointing of the satellite was 
detected. In-depth on-ground analysis revealed a loss of efficiency 
in one of the thrusters. It then became evident that the successful 
accomplishment of the mission hinged on re-designing the control-
lers. New sophisticated attitude controllers were synthesized by Air-
bus Defense and Space in March 2014, using the multi-model fea-
tures of a novel controller synthesis technique called hinfstruct. 
These new controllers were uploaded in May 2014, just before engag-
ing the final maneuver to get closer to the comet 67P/Churyumov-
Gerasimenko [35]. The novel control design tool that was behind this 
had been pioneered by the authors [2] between 2004 and 2006. It 
became available to control engineers between 2006 and 2010 via 
the MATLAB functions hinfstruct and systune. The math-
ematical principle underlying these tools is the H∞-rationale, which 
we will explain in this treatise.

We mention that a change of paradigm in control engineering is cur-
rently underway, where our novel structured H∞-control design tech-
nique is being adopted by leading aerospace industries. For instance, 
Dassault and ONERA [36] use the H∞-technique in tandem with the 
MORE software [37] to test new strategies for anti-vibration control 
of civil aircraft. Design of new atmospheric flight pilots for the Ariane 
launcher is being investigated by Airbus Safran Launchers, CNES 
and ONERA. Other applications include control of flexible satellites 
by Thales Alenia Space and ADS, inertial line of sight stabilization by 

SAGEM [34], the design of structured estimators for microsatellites 
by CNES [33], motor torque control in haptics by the CEA LIST 
robotics [32], and the list could be continued.

A mathematical principle, the H∞-paradigm, has found its way 
into control engineering practice. We investigate its rationale, and 
gauge the potential of the new method for the high-tech industry.

The H∞ control problem

The H∞-problem was framed by G.  Zames in two plenary talks at 
the IEEE CDC in 1976 and the Allerton Conference in 1979, and was 
posed formally in his 1981 paper [1]. However, the origins of the 
H∞‑problem are much older and date back to the 1960s, when Zames 
discovered the small gain theorem [4]. After more than 30 years, the 
H∞-problem was "solved" by P. Apkarian and D. Noll in 2006 [2] in a 
sense that is defined hereafter. Note a related, though very different, 
technique of stochastic nature has been developed in [3].

In this section we introduce the H∞-control problem formally, discuss 
its rationale, and present the context leading to our 2006 solution.

Some history

In their seminal 1989 paper [5], Doyle, Glover, Khargonekar and 
Francis show that the H∞ problem requires the solution of two 
algebraic Riccati equations (AREs). Doyle [6] discusses how this 
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milestone is reached and mentions an earlier 1984 solution. In 1994, 
P. Gahinet and P. Apkarian give a solution [7] of the H∞ problem by 
reducing it to a linear matrix inequality (LMI), the 1995 solution. How 
can a problem be solved several times? What do we mean when we 
say that we solved the problem in 2006 [2], when the 1984, 1989, 
and 1995 solutions existed already?

Formal statement of the problem

The H∞ control problem can be stated as follows. Given a real rational 
transfer matrix ( )P s , called the plant, and a space  of real rational 
transfer matrices ( )K s , called the  controller space, characterize and 
compute an optimal solution *K ∈ to the following optimization 
program 

	

( ),w zT P K
K P
K

→ ∞

∈

 



minimize

subject to stabilizes internally 	 (1)

Here, the objective function is the H∞-norm of the closed-loop per-
formance channel ( ),w zT P K→ , see Figure 1. As we shall see, the 
choice of the controller space   in (1) is the key to a proper under-
standing of the problem.

w

u y

P

K

z

Figure 1 – Standard closed-loop LFT model

Let us recall the notions used to formulate (1). The plant ( )P s  has a 
state-space representation of the form 

( )
1 2 1 2

1 11 12 1 11 12

2 21 22 2 21 22

=
: = :

=

x Ax B w B u A B B
P z C x D w D u P s C D D

y C x D w D u C D D

+ +  
  + +  
  + +  



	 (2)

where 
npx∈  is the state, nuu∈  the control, yny∈  the measured 

output, nww∈  the exogenous input, and nzz∈  the regulated out-
put. Similarly, ( )K s  has the state-space representation 

	 ( )
=

: :
=

K KK K K K

K KK K K

A Bx A x B y
K K s C Du C x D y

 +
  +    



	 (3)

where k
Kx ∈  is the state of K . As soon as 22 = 0D , the closed-loop 

transfer channel ( ),w zT P K→  in (1) has the state-space representation 

	 ( ) ( ) ( )
( ) ( )

, :w z

A K B K
T P K

C K D K→

 
 
 

	 (4)

where

( ) ( ) ( )2 2 2 1 2 12

2 21

= , = , = .K K K

K K K

A B D C B C B B D D
A K B K C K

B C A B D
+ +   

   
   

etc 	(5)

and where the state dimension is now pn k+ . Finally, for a stable real 
rational transfer function ( )T s , the H∞-norm in (1) is defined as 

	 ( )( )= max T jT
ω

σ ω∞
∈

	 (6)

where ( )Mσ  is the maximum singular value of a complex matrix M .

With these notations, we can now give the first explanation. The 1984, 
1989 and 1995 solutions of the H∞  problem (1) are all obtained 
within the space full  of full-order controllers 

	 ( ) ( )= { : = }full KK K AA has form (3) with size size 	

Observe that in full  all entries in K K K KA B C D, , ,  are free variables. 
Altogether, there are 2:= ( )p p y u y uN n n n n n n+ + +  degrees of free-
dom and we have 
	 N

full ≅  	

In particular, full  is the largest controller space that we could use in 
(1)1. Finding a solution within full  is therefore easier. In particular, 
with full  as the controller space, (1) is convex, as shown in [7]. 
When smaller and more practical controller spaces  are chosen, 
Problem (1) is much harder to solve. Our 2006 solution addresses 
these difficult cases.

Solutions of the H∞-control problem in the 1980s and 1990s refer 
to the full-order case, which is essentially convex.

The rationale

 After closing the loop in the feedback scheme (1) we may con-
sider the closed-loop system as a linear operator ( ),w zT P K→  map-
ping input w  to output z . If K  stabilizes P  internally, that is, if 

( ),w zT P K→  in (5) is stable, then ( ),w zT P K→  maps 2w L∈  into 
2z L∈ . The H∞-norm (6) is then nothing else but the 2L - 2L -operator 

norm, that is, 

	 22

= 0 = 02 2

= =sup sup
w w

Tw zT
w w∞

	

In other words, for a closed-loop channel w z→  the norm squared 
( ) 22 = ,w zT P Kγ → ∞

 is the factor by which the energy of the input 
signal is amplified in the output. Input w  with energy 

2
2w  will pro-

duce output z  with energy 
2
2z  no greater than 

22
2wγ ⋅ , as long as 

controller K  is used. The optimization program (1) strives to find the 
controller *K ∈ for which this amplification factor γ  is smallest.

In a closed loop with controller K , the input w with energy 
2
2w  creates output z  with energy 

22 2
2 2wz γ≤ , where 

( )= ,w zT P Kγ → ∞
. The same relation holds for power signals 

w z→ , i.e., power is amplified by no more than 2γ .

1	 Using even larger state dimensions does not lead to anything new.



Issue 13 - September 2017 - The H∞ Control Problem is Solved
	 AL13-01	 3

This can obviously be very useful. All that we have to do is to find 
communication channels w z→ , where the smallness of answer z  to 
question w tells us something meaningful about the system.

We now give the typical context of loopshaping, where this idea is 
used. The standard control scheme (see Figure 2) features the open-
loop system G, the controller K , the measured output y, the con-
trol signal u, and the tracking error e . Red signals are inputs, =sn  
sensor noise, =d  disturbance or process noise, and =r  reference 
signal for y, sometimes called a command. The blue signals are spe-
cifically chosen outputs, = ee W e , = uu W u , = yy W y .

r

d

We

ẽ ũ ỹ
Wu Wy

ns

e u yK G

Figure 2 – Standard control scheme

This is a special case of Figure 1, where ( )= , , sw r d n  is the input, 
= ( , , )z e u y    is the output, and where plant G regroups G and the 

filters , ,e u yW W W . The filters may be dynamic, which adds new states 
to the plant P.

What are useful transfer functions from red to blue? For instance, the 
transfer from reference r  to tracking error e

	 ( ) ( ) 1=r eT K I GK −
→ + 	

is a typical performance channel, because it describes how fast the 
system follows the reference r . Since one typically wants to track 
only in the low frequency range, eW  is a low-pass filter. Now, the 
smallness of the norm 

	 ( ) ( ) 1=r e eT K W I GK −
→ ∞ ∞

+
 	

means that the low frequency component e  of the tracking error e 
becomes small as a result of optimization, so y  follows the reference 
input r  in low frequency.

Next consider a typical robustness channel. For instance, the influ-
ence of sensor noise sn  on the control signal u. Noise is typically of 
high frequency, but that should not lead to high frequency compo-
nents in u, as this bears the risk, for example, of actuator fatigue. 
Therefore, uW  is typically a high-pass filter and u are high frequency 
components of u. We find 

	 ( ) ( ) 1=
sn u uT K W I KG K−
→ − +


	

and ( )
sn uT K→ ∞

 puts a cost on high frequency components in u. 
If program (1) is successful, it will furnish an optimal *K ∈ that 
makes this cost as small as possible, thereby building robustness to 
sensor noise into the system.

To conclude, we can see that, depending on the specific application, 
there will be several performance and robustness channels. In  its 

basic form, (1) requires fixing a single connection w z→ , but in 
Section 5 we will show how to solve a multi-objective problem with 
several H∞-channels.

Setting up the performance channel w z→  in (1) could be inter-
preted as putting a cost on undesirable behavior of the closed-
loop system.

Controller structures

The reason why the H∞ theory of the 1980s failed to take hold in 
practice is quickly explained. Controllers computed via algebraic 
Riccati equations are full order, or  unstructured. However, for various 
reasons, practitioners prefer simple controllers like PIDs, or control 
architectures combining PIDs with filters, and such controllers are 
structured.
 

The discrepancy between H∞ theory and control engineering 
practice is highlighted, for example, by PID control. Until 2010 
PID controllers had to be tuned instead of optimized, because 
software for H∞-PID control was not available.

During the 1990s and early 2000s a new approach to controller 
design based on linear matrix inequalities (LMIs) was developed. 
Unfortunately, LMIs have essentially the same shortcomings as 
AREs: H∞ controllers computed via LMIs are still unstructured. The 
situation only started to improve when, in the late 1990s, the authors 
pioneered the investigation of feedback controller synthesis via bilin-
ear matrix inequalities (BMIs). While the LMI euphoria was still in full 
progress, we recognized that what was needed were algorithms that 
would allow structured controllers to be synthesized. Here is the for-
mal definition of structure (see [2]).

Definition 1
A controller K  of the form (3) is called structured if the state-space 
matrices , , ,K K K KA B C D  depend smoothly on a design parameter 
vector κ  varying in some parameter space n , or in a constrained 
subset of n .

In other words, a controller structure ( )K ⋅ , or ( )K κ , consists of 
four smooth mappings ( ) : n k k

KA ×⋅ →  , ( ) : yk nn
KB ×⋅ →  , 

( ) : un kn
KC ×→⋅   , and ( ) : u yn nn

KD ×⋅ →  .

It is convenient to indicate the presence of structure in K  by the 
notation ( )K κ , where κ  denotes the free parameters. In the 
MATLAB functions hinfstruct or systune one refers to κ  
as the vector of tunable parameters.

Three basic examples with structure

The structure concept is best explained by examples. The transfer 
function of a realizable PID controller is of the form 

	 ( ) = =
1

i d i d
p K

f

k k s r rK s k d
s T s s s τ

+ + + +
+ +

,	 (7)
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where = /K p d fd k k T+ , = 1/ fTτ , =i ir k , 2=d d fr k T− . Realizable 
PIDs may therefore be represented in state-space form 

	 ( )p

0 0
: 0

1 1

i

id d

K

r
K r

d
κ τ

 
 −
 
 

	 (8)

where 4= ( , , , )i d Kr r dκ τ ∈  is tunable. As we can see,

	 ( ) ( ) ( )0 0
( ) = , = , = [11], =

0
i

K K K K K
d

r
A B C D d

r
κ κ κ κ

τ
  
  −   

	

If we use the PID structure (8) within the H∞ framework (1), we com-
pute an H∞ PID controller, that is, a PID controller that minimizes the 
closed-loop H∞-norm among all internally stabilizing PID controllers: 

	 ( ) ( )*, ,w z pid w z pidT P K T P K→ → ∞∞
≤ 	

The controller space for this structure is 

	 ( ) ( ){ }4= = , , ,pid pid i d KK r r dκ κ τ ∈ : as in (8), 	

The fact that PID is a structure in the sense of Def. 1 means that 
PIDs may now be optimized instead of tuned.

A second classical controller structure, related to the fundamental 
work of Kalman in the 1960s, is the observer-based controller, which 
in state-space has the form: 

	 ( ) 2 2: 0
c f f

obs
c

A B K K C K
K Kκ

+ + − 
 
  

	 (9)

Here, the vector of tunable parameters κ  regroups the elements of 
the Kalman gain matrix fK  and the state-feedback control matrix 

cK . That is, ( ) ( )( )= v , vf cec K ec Kκ . Since the plant P  has pn  
states, yn  outputs and un  inputs, κ  is of dimension ( )p y un n n+ , i.e., 

( )= <p y un n n n N+ , which indicates that the controller is struc-
tured, even though = pk n . In fact, formally the structure of observer-
based controllers is defined as 

	 ( ) ( ) ( )( ){ }( )= : (9) , = v , v p y un n n
obs obs f cK as in ec K ec Kκ κ +∈ 

Now, if we use (9) within the framework of (1), we are computing an 
observer-based H∞-controller. However, do not observer-based con-
trollers obsK  belong to the realm of 2H -control? This is H∞ control!

Are we mixing things? Yes we are, but for good reasons! If we are 
attached to the observer-structure, and at the same time appreciate 
the robustness of H∞-control, then we should by all means mix things. 
The result will be a controller ( )*

obsK κ , where *
cK  gives us two gain 

matrices *
cK  and *

fK , neither of which is by itself optimal in any sense2. 
In particular, there are no algebraic Riccati equations for *

fK  or *
cK . 

Nonetheless, taken together, they are optimal in the sense that 

	 ( )( ) ( )( )*, ,w z obs w z obsT P K T P K κκ→ → ∞∞
≤ 	

2	 The principle of separation of observation and control is no longer valid.

for any other observer-based controller ( )
obsK κ  that stabilizes P 

internally. In particular, observer-based controllers based on AREs 
would appear on the right hand side, and hence are sub-optimal.

A third basic controller structure are reduced order controllers. More 
precisely, the order of K  is fixed as < pk n . This is the simplest exam-
ple of a structure, namely 

	 ( ){ }= : =k KK K k kA × as in (3) with size 	

Here, the vector of tunable elements is ( ) ( ) ( ) ( )( )= v , v , v , vK K K Kec ec ec ecA B C Dκ  
( ) ( ) ( ) ( )( )= v , v , v , vK K K Kec ec ec ecA B C Dκ  of dimension 2= ( )y u y un k k n n n n+ + + .  

This is a structure in the spirit of our definition, because it uses 
fewer degrees of freedom than the full order controller, which has 

2= ( )p p y u y uN n n n n n n+ + +  free places.

Why is it reasonable to call k  a structure as soon as < pk n ? The 
reason is that computing reduced fixed-order optimal H∞-controllers 
is substantially more complicated than computing the full-order H∞ 
controller. In lieu of two coupled Riccati equations, *

kK ∈  requires 
four coupled Riccati equations, [8], and the numerical procedures 
proposed in the 1990s are clearly demanding. In the realm of matrix 
inequalities the H∞-problem for reduced-order controllers has also 
been well-studied. One obtains an LMI in tandem with a rank con-
straint, a non-convex problem that is equivalent to a BMI.

Controllers with structure arise naturally. That is why the authors 
pioneered the investigation of structured H∞-synthesis in the 
1990s.

The solution of the H∞-control problem

 A problem that was left open for 30 years may be expected to be dif-
ficult. The difficulty in the H∞-control problems is due to the fact that it 
is non-convex, and that the objective in (1) is non-smooth. Moreover, 
there is a third difficulty, which is related to stability in closed-loop.

Non-smooth optimization

Assuming that ( )K κ  is structured with parameter nκ ∈ , we write 
the closed-loop transfer channel w z→  in (4) as

	 ( )( )
( )( ) ( )( )
( )( ) ( )( ):,w z

A BK K
T P K

C DK K

κ κ
κ

κ κ→

 
 
  

	

Then, the H∞-objective function in (1) becomes 

( ) ( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( )1

:= ,

= max

w zf T P K

C K j I A K B K D K
ω

κ κ

σ κ ω κ κ κ

→ ∞

−

∈
− +



	(10)

a non-smooth, non-convex function, which in addition is not defined 
everywhere. Its domain ( ){ }= : <n

fD fκ κ∈ ∞  contains the 
internally stabilizing set 

	
( ){ }

( )( ){ }
= :

= :

n
s

n

D K P

A K

κ κ

κ κ

∈

∈





stabilizes internally

stable
	 (11)
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The first major step toward the solution of the H∞ control problem 
in the seminal paper [2] was to characterize and compute the Clarke 
subdifferential of the function f . This allowed necessary optimal-
ity conditions to be formulated, and thereby enabled locally optimal 
solutions of (1) to be characterized. These conditions are of primal-
dual type, which means that they are expressed in terms of primal 
variables κ  and dual variables ,X Y . The latter correspond to the 
Lyapunov variables used in the ARE and LMI solutions.

The classical solution of the H∞-problem within full  using AREs 
or LMIs for two Lyapunov matrix variables ,X Y  has the following 
particularity. The Lyapunov matrices ,X Y  can be interpreted as 
the dual variables of our own more general approach, while the 
primal variable, ( )= , , ,K K K KK A B C D , can be eliminated. Only in 
this very specific case is the problem convex in ( , )X Y .

The second major challenge was to find algorithmic tools to compute 
solutions of the structured H∞-problem (1). The objective being non-
convex and non-smooth, we had to develop new optimization methods 
and to prove their convergence. This was started in [2], and continued 
in [10, 11, 12, 14, 15, 16]. We invented non-convex bundle methods. 
The bundle technique originated in the 1980s and is the most success-
ful approach to deal with convex non-smooth problems in Lagrangian 
relaxation or stochastic control. We succeeded in extending this to 
non-convex functions, which represents a major breakthrough. 

Stabilization

As we stressed before, the objective ( )f κ  in (1), respectively (10), 
is only defined on the set 

	 ( )( ){ }= :n
sD A Kκ κ∈ is stable 	

from (11). Our optimization method therefore not only has to iterate 
within this set, we first have to find a feasible parameter sDκ ∈ . Sur-
prisingly, this is already the first difficulty.

Note that we have to answer the following yes-or-no question:

	 Does there exist κ  such that ( )( )A K κ  is stable ?	 (12)

Or in our previous notation: Given a controller space   

	 Does there exist K ∈  such that ( )A K  is stable ?	 (13)

We want an algorithm that computes such a K ∈  if the answer to 
(13) is "yes", and provides a certificate of non-existence if the answer 
is "no". Also, we would like these answers reasonably fast, for exam-
ple, in polynomial time.

How is this related to Kalman's classical theory of stabilizability, 
detectability, controllability and observability? Stabilizability of ( ),A B  
means that we can stabilize by state feedback. And detectability of 
( ),A C  means that we can add an observer. Therefore, if ( ),A B  is sta-
bilizable and ( ),A C  is detectable, then the answer to Question (12) is 
"yes" for the class obs  of observer-based controllers. Since stabiliz-
ability of ( ),A B  and detectability of ( ),A C  are conditions that can be 
checked by linear algebra (in polynomial time), we can say that (12) 
is conveniently decided for the class of observer-based controllers 

obs  and for any larger class obs⊃  .

However, and this is the bad part of the message, for practically impor-
tant controller structures ( )K κ  the decision (12) is NP-complete. 
Blondel and Tsitsiklis [17] prove NP-completeness for the classes 

k  of reduced-order controllers, < pk n , including the class stat  of 
static controllers, and for the class dec  of decentralized controllers. It 
is also known that the decision is hard for PID control. For short, the 
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Figure 3 – Flowchart of the proximity control algorithm
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most important classes in practice lead already to a difficult problem 
when it comes to mere stabilization.

Deciding whether a stabilizing controller ( )K κ  with a given struc-
ture exists is in general NP-complete.

What does this mean in practice? Complexity theory usually produces 
pessimistic results. The situation is by no means hopeless. Practical 
systems are designed to be stabilizable, so as a rule there is a good 
chance of finding a stabilizing structured controller K ∈ if there is 
one. What we expect to be hard, is a certificate of non-existence when no 
such controller exists, because this requires an exhaustive search. Com-
plexity also tells us that we cannot expect a linear algebra procedure as in 
Kalman's classical theory, at least not one with polynomial complexity. 
We also know that for most classes  Problem (12) is decidable, but in 
exponential time. This follows, for instance, as soon as the problem can 
be transformed into a polynomial decision problem, to which the Tarski-
Seidenberg procedure can, at least in principle, be applied.

Local versus global optimization

The fact that program (1) is non-convex for practical controller struc-
tures  creates a dilemma. Should we go for a globally optimal solu-
tion, or should we be modest and be content with locally optimal solu-
tions? In our approach, we have opted for the local approach, since it 
is more realistic. This does not mean that we advise against the use 
of global optimization techniques. Such techniques might prove suc-
cessful for small to medium size problems.

There is, however, one specific global approach on which we wish 
to comment, because it has contributed substantially to the field of 
mathematical poppycock. We are speaking about the so-called sums-
of-squares (SOS) approach, which is still rumored to be suited for 
control problems like (1). We now argue that this is a red herring.

For most controller structures  it is possible to transform program 
(1) into a bilinear matrix inequality (BMI) using the bounded real 
lemma. Typically, the BMI is of the form

	 ( ){ }: 0min c x B xΤ  	 (14)

where x now stands for the triple ( ), ,X Yκ  featuring controller gains 
κ  and Lyapunov variables ,X Y  as unknowns with possibly additional 
slack variables γ , etc. The SOS approach interprets (14) as a system 
of polynomial inequalities and uses the sums-of-squares approxima-
tion of positive polynomials to creates a hierarchy of LMI problems 

	 ( ){ }: 0imin c x L xΤ  	 (15)

with the property that the solution of (15) converges to the solution 
of (14). It may even happen that convergence is finite, meaning that 
there exists ( )=i i B  such that the solution of ( ){ }: 0i Bmin c x LΤ   
solves { }T : 0min c x B  globally. The way in which this hierarchy 
is constructed has been much inspired on the idea of a cutting plane 
proof for a linear integer feasibility problem Ax b≤ , nx∈ .

Let us for simplicity assume that convergence is indeed finite. Then we 
might be able, it seems, to write down an explicit linear matrix equality

	 ( ) ( ){ }: 0i Bmin c x L xΤ  	 (16)

which when solved gives a globally optimal solution of (1). (Strictly 
speaking, we might not be able to write down (16) directly, but rather 
only to reach it eventually by climbing up in the hierarchy until we get 
to ( )i B . This would, of course, spoil the whole idea. However, let us 
assume, as is often claimed in the SOS community, that we can write 
down (16) explicitly!

Doesn't this sound nice? After all, we have been told since the early 
1990s that LMIs can be solved efficiently in quasi-polynomial time. 
Therefore, all that we have to do is to solve (16) quickly and obtain the 
global minimum of (14), and respectively of (1).

Of course, this is all rubbish. We know that solving Problem (1) glob-
ally is NP-complete. The SOS algorithm is even provably exponential. 
The size of ( ) 0i BL   grows therefore exponentially in the data size
( )B . In fact, these problems explode extremely fast. We will need 
exponential space even to write down ( ) 0i BL  . For sizable plants 
we might not even be able to store the problem on the computer, 
let alone solve it. The fact that LMIs are solved in polynomial time is 
pointless, because we are speaking about a problem of polynomial 
(exponential) size.

However, could not something similar be said about every global 
method? Are we too severe when we call SOS a red herring? Indeed, 
the problem being NP-complete, every global method is bound to be 
exponential. The point is that SOS is a particularly ungainly global 
method, because it commits two errors, which other global methods 
may avoid.

The first error is that it transforms (1) to a BMI. This adds a large 
number of additional variables ,X Y , which can be avoided, for exam-
ple, by our non-smooth approach. We have demonstrated abundantly 
since the late 1990s that the presence of Lyapunov variables leads to 
serious ill-conditioning. To wit:

The power oscillation damping control problem, which we solved 
in [18] using non-smooth optimization, has a system with 90 
states, 3 performance connections, 1 input, 1 output, and a con-
troller of reduced order 8. Therefore dim ( ) = 81κ . Transformed 
to a BMI, it requires additional 90 91

23 = 12285⋅⋅  Lyapunov vari-
ables. For the SOS approach this is just the bottom line = 1i , 
where the LMI hierarchy starts. The LMI ( ) 0i BL   will be of size 
exponential(12366).

The second error in the SOS approach is that it only seeks global 
minima. That is, it will not find local minima of (1) on its way toward 
the global. This is infelicitous, because local minima are very helpful. 
They may allow bounds to be improved in branch-and-bound meth-
ods, and they give good practical solutions as a rule. The fact that 
SOS does not use this information (e.g., to infer where it is in the 
hierarchy 0iL  ) is by itself already suspicious.

The H2 / H∞-problem is also solved

It became already apparent in the 1-DOF scheme (2) that the 2L - 2L , 
respectively power-to-power, operator norm is not the only possible 
measure of smallness in a channel w z→ . Consider, for instance, 
the transfer 

sn uT → 

 from sensor noise sn  to the high frequency part 
= uu W u  of the control law u. If we model sn  as white noise, then 
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it makes sense to gauge sn u→   by the operator norm from white 
noise at the input toward power at the output. This is the 2H -norm. 
For a stable transfer operator ( )G s  the 2H -norm is given as 

	 ( ) ( )( )
1/2

2
0

1= T
2

HG r G G dj jπ ωω ω
∞ 

 
 ∫ 	

which makes it an Euclidean norm in the space of stable transfer 
matrices. Unlike the H∞-norm, the 2H -norm is not an operator norm 
in the traditional sense. It becomes one as soon as stochastic signals 
are considered.
 

w z
operator norm 

w zT →

energy energy H∞

power power H∞

white noise power 2H

Sobolev ,

Sobolev
W ∞ ∞ L∞ worst case

response norm

L∞ L∞ peak gain 

past excitation system ring Hankel

In the 1-DOF scheme (2) we might decide to use two different norms. 
We might assess the tracking error r e→   in the H∞-norm, and the 
influence of sensor noise on the control sn u→   by the 2H -norm. 
Then, we obtain a mixed 2/H H∞ -control problem 

	

( )

( )

( )

22

,

,

=

s

r e

n u

T P K

T P K

K P
K K

γ

κ

→ ∞

→ ≤





minimize

subject to

stabilizes internally

has a fixed structure

	 (17)

where 2γ  is some threshold limiting the power of u  in response to 
white noise in the input sn . We may introduce the following more 
abstract setting. Consider a plant in state-space form 

	

2

2 2 22

2

0
: =

0 0
0

u

u

y y

A B B B xx
C D D wz

P
C D wz
C D D uy

∞

∞ ∞ ∞ ∞∞

∞

    
    
    
    
    
     



	 (18)

where xnx∈  is the state, unu∈  the control, yny∈  the output, 
and where w z∞ ∞→  is the H∞, 2 2w z→  the 2H  performance channel. 
Then the mixed 2 /H H∞-synthesis problem is the optimization program 

	

( )
( )

2 2 2
,

,

w z

w z

T P K

T P K

K P
K

γ
∞ ∞

→

→ ∞∞
≤

∈

minimize

subject to

stabilizes internally
	 (19)

where  is a structured controller space as before, and γ∞ is a suit-
able threshold, now for the H∞-norm in the constraint. Notice that 
the 2 /H H∞- and 2/H H∞ -problems are equivalent under suitable 
choices of 2γ  and γ∞.

The mixed ( )K κ -synthesis problem with structured controllers 
( )K κ  is a natural extension of H∞-control. This problem also 

has a long history. It was posed for the first time by Haddad and 
Bernstein [19] and by Doyle, Zhou, Bodenheimer [20] in 1989. 
We solved this problem in 2008 in [21].

Naturally, one may immediately think about other multi-objective exten-
sions of (1). For instance, combining the H∞-norm with time-domain 
constraints like in IFT( Iterative Feedback Tuning), or /H H∞ ∞-control. 
For the first theme, we refer the reader to our solution presented in [22, 
23], while /H H∞ ∞-control will be addressed in the next section.

The H∞ / H∞-control problem and other variants

The /H H∞ ∞-problem can be seen as a special case of (1). Sup-
pose that we have two plants 1P  and 2P  with performance chan-
nels i iw z→ , = 1,2i . Assume that the outputs iy  and inputs iu  
into iP  have the same dimension, i.e., ( ) ( )1 2=dim y dim y  and 

( ) ( )1 2=dim u dim u . Then, we can connect the same controller 
( )=i iu K yκ  to both plants simultaneously. That is, we may solve a 

program of the form 

	

( )
( )

( )

1 1

2 2

1

2 2

1 2

,

,

=

w z

w z

T P K

T P K

K P P
K K

γ

κ

→ ∞

→ ∞
≤

minimize

subject to

stabilizes and

is structured

	 (20)

It turns out that we may transform (20) favorably into a program of 
the form 

( )( ) ( )( ){ }
( )

1 1 2 21 2

1 2

, , ,w z w zmax T P K T P K

K P P

κ β κ

κ

→ →∞ ∞
minimize

subject to stabilizes and
	(21)

which is sometimes called a multidisk problem [10]. For suitable 
choices of 2γ  and β  these two programs are equivalent. However, 
since the maximum of two H∞-norms is again an H∞-norm of an aug-
mented plant, we can solve (21) directly via (1) with a new specific 
structure, which consists in repeating ( )K κ , as illustrated in Figure 4.

P1

K(κ)

K(κ)

w1

w2

w

P2

y1u1

y2u2

β
βz2

z1

z

Figure  4 – Illustration of the multidisk problem
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and the only connection between the two diagonal parts is the fact 
that the diagonal block of K  is repeated. The objective of (21) is then 
the channel ( ) ( )1 2 1 2= , = ,w w w z z zβ→  of the augmented plant. 
We may now have to update β  in order to solve the problem of Fig-
ure 4 for a specific 2γ .

Multi-model H∞-synthesis

Controlling several plants via the same structured controller is one of 
the most fundamental properties of hinfstruct and systune. 
The theoretical basis and implementation of this option has been 
given in the paper Apkarian and Noll [10] in 2006. The problem setting 
is as follows. Given N  plants 1, , NP P

	 ( )
1 2

1 11 12

2 21 22

: , = 1, ,
i i i

i i i i

i i i

A B B
P s C D D i N

C D D

 
 
 
  

 	 (22)

with identical dimensions of control inputs, that is, 
( ) ( )1 = = Ndim dim uu   and also identical dimensions of the mea-

sured outputs, i.e., ( ) ( )1 = = Ndim dim yy  , we connect the same 
controller ( )K s  to these N  plants simultaneously. This controller 
may, in addition, be structured 

	 ( ) ( ) ( )= , , = 1, ,i iu s K s y s i Nκ  	

where κ  represents the tunable elements in K . The multi-objective or 
multidisk H∞-control problem can now take on several forms, all famil-
iar in multi-objective optimization. For instance, we could consider: 

	 ( )( )
( )

, , = 1, ,

= 1, , .

n

l i i

i

P K i N

K P i N

κ

κ γ

κ
∞

∈

≤ 







find

such that

stabilizes internally,

	 (23)

A related form of the multi-objective approach is

	
( )( )
( )( )

( )

1,

, , = 2, ,

= 1, , .

l

l i i

i

P K

P K i N

K P i N

κ

κ γ

κ

∞

∞
≤ 







minimize

such that

stabilizes internally,

	 (24)

and the following third form is known as the multidisk approach used 
in Apkarian and Noll [10]:

	 ( )( )
=1, ,

,
n i i

i N
P Kmin max

κ
α κ

∞∈



 	 (25)

where the > 0iα  are appropriate weights. We shall in the sequel discuss 
several examples to understand this approach in practical situations.

Reliable and fault-tolerant control

Reliable or fault-tolerant control is an application of multi-model 
H∞-control. The first occurrence of this approach in the literature 
where an optimization program of the form (22) is applied is Simões 
et  al. [26]. In that reference, control of an F-16 aircraft in nominal 
mode along with 6 failure modes is discussed. These are the failure of 
left or right stabilizer, failure of left or right aileron, 75% impairment of 
the stabilizers, and unspecific failure in one of the redundant control-
lers. Since in each of the 7 modes one needs to ensure satisfactory 

performance of the system, 3 performance channels are proposed, 
leading to a total of 21 scenarios, i.e., = 21N  in (22).

Simultaneous stabilization is NP-complete even in the case of 3 
systems and a full order (unstructured) controller. Not surpris-
ingly, simultaneous H∞-control will therefore fail every now and 
then. The functions hinfstruct and systune just offer 
good practical chances of solving such problems.

System reduction via non-smooth programming

An idea already put forward in our paper [2] is H∞-system reduction. 
Consider a stable system 

	 =
A B

G C D
 
 
  

	

with size ( ) =A n n× . Suppose that n is large and that we want to 
compute a reduced stable system 

	
= red red

red
red red

A B
G C D

 
 
   	

of smaller state dimension size ( ) =redA k n  that represents G  as 
accurately as possible. The model matching error is ( )= rede G G w− , 
and after adding a suitable filter eW  (see Figure 5) we might want to 
have w z→  small in a suitable norm.

w

G

e z

Gred

We

Figure 5 – Illustration of the model reduction problem

The Hankel norm reduction method minimizes ( )e red H
W G G−  in 

the Hankel norm H⋅ , the advantage being that the solution can be 
obtained by linear algebra. A more natural norm would be the H∞

-norm, but the classical balanced reduction method gives only upper 
bounds of ( )e redW G G

∞
− .

However, we can solve the H∞-norm reduction problem directly as a 
special case of (1). In the case =z e  without filter we can pass to the 
standard form by considering the plant

	
1 2

1 11 12

2 21

0
: =

0 0 0

A B A B B
P C D I C D D

I C D

   
   −   
      

	 (26)

then redG  is the controller, which is of fixed reduced-order.

Note that structured H∞-filtering is a further application of our non-
smooth optimization techniques. A program structure similar to sys-
tem reduction is obtained in that case.



Issue 13 - September 2017 - The H∞ Control Problem is Solved
	 AL13-01	 9

Optimizing plant and controller simultaneously

 In many practical situations it may be advantageous to choose not only 
the controller, but also certain parameters of the open-loop system in 
such a way that the entire controlled system behaves optimally in closed 
loop. Current practice does not work this way! What is usually done is 
that the open-loop system is designed first, and then a feedback control-
ler is computed3. However, why not optimize both simultaneously, i.e., 
plant and controller together? Well, there is now a method that allows 
this to be done. We illustrate it by means of a simple example.

Consider the second-order spring model with stiffness k , friction f , 
and mass m 

	

1 2

2 1 2
1

1

1

=
1 1=

: ,
=
=

x x
k fx x x w u

P m m m m
y x
z x



 − − + +









	

where w  is a disturbance, u is the control, 1x  is the position, and 2x  is 
the velocity. We measure the position, 1=y x , and the position is also 
the coordinate that we wish to control, hence 1=z x . We need a SISO 
controller ( ) ( ) ( )=u s K s y s  to control the system.

Now, suppose that we also wish to optimize the stiffness k  and 
friction f  so that the closed loop system is optimal in the channel 
w z→ . Suppose that we have bounds k k k≤ ≤  and f f f≤ ≤  
between which we can choose the parameters. And at the same time 
we want to optimize ( )=K K κ , which can as usual be structured, 

nκ ∈ . Mathematically, this problem can be written as 

	

( ) ( )( )
( )

( ) 2

, ,

,

, ,

w z

n

T P k f K

K

k k k f f f

k f

κ

κ

κ

→ ∞

+

≤ ≤ ≤ ≤

∈

minimize

subject to closed - loop stabilizing
	 (27)

Naturally, the non-smooth algorithms in [2] or [14] are versatile 
and can include such simple bounds easily. They just need expres-
sions for subgradients of the objective with respect to all unknowns 
( ), ,k f κ . The question is how this non-standard option is put to 
work using our non-smooth optimization techniques. The idea is to 
shuffle all unknown parameters into an augmented structured control-
ler  ( ), ,K k f κ , and to connect it to an artificial plant P . The new 
formulation for (27) is then 

	

  ( )( )
 ( ) 

( ) 2

, , ,

, ,

,

, ,

w z

n

T P K k f

K k f P

k k k f f f

k f

κ

κ

κ

→
∞

+

≤ ≤ ≤ ≤

∈

minimize

subject to closed - loop stabilizing for 	 (28)

Note that the routines hinfstruct and systune automatize this 
operation so that it remains hidden from the user.

Nonstandard use of H∞ / H∞-synthesis

3	 For instance, in optimal sensor or actuator location the usual line is to optimize P 
alone, for instance, by maximizing the degree of controllability of P. Instead, one 
should include K from scratch.

The standard way to use multiple H∞ criteria is certainly in H∞-loop-
shaping, and the documentation of hinfstruct makes this a 
strong point. However, there are some less obvious ideas in which 
one can use a program of the form (20). Two heuristics for parametric 
robust control, which we proposed in [24] and [25], can indeed be 
solved via hinfstruct and systune.

Control of nonlinear systems with structured H∞-synthesis

In this section, we discuss a somewhat unexpected application of 
structured H∞-synthesis in the control of nonlinear systems. The 
class of systems that we have in mind are of the form 

	
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2

1 11 12

2 21 22

=
( ) : =

=

x A y x B y w B y u
P y z C y x D y w D y u

y C y x D y w D y u

+ +
+ +
+ +



	 (29)

where the system matrices depend smoothly on the measured out-
put  y. It appears therefore natural to devise a controller of the form 

	 ( ) ( ) ( )
( ) ( )

=
:

=
K K K K

K K K

x A y x B y y
K y

u C y x D y y
+
+



	 (30)

which uses the same measurement y  available in real time. A natural 
idea, going back to [29], is to consider y  as a time-varying external 
parameter p and pre-compute ( )K p  for ( )P p  for a large set p∈Π 
of possible parameter values. In flight control, for instance, Π is the  
flight envelope, ( ) 2= ,p h V ∈ , indexed by altitude h  and ground 
speed V , or sometimes by Mach number and dynamic pressure.

We now propose the following control strategy. In a first step, we 
pre-compute the optimal H∞ controller ( )*K p  for every p∈Π using 
Program (1): 

	
( )( )

( )
,w zT P p K

K P p
K

→ ∞

∈

minimize

subject to stabilizes internally

 

	 (31)

 The solution ( )*K p  of (31) has the structure . In the terminology 
of [29], this is the best way to control the system ( )P p  frozen at 
( ) ( )=p t y t  instantaneously. In other words, at instant t , we apply 

the control law ( )( )*K y t  based on the real-time measurement ( )y t .

If we could do real-time structured H∞-synthesis, then control-
ler ( )( )*K y t  would be computed and applied instantaneously at 
time t using (31) and the measurement ( )y t  available at instant t. 
As long as this is impossible, we may pre-compute ( )*K p  for 
a large set of possible parameter values p∈Π , and as soon as 
( )y t  becomes available at time t , look ( )( )*K y t  up in the table 
( ){ }* :K p p∈Π , and apply it instantaneously.

There are two limitations to this ideal approach. Firstly, the ideal table 
( ){ }* :K p p∈Π  may be too large. And secondly, the behavior of 
( )*K p  as a function of p may be quite irregular. In fact, it was the 

latter effect that had stopped this idea in the past4. With structured 

4	 When ARE solvers were used to compute H∞-controllers, the idea of embedding 
such a solver into the system obviously came to mind. This failed not due to lack 
of CPU, but due to the highly irregular behavior of ( )*

fullp K p .
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control laws ( )K κ  the situation is substantially improved, because 
one uses fewer degrees of freedom in κ .

What we have tested in [30] is a compromise between optimality of 
( )*K p  in the sense of Program (31), the necessity to avoid irregular 

behavior of the curves ( )*p K p , and the storage requirement of 
such a law. We use the following definition. A controller parameteriza-
tion ( )p K p  of the given structure   is admissible for the con-
trol of ( )P y  if the following holds: ( )K p  stabilizes ( )P p  internally 
for every p∈Π, and 

	 ( ) ( )( ) ( ) ( ) ( )( )*, 1 ,w z w zT P p K p T P p K pα→ →∞ ∞
≤ + 	 (32)

for every p∈Π, where α  is some fixed threshold, say = 0.1%α . We 
now seek a parameterization ( )K p  that is close to the ideal H∞-param-
eterization ( )*K p  in the sense that (32) is respected, but otherwise is 
easy to store (to embed) and shows as regular a behavior as possi-
ble. Note that (32) allows ( )K p  to lag behind ( )*K p  in performance 
by no more than %α . Also, observe that this approach is heuristic in 
so far as internal stability at every p∈Π does not guarantee stability 
of the parameter-varying system as a whole.

Parametric robust H∞-control

The design of feedback controllers that are robust in the presence 
of system uncertainty is a recurrent problem in control engineering, 
from which designers rarely escape due to the inevitable mismatch 
between a physical system and its mathematical model. It is gener-
ally agreed that one should account for the uncertainty already at the 
modeling stage. In the following, we briefly comment on two such 
forms of uncertainty: real uncertain parameters p∆  in the model equa-
tions, and complex dynamic uncertainty d∆ .

Within the H∞-framework, this mixed parametric control problem can 
be cast as a semi-infinite minmax optimization problem of the form 

	 ( ),maxmin
n w zT

κ
κ→ ∞∆∈∆∈

∆


	 (33)

where optimization is over a structured control law ( )K κ , as before, 
but where now in contrast with (25) an infinity of plants, ( )P ∆ , 
indexed over a set := ( , )p d∆ ∆ ∆ ∈∆ of mixed uncertain scenarios, 
has to be controlled  simultaneously. This problem is therefore con-
siderably more complex than the nominal H∞-problem (1). Paramet-
ric mixed control has been on the control engineering agenda since 
the late 1970s and 1980s, but no satisfactory solution had been 
presented until recently. In two recent contributions [9, 38] we have 
developed a satisfactory mathematically sound solution to this prob-
lem, which in parts is already seized by The MathWorks in its 2015b 
version of the Robust Control Toolbox 
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Anew design methodology inspired by dynamic inversion techniques is proposed in 
this paper. It combines partially linearizing inner-loops with structured and robust 

outer-loops, which are designed using a non-smooth multi-model H∞ optimization 
approach. The proposed methodology also includes a robustness analysis scheme 
providing worst-case configurations, which are then used to enrich the bank of design 
models and thus iteratively improve the robustness properties of the designed outer-
loops. Our approach is successfully tested on a realistic nonlinear aircraft control 
problem subject to large parametric variations and uncertainties.

Introduction

Robust feedback linearization techniques [10] have proved their effi-
ciency in many aerospace applications, especially to control highly 
maneuverable aircraft or UAVs in large operating domains [25, 2, 20, 
21, 11, 4]. Interestingly, such techniques do not only permit a large 
class of nonlinear systems to be linearized and decoupled, but also 
make it possible to adapt the control laws to the operating point. Thus, 
they become a competitive alternative to standard gain-scheduling 
techniques, which often entail many adjustments, or to LPV control 
design strategies, which require high fidelity LPV models [15]. How-
ever, standard dynamic inversion methods are often criticized for their 
lack of robustness and the need for an accurate model. This draw-
back is generally bypassed via robust linear outer-loops [6], which 
still require difficult and possibly time-consuming robustness evalu-
ation a posteriori [18, 19]. Severe problems are also likely to occur 
when the actuator dynamics and limitations prevent an exact cancel-
lation of the nonlinear terms. As emphasized in [12], it is therefore 
essential to take these dynamics into account in the design process. 
As observed in [8], one of the main reasons why standard dynamic 
inversion schemes exhibit poor robustness properties is due to the 
fact that the linearizing inner-loops are designed to convert the non-
linear system into a generic Brunovsky's form. Following an intui-
tive path, it is then proposed in [8] to design the inner-loops so that, 
for given operating conditions, the nonlinear system will converge 
to its Jacobian linearization. Hence, the design of the linear robust 
outer-loops is no longer based on a generic model, but now explicitly 
depends on the linearized dynamics of the initial plant. A similar path, 
consisting of promoting interactions between inner and outer loops, is 

followed in this paper. More precisely, as in [8] a feedback lineariza-
tion step is applied so that, in some enlarged neighborhood of given 
trim conditions, the nonlinear plant behaves like its linearization. In 
a second step, a robust linear outer-loop is designed. The original-
ity of our approach lies in the particular structure of our H∞-based 
outer controller, which uses a nonlinear input as a key input to further 
enlarge the operating domain of the nonlinear closed-loop system. 
Various uncertainties are also taken into account in our procedure by 
a μ -based robustness analysis phase, during which worst-case con-
figurations are identified and then used in an iterative multi-objective 
and multi-model H∞ design process. It should be pointed out here that 
the resolution of such highly non-convex optimization problems has 
considerably improved in the past few years with recent advances in 
non-smooth H∞ optimization algorithms [3, 9]. Indeed, the latter now 
make it possible to fix the order of the H∞ controller as well as its 
structure and to consider multi-channel objectives and multiple mod-
els simultaneously, in order to increase the robustness margins. Such 
algorithms will then be a key ingredient in our proposed methodology.

The paper is organized as follows. A thorough description of the pro-
posed methodology with its three main steps is first given. An appli-
cation to a realistic landing aircraft control problem is then detailed. 
More precisely, we focuse on the longitudinal part and give many 
details on how the method is applied. Then we briefly deal with the 
lateral part of the control problem, before presenting the global land-
ing application on the full nonlinear aircraft model using the designed 
controller. Finally, we conclude the paper.
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Description of the methodology

Robust Nonlinear Compensation Technique

Consider a continuous-time parameter-dependent nonlinear input-
affine system described as follows

	
( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( )
= , ,

=
p p

A c

t f t t G t t u t

u t L u t

ξ ξ θ ξ θ +





	 (1)

where ( ) ntξ ∈  denotes the physical states evolving in the admissi-
ble operating domain n⊂  . The realized control inputs ( ) mu t ∈  
are derived from the commanded inputs ( ) m

cu t ∈  via linear time-
invariant actuators – denoted by (.)AL  – with unitary static gains. 
The nonlinearities and parametric variations of the system are cap-
tured by ( ).,. nf ∈  and ( ).,. n mG ×∈ , which both nonlinearly 
depend not only on the state vector but also on a set of parameters 
( ) r

p tθ ∈Θ ⊂  .

Notation 1
Let us denote ( ), , n r m

p uξ θ ∈ × ×    an equilibrium point for sys-
tem (1), thus satisfying: 

	 ( ) ( ), , = = 0p pf G u f Guξ θ ξ θ+ + 	 (2)

and rewrite ( ) ( )( ), pf t tξ θ  as follows: 

	 ( ) ( )( ) ( ) ( ), =p ff t t f Ax t tξ θ + + ∆ 	 (3)

where: 

	 ( ) ( ) ( )
,

= =
p

fA x t t t
ξ θ

ξ ξ
ξ
∂

−
∂

and 	 (4)

and where ( )
f t∆  denotes the deviation between the nonlinear func-

tion ( ).,.f  and its linear approximation.

Assumption 1
There exists a constant matrix n mB ×∈  such that, for all 

( ) ( )( ), pt tξ θ ∈ ×Θ , a nonsingular matrix m m×Λ∈  and a resid-
ual error matrix n m

G
×∆ ∈  can be found such that:

	 ( ) ( )( ), =p GG t t Bξ θ Λ + ∆ 	 (5)

	 ( ) ( )( ) ( )( )1 1,m
A At L t L tυ υ υ− −∀ ∈ Λ ≈ Λ 	 (6)

The square matrix Λ  typically represents the control input efficiency. 
When considering aerospace systems evolving in standard operating 
domains, the above non-singularity assumption – connected to the 
notion of controllability – is not restrictive. Moreover, the variations of this 
diagonal-dominant matrix are mainly induced by slowly-varying terms, 
such as the dynamic pressure. This observation justifies the commu-
tative property (6) between 1−Λ  and the fast dynamics (.)AL  of the 
actuators. Yet, a possible relaxation of (6) is introduced next.

Given any two signals ( ) mv t ∈  and ( ) mtζ ∈ , let us now define 
the intermediate, input linearizing, control law 

	 ( ) ( ) ( )( ) ( ) ( )( )1
= ,c pu t t t v t t uξ θ ζ

−
Λ − + 	 (7)

Combining equations (7) and (1), one readily obtains with the above 
notation in mind: 
	 ( )= A f ux Ax BL v w w+ + + 	 (8)

where:
	 ( )=f f Aw BL ζ∆ − 	 (9)

	 ( ) ( )1=u G Aw G G u L v ζ−− + ∆ Λ − 	 (10)

As is clear from Equation (8), where parametric-dependence and 
time-dependence have been omitted to alleviate notation, the param-
eter-dependent nonlinear system (1) has been reduced to a linear 
model with a new control input v and two measured perturbations fw  
and uw . As is usual in dynamic inversion schemes, fw  can be partly 
canceled by an optimal choice of the auxiliary input signal ( )tζ : 

	 ( )
( )

( ) ( )( )ˆ = min
m f A

t
t Arg t BL t

ζ
ζ ζ

∈
∆ −


	 (11)

Remark 1
In the special case of square systems with idealized actuators (i.e., 

( )( ) ( )=AL u t u t ), one easily obtains = 0fw  with ( ) ( )1ˆ = ft B tζ − ∆ .

Let us denote by = f uw w w+  the vector of remaining input pertur-
bations, which cannot be canceled, and assume that the latter is 
available for feedback, via estimation, at least on a limited band-
width. The following structure for the linear outer-loop may thus be 
considered: 

	 ( )
ˆ

= c

w
v K s w

y

 
 
 
 
 

	 (12)

where ŵ , cw  and y denote respectively the estimation of w, the 
target on the variables z to be tracked and the measurement signal. 
Without any significant loss of generality in most applications, both 
( ) ( )= py t Cx t ∈  and ( ) ( )= qz t Lx t ∈  are assumed to depend 

linearly on the state vector. The output feedback gain ( )K s  in (12) is 
to be designed so as to satisfy the following requirements:

•	 good tracking properties, by minimizing the error between z and 
the reference signal ( )=r cz R s w , where the LTI model ( )R s  
describes the nominal reference closed-loop dynamics,

•	 a reasonable control activity, which is indirectly obtained by lim-
iting v to avoid control input saturations, 

•	 good rejection of the perturbations = u fw w w+  that could not 
be entirely removed by the linearizing inner loop to enlarge the 
operating domain.

Denoting by ( )
A sΣ  the transfer matrix associated to the linear opera-

tor (.)AL  and by ( )sΣ  the linearized plant interconnection: 

	 ( ) ( ) [ ]1=
L

s sI A I B
C

− 
Σ − 

 
	 (13)

the above outer-loop design issue can be recast into a linear frame-
work as a multi-objective H∞ minimization problem. More precisely, 
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considering the linear interconnection of Figure 1, it is proposed to 
compute ( )K s  as follows:

	 ( )
( )

( )ˆ =
c pw z

K s
K s argmin s→

∞∈
 	 (14)

with:

	
( )
( )

c u

p

w z u

w z r

s

s

γ

γ

→ ∞

→
∞

 ≤


≤




	 (15)

The H∞-norm minimization considered in (14) corresponds to 
the nominal tracking requirement. As is standard in H∞ design 
approaches, a weighting function – typically a low-pass filter – ( )

pW s  
is introduced to specify the frequency domain where the tracking 
performance should be more efficient. Next, the second and third 
requirements are respectively taken into account by the additional 
two constraints in (15). The first one involves a high-pass weighting 
function ( )

uW s  to minimize the control activity in the high-frequency 
domain. Finally, note the presence of a low-pass function denoted by 
( )F s , which can be viewed as an approximation of the estimation 

process ( ( )ŵ F s w≈ ).

Problem (14)-(15) is a difficult non-convex and non-smooth optimi-
zation problem. However, it is now efficiently solved thanks to recent 
advances in non-smooth optimization techniques [3, 9]. Moreover, 
the structure of the controller as well as its order can also be fixed  
a priori, which makes the implementation easier. Last but not least, 
multiple models can be considered simultaneously during the design 
procedure. This flexibility will be used below to improve the robust-
ness properties of our proposed design scheme.

Preliminary LTI Robustness Analysis

After an initial controller has been obtained as the solution of the 
above multi-objective design problem, closer attention is now paid to 
the validity of a few approximations that were made and their potential 
impact on the closed-loop behavior. More precisely, it is shown here 
how LTI robustness analysis tools (such as μ or skew-f bounds) can 
be used to detect potential difficulties induced by three main sources 
of uncertainties.

Plant uncertainties

When combining Equations (7) and (1) to obtain (8), it is assumed 
that both f and G are well known. However, in practice, uncertainties 
δ are always present so that Equation (8) is now written as: 

	 ( ) ( ) ( )= Ax A x B L v wδ δ+ + 	 (16)

where [ ]1= T l
lδ δ δ ∈  . Assuming that both A and B rationally 

depend on δ, it is then possible through an LFT modeling approach 
[14] to rewrite ( )sΣ  as the following Linear Fractional Representation 
(LFR), as depicted in Figure 2: 

	 ( ) ( )( )= ,u Ms M sΣ ∆ 	 (17)

where (.)u  denotes the upper Linear Fractional Transformation 
(LFT), ( )M s  is an LTI system and: 

	 ( ){ }11= , , ,
lM M k l k idiag I Iδ δ δ∆ ∈∆ ∈  	 (18)

Actuator uncertainties

In Assumption 1, the commutative property (6) might not be valid in 
all cases. Following [5], it is then proposed to relax it as follows. 

Assumption 2
There exist a nonlinear bounded operator (.)Γ  and a positive bound 
k +
Γ ∈  such that ( ) mtυ∀ ∈ :

	 ( )( ) ( )( ) ( )( )1 1=A AL t L t tυ υ υ− −Λ Λ +Γ 	 (19)

	 ( )( ) ( )t k tυ υΓΓ ≤ 	 (20)

It results from Assumption  2 that the linear model ( )
A sΣ  in 

Figure 1 should now be replaced by the nonlinear uncertain version 
( ) ( ).A sΣ +Γ , as illustrated in Figure 2.

Estimation uncertainties

Finally, one should notice that only an estimated ŵ of the nonlin-
ear input perturbations w is available to the outer-loop controller 
( )K̂ s . While this estimation process has been taken into account in 

the design phase through the approximation ( )ŵ F s w≈ , it might be 
too optimistic in practice. A diagonal perturbation block w∆  will then 
be considered to introduce some multiplicative uncertainties on the 
signal so that ŵ is now transformed into ( ) ˆwI w+ ∆ . This is also 
visualized in the robustness analysis diagram in Figure 2.

As is usual in any standard LFT modeling process, the three uncertain 
blocks that have been described above are normalized, merged into 
a single block-diagonal operator ( )= , (.),M wdiag∆ ∆ Γ ∆  and pulled 
out to generate an augmented linear model ( )P s . These operations 
are summarized in Figure 3. The APRICOT Library from the Matlab 
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y

v y

zu zr

zpz

wc

( )F s

( )K s
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pW s

( )sΣ( )uW s
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Figure 1 – H∞ design-oriented scheme.
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Figure 2 – Closed-loop scheme for LTI stability analysis.
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Toolbox SMAC [22] can be used to generate such an LFT, from a set 
of LTI models.

Temporarily assuming that Δ is a time-invariant operator, μ or skew-μ 
analysis can be used to quantify, respectively, the stability and perfor-
mance properties of the uncertain closed-loop depicted in Figure 3. 
Using the SMART Library from the Matlab Toolbox SMAC [22] allows 
bounds on the structured singular value [24] to be computed. Since 
Δ has been normalized, the system is said to be robustly stable to LTI 
perturbations if the μ upper-bound verifies < 1µ . Otherwise, a desta-
bilizing worst-case perturbation Δ* might exist such that ( )* < 1σ ∆ .

Multi-model Design

Using the above robustness analysis results, two main ways exist to 
improve the initial controller ( )K̂ s . Since it was designed within the 
H∞ framework, a natural way consists in using a μ -synthesis approach. 
While this strategy, already implemented in MATLAB™ [26], works well 
in the case of complex-valued uncertainties, numerical difficulties are 
often reported with real-valued uncertain parameters. Moreover, results 
might be quite conservative in that case. For these reasons, the alterna-
tive path, consisting of a multi-model design approach, will be preferred 
next. First considered in [1], this intuitive approach leads to non-convex 
optimization problems. However, as has been already pointed out, it 
has regained interest recently thanks to the flexibility of non-smooth 
H∞ optimization algorithms. The latter indeed offer new perspectives in 
this direction, since multiple models can be considered simultaneously. 
From this observation, a simple iterative algorithm can be proposed. 
Starting from a single-model design, the principle consists of analysis 
& multi-model design iterations. During the analysis step, worst-case 
configurations (associated with Δ*) are isolated, in order to enrich the 
bank of models to be considered in the next design step. This is sum-
marized below.

Algorithm 1
Robust multi-model design

1.	 Define a nominal configuration model ( )
0 sΣ  using the input lin-

earizing inner-loop control law (7), leading to (8).

2.	 Set 0i =  and solve (14)-(15) to compute an initial controller ( )
0K̂ s .

3.	 Perform LFT modeling & robustness analysis pursuant to previous 
Subsection. Extract a destabilizing perturbation *

i∆ . If ( )* < 1iσ ∆ , 
then go to Step 4, otherwise go to Step 5.

4.	 Enrich the bank of models with *
i∆ , set 1i i← + , compute ( )ˆ

iK s  
via multi-model H∞ design and return to Step 3.

5.	 Perform a final robustness analysis with μ upper-bound evaluation.

Remark 2
Unlike μ -synthesis based approaches, the above algorithm imple-
ments necessary conditions for robust stability with respect to LTI 
perturbations, which become sufficient if the μ upper-bound in 
Step 1) is less than 1.

Towards a Global Robustness Analysis

In the simplified robustness analysis approach of page 3, the non-
linear input signal w is considered as an external perturbation. Yet, 
considering Equations (8) and (9), it is clear that w may depend on x 
and pθ  in a quite complicated way. Consequently, robustness analysis 
becomes tricky in the most general case. Fortunately, with a good 
knowledge of the studied process, reasonably simpler approxima-
tions can be obtained in practice, such as: 

	 ( ) ( )= pw H x W xθ + 	 (21)

with the following assumptions:
•	 (.)H  is assumed to depend rationally on pθ , and can thus be 

rewritten as an LFT.
•	 the nonlinear operator ( )W x  satisfies Lipschitz conditions.

Hence, the LFT ( )( ),uF P s ∆  of Figure 3 – further denoted 
( )( ),uF P s ∆   – is modified to include additional blocks in ∆  so that 

w will no longer appear as an external perturbation:

	 ( )= , (.), , (.),M w pdiag W∆ ∆ Γ ∆ Θ 	 (22)

The extended uncertain operator ∆  now clearly contains uncertain-
ties ΔM, Δw and time-varying parameters pΘ  as well as memory-
less nonlinearities (.)Γ  and (.)W . Robustness analysis then must 
be performed with more general tools based, for example, on the IQC 
framework [16].

Application to longitudinal aircraft control design

The above robust nonlinear compensation framework is now applied 
to a longitudinal aircraft control problem. Note that the lateral motion is 
not yet considered, assuming a steady flat-wing aircraft with no side-
slip. Lateral controller design will be described while global simulations 
with both combined motions will be presented.

Nonlinear Longitudinal Aircraft Model

The longitudinal motion of a civil aircraft can be described by the fol-
lowing 4-state model [7]: 

	 ( )
( )

ˆ= ( )
ˆ= , , ,

ˆ= , , ,
=

D

L e

m e e

mV qSC mgsin Fcos

mV qSC q V mgcos Fsin

Jq qSLC q V z F
q

α γ α

γ α δ γ α

α δ
θ

 − − +


− +


+











	 (23)

w

zΓ wΓ

zM wM

zw w

ΔM

Δw

zpwc

(.)Γ

( )P s

Figure 3 – LFT of the system for LTI robustness analysis.
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where V is the airspeed, γ  is the flight path angle, q is the pitch rate, 
θ is the pitch angle, 21

2=q Vρ  is the dynamic pressure, J is the 
longitudinal inertia, m is the mass, S is the reference surface, L is the 
reference length (often taken as the half span), ρ is the air density, 
α is the angle of attack ( =α θ γ− ), F is the engine thrust on the 
longitudinal axis and ze is the vertical shift between the position of the 
center of gravity and the thrust application point. The drag, lift and 
pitching coefficients ˆ

DC , ˆ
LC  and ˆ

mC  can be expressed as follows:

	

( )

( )

( )

2
0 2

0

0

ˆ =

ˆ , , , =

ˆ , , , =

L

D D D D

L e L L Lq L ee

C

m e m m mq m ee

Cm

C C C C
qC q V C C C C
V

qC q V C C C L C
V

α α

α δ

α δ

α α α

α δ α δ

α δ α δ

+ +

+ + +

+ + +









	 (24)

where eδ  is the elevator deflection angle and the Cxy are fixed aerody-
namic coefficients, whose values can be obtained from the benchmark 
library of the SMAC Toolbox1 and do not depend on the Mach number. 
Here = [    ]TV qξ γ θ , = [  ]T

eu Fδ  and 0= [   ]T
p cgm x Vθ , where xcg is 

the center of gravity position and V0 is the initial airspeed. The operat-
ing domain for a landing application is such that [60 90] /V m s∈ , 

[123180]m tons∈  and [15 41] %cgx ∈ , defining the admissible set 
Θ. F and eδ  follow the first-order actuator dynamics ( )

A sΣ :

	 ( )
1

2 1
1

0.07 1

0
=

0A
s

s
s +

+

 
Σ  

 
	 (25)

Remark 3
Using first-order models for the actuators is common practice in the 
aeronautical industry, and it is sufficiently representative here. How-
ever, rate limitations are neglected, but it would be possible to add an 
anti-windup controller to take them into account.

The aerodynamic coefficients can have up to 30% of multiplica-
tive uncertainties. Using the notation of (1) and applying (5) from 
Assumption 1, (23) is rewritten the same way with: 

	
1 0 0 0

=  =
0 0 1 0

D

L
T

m

qSC
m

qSC g
mV V

qSL
J

gsin

cosf B
C

q

γ

γ

− −
 
   −
   

  
 
 





	

	
cos

0 0
0

= =
0 0
0 0

L e

e

e G
m

qSsin
m mV mVz qSL
J J

C
C

δ

δ

α α
 
  
 Λ ∆       
 

	

Remark 4
Given the operating domain of the system, Λ is non-singular. Further-
more, Λ is slowly varying, since its dynamics mainly come from the 
dynamic pressure q . These two conditions verify Assumption 1.

1	 http://w3.onera.fr/smac/

Remark 5
The choice of B was made based on the maximum control efficiency. 
Indeed, as is clear from (23), the thrust input F mainly affects the 
airspeed V, and the elevator deflection eδ  has a large impact on the 
pitch rate q.

The goal is to track the airspeed V and the flight path angle γ , and the 
state is assumed to be fully available to the controller, yielding C = I. 
The reference model ( )R s  for the airspeed (1st order dynamics) and 
the flight path angle (3rd order dynamics) is given by:

	
( )( )

2

2 2

1
6.5 1

0.35
2 1 2*0.7*0.35 0.35

0
( ) =

0
s

s s s

R s
+

+ + +

 
 
 
 

	 (26)

Nonlinear Compensation Technique

Using the previous notation it is now possible to apply the method 
described in page 2. First applying the control input (7) leads to the 
linearized system (8). ζ̂  is chosen so that wf only preserves the non-
linear terms on the flight path angle dynamics γ , canceling the non-
linear dynamics on Va and q. The nominal configuration pθ  is set 
for a mass of 150 tons, a center of gravity position at 21%, an initial 
airspeed of 70 m/s and an altitude of 300 m (landing configuration). 
This configuration is "central" in terms of the system pole location, 
ensuring that the other configurations are covered as much as pos-
sible when designing the robust controller. Choosing a worst-case 
configuration could also be a possibility, but the nominal performance 
is highly degraded in this case and the "opposite" worst-case configu-
rations may be harder to control. According to the specifications of 
the robust nonlinear compensation technique; the frequency weight-
ings ( )

pW s  and ( )
uW s  are chosen respectively as low-pass and 

high-pass filters:

	 ( )
4

4

/2 0.15
1.5 10

/20 0.40
4 10

0
=

0p

s
s

s
s

W s
−

−

+
+ ×

+
+ ×

 
  
 

	 (27)

	 ( )
2

0.001 20
0.2

0.001 2

0
=

0u

s
s

s
s

W s
+
+

+
+

 
 
 

	 (28)

The filter ( )F s  is such that:

	 ( )

0.1
2 1

1
2 1

0.1
2 1

0 0 0
0 0 0

=
0 0 0
0 0 0 0

s

s

s
F s

+

+

+

 
 
 
 
 
 

	 (29)

The second term in (29) on the diagonal is higher than the others, since 
it is not compensated by the input signal ζ̂  (which only compensates 
for the first and the third nonlinear terms). This enables the controller to 
focus more on this one than on the others. The last term is 0 since the 
last equation in (23) does not contain any nonlinear terms.

A third-order controller is chosen, since it offers a good compromise 
between the achievable performance and a preferable low-order con-
troller for easier implementation. Solving the multi-objective H∞ mini-
mization problem (14)-(15) with the routine hinfstruct of the Robust 
Control Toolbox for Matlab [3] yields an H∞-norm of = 0.9653γ∞  
after a few iterations, thus insuring that the frequency-domain 
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specifications are fulfilled. Nonlinear simulations are performed with 
the obtained initial controller ( )

0K̂ s , and the corresponding results 
are depicted in Figure 4 and Figure 5.

In Figure 4, the aircraft responses to a 3 degree step demand on the 
flight path angle γ are visualized for various configurations of mass 

{ }∈ 120,150,180  tons, initial airspeed { }V ∈ 60,70,80  m/s, and cen-
ter-of-gravity locations { }cgx ∈ 15,20,40 %.

Similarly, the responses to a 3 m/s variation step demand on the lon-
gitudinal airspeed V are shown in Figure 5. In both cases, the dashed 
red plots correspond to the reference signals to be tracked.
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Figure 4 – Nonlinear Simulations with a 3° step on γ, for different initial aircraft configurations and no aerodynamic coefficient uncertainties, with the initial 
controller ( )
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Both simulations prove the effectiveness of the robust nonlinear 
compensation scheme with regard to performance and robustness 
properties. The flight domain is indeed very large thanks to the non-
linear compensation part of the controller being aimed at maintain-
ing as much as possible the nominal performance. The control-
ler manages to follow the reference models quite well, while also 
ensuring a good decoupling. Note however that no uncertainties 
in the aerodynamic coefficients have been considered yet. These 
will have significant impact on the performance and stability of the 
system, as will be shown in the next section dealing with robust 
stability analysis.

Robustness analysis and multi-model design

The above controller ( )
0K̂ s  has been designed to cope with a large 

operating domain under nominal conditions. The uncertain operators 
represented by "gray boxes" in Figure 2 have thus not been considered 
yet. The objective of this section is twofold. First, the effects of the 
aforementioned uncertainties are studied within the LTI frameworks 
with the help of μ-analysis tools. Next, the identified worst cases 
are used in a multi-model design strategy detailed in Algorithm 1 to 
improve the robustness properties of the initial controller. 

LTI modeling and μ-analysis

LFT modeling is a key step in our robustness analysis process. Start-
ing from the set of nonlinear equations (23), parametric uncertainties 
are first introduced in the aerodynamic coefficients:

	 ( ) ˆ= 1
DD C DC Cδ+ 	

	 ( ) ˆ= 1
LL C LC Cδ+ 	

	 ( ) ˆ= 1
mm C mC Cδ+ 	

and variations are also introduced in the airspeed V, mass m and 
center of gravity location: 0= VV V δ+ , 0= mm m δ+ , 

0
=

cgcg cg xx x δ+ . 
Next, the equations are linearized so that a bank of parameter-depen-
dent linear models, as described in (16), is obtained. From this con-
tinuous set, a low-order LFT model ( )( ),u MM s ∆  (see Eq. (17)) 
is rather easily obtained with the help of the most recent algorithms 
implemented in the APRICOT Library of the SMAC Toolbox [23]. These 
algorithms, using orthogonal least square techniques, are based on 
low-order polynomial interpolation methods. For this application the 
size of the M∆ -block is kept reasonably low:

	 ( ) 15 15
6 2 3 2 1 1= diag , , , , ,

D L m cgM V C C C m xI I I I I Iδ δ δ δ δ δ ×∆ ∈ 	

As a result, the size of the global ∆-block including ( ).Γ  and w∆  (see 
Figure 3) verifies:

	 ( ) 20 20= diag , ,M w
×

Γ∆ ∆ ∆ ∆ ∈ 	

A normalization step is finally applied so that variations of ∆ in the unit 
ball induce 30% uncertainties in the aerodynamic coefficients, and 
30% variations in w∆  and Γ∆ . Note that this last step is easily achieved 
with the LFT modeling library available in the SMAC Toolbox. Based 
on this normalized LFT object, both upper and lower bounds of the 
structured singular value μ are evaluated with the SMART Library of 

the SMAC Toolbox. With the nominal controller ( )
0K̂ s , a lower-bound 

1µ∆ >  is found together with its corresponding worst-case configura-
tion 1

∗∆  such that ( ) 1
1 = < 1σ µ∗ −

∆∆ .

Multi-model design

Following step 4 of Algorithm 1, 1
∗∆  is used to initialize our multi-model 

design procedure. Note that this case corresponds to a retracted posi-
tion of the center of gravity, maximum weight and high values of the 
aerodynamic coefficient uncertainties. After 5 more iterations, a new 
controller ( )K̂ s  is obtained that significantly improves the worst-case 
configuration. For this controller one indeed obtains < 1µ

∆
. However, 

using standard algorithms, the upper-bound µ∆ remains above 1, 
which does not make it possible to conclude on stability. Refined ver-
sions of the algorithm using branch-and-bound techniques [17], now 
available in the SMART Library, are then used, which greatly improves 
the accuracy of the upper-bound. One eventually obtains < 1µ∆ , as is 
summarized in Table 1.

Controller Lower-bound µ
∆

  Upper-bound µ∆

Nominal – DG-scaling 1.4610 1.5110 

Multi-model – DG-scaling 0.8957 1.0780

Multi-model – branch-and-bound 0.8999 0.9449

Table 1 – Values of the μ-bounds for the nominal and multi-model controllers. 
The computations for the multi-model controller are made using the initial 
DG-scaling method and the improved branch-and-bound algorithm.

Time-domain evaluation

To conclude this section, a few nonlinear simulations are performed 
with the above multi-model based controller. The flight path angle (γ ) 
and airspeed (V ) step demands are first applied for various aircraft 
configurations without uncertainties. The results, to be compared 
with those obtained with the nominal controller, are displayed in 
Figures 6 and 7.

As expected, the decoupling is a bit degraded and the responses are 
slightly slower but major improvements will be shown in the presence 
of uncertainties.

Let us now introduce 25% uncertainties in the aerodynamic coef-
ficients (not 30%, so that the nominal controller is not completely 
unstable). The aircraft responses to a step demand on γ are visualized 
in Figure 8. The left subplot (Figure 8a) reveals poor robustness prop-
erties of the nominal controller, while significant improvements are 
clearly observed on the right subplot (Figure 8b) with the multi-model 
controller. This clearly demonstrates the efficiency of the proposed 
methodology.

Application to lateral aircraft control design

Now that the method has been successfully applied on the longitudi-
nal part of the aircraft, the lateral part will be dealt with using the exact 
same strategy as explained below.
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Figure 6 – Nonlinear Simulations with a 3° step on γ, for different initial aircraft configurations and no aerodynamic coefficient uncertainties, with the multi-model 
controller ( )K̂ s .
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Nonlinear Lateral Aircraft Model

The lateral motion of a civil aircraft can be described by the following 
4-state model [7]:
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where β  and φ  are, respectively, the sideslip and roll angles, p and 
r are the roll and yaw rates, and Ixx and Izz are the inertias along the 
x-body and z-body axes. The side force, roll and yaw coefficients 
ˆ

YC , ˆ
lC  and ˆ
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where aδ  and rδ  are the aileron and rudder deflection angles, and the 
xyC  are aerodynamic coefficients specific to the given aircraft. Using 

similar notations to those used in the longitudinal case, let us define: 
= [    ]Tr pξ β φ , = [  ]T

a ru δ δ  and 0= [   ]T
p cgm x Vθ . aδ  and rδ  follow 

the first-order actuator dynamics ( )
A sΣ : 
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Using the notation of (1) and applying (5) from Assumption 1, (23) is 
rewritten in the same way with:
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Figure 8 – Comparison between the nominal controller ( )
0K̂ s  (a) and the multi-model controller ( )K̂ s  (b) for all admissible configurations with ±25% of 

uncertainties: γ  step responses versus time.
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The goal is to track the roll and sideslip angles φ  and β, respectively. 
The reference model ( )R s  is given by: 
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Remark 6
Note that some longitudinal state variables are present in the lateral 
dynamics equations. For the computation of the lateral controller it 
will be assumed that these variables maintain a predefined equilib-
rium. The simulations will be performed on the full model with the 
previous satisfactory longitudinal controller, in order to maintain the 
longitudinal equilibrium despite the lateral motion. 

Lateral Controller Design

The same method as for the computation of the longitudinal controller 
is used here (some details will be omitted). The nominal configuration 

pθ  is the same as before. For the lateral case, the frequency weight-
ings used for the H∞-design procedure ( )

pW s  and ( )
uW s  are chosen 

respectively as:
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The filter ( )F s  is such that: (see the explanations for the choice of 
(29) for a better understanding)
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For the same reasons as for the longitudinal controller, a second-order 
controller is chosen. Solving the multi-objective H∞ minimization 
problem (14)-(15) with the routine hinfstruct of the Robust Control 
Toolbox for Matlab [3] yields a H∞-norm = 1.03γ∞  after a few itera-
tions. The stability of the closed-loop system with the initial "nominal" 
controller ( )

0K̂ s  is checked. Using the same strategy as for the lon-
gitudinal case, an LFT is computed yielding a "Δ-block" of dimension 
24 x 24. Then, both the upper and the lower bounds of the structured 
singular value μ  are evaluated yielding [ ]µ∆ ∈ 1.007 1.118 , which 
does not prove stability. Following Algorithm 1, after 3 iterations, the 
final controller ( )K̂ s  greatly improves the worst-case stability since 
now [ ]µ∆ ∈ 0.7948 0.8845 , which proves stability with respect to LTI 
uncertainties. Note that, unlike the longitudinal case, no branch-and-
bound techniques were needed here to reduce the gap between the 
lower and upper bounds.

Simulations were run for various initial configurations (different val-
ues of θp) and with ±30% uncertainties on the lateral aerodynamic 
coefficients (729 runs were executed). As expected, the lateral 
multi-model controller performs very well as shown in Figures  9 
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Figure 9 – Nonlinear Simulations with a 10 deg step on φ , for various initial aircraft configurations and ±30% aerodynamic coefficient uncertainties, with the 
lateral multi-model controller 10.
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and 10, where respectively the references of the roll and sideslip 
angles φ  and β  (red dashed line) are well tracked with reasonable 
control inputs aδ  and rδ . Furthermore, no sign of even slight insta-
bility is present and the decoupling is greatly ensured.

Global application: aircraft landing

Finally, the longitudinal and lateral controllers are tested on a realistic 
landing application. The Instrument Landing System (ILS) allows the 
aircraft to operate and automatically land despite difficult weather con-
ditions (e.g., restricted visibility). It is composed of ground-based signal 
transmitters and on-board receiving equipment. The ground-based 
equipment, located at the edges of the runway, comprises localizer and 

glide path radio transmitters and some marker beacons. On board, the 
receivers allow the emitted radio signals to be processed.

The glide and localizer signals are the ones of interest for perform-
ing an automatic landing. They both allow the position of the aircraft 
relative to the ideal trajectory for landing to be known. Thus, a guid-
ance control law can be designed so that the aircraft trajectory fol-
lows the centerline of the runway with a nominal descent path angle 
of = 3nomγ −  degrees. The lateral deviation is given by the localizer 
beam, while the longitudinal deviation is given by the glide beam. 
Figures 11 and 12 present the principles. Further details on autoland 
can be found in [13].

The aim is thus to track the glide and localizer signals and to perform 
the landing, via the addition of simple guidance outer loops which 
provide necessary inputs orders to the controller. The aircraft must 
hit the ground with a vertical speed [ ]= 2 3zV −  ft/s not further than 
500 meters after the runway threshold. Furthermore, if a lateral wind 
is blowing the aircraft must be able to have a final azimuth angle Ψ  
of 0° without being out of the axis of the runway during the process. 
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Figure 10 – Nonlinear Simulations with a 10 deg step on β , for various initial aircraft configurations and ±30% aerodynamic coefficient uncertainties, with the 
lateral multi-model controller ( )K̂ s .
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These challenging goals will be verified by running many simulations 
on the full nonlinear model with, as before, model uncertainties, dif-
ferent initial conditions and wind.

Guidance system

Thanks to an ILS model block the vertical and lateral shifts dZ and dY 
respectively between the actual position of the aircraft and the glide 
and localizer signals are recovered. PID controllers, which have as 
inputs dZ and dY, have been designed to provide the longitudinal and 
lateral controllers with the necessary values of cγ  and cφ  to cancel 
these shifts. The design is not detailed in the paper, since it really 
consists of classical design techniques (linearization of the plant from 
dZ and dY to the controller inputs cγ  and cφ , and PID design from 
frequency domain specifications). The nominal airspeed will be kept 
constant (V = 70 m/s). The general principle of the landing guidance 
+ control system is given in Figure 13. Note that the flare + decrab 
control system block will be described in the following subsection.

Flare and decrab phases

Just before landing, thanks to the ILS guidance detailed above, the air-
craft should fly with a fixed airspeed of –3° m/s, a flight path angle of 
–3° and be aligned with the runway. The objective of the flare control 
system, usually activated at 50 ft (15 m) above ground consists in gen-
erating an appropriate slope angle cγ  to be tracked so that the vertical 
speed at touchdown approaches 2.5  ft/s (0.75 m/s) and the aircraft 
hits the ground 400 m after the runway threshold. In order to do so, a 
corresponding trajectory ( )h x   is determined using some geometric 
considerations and cγ  is given in real time using the following relation:

( )( ) ( )
( ) ( ) ( )( )= =gr c

dh xh x t V t V t sin t
dx

γ−

(where grV  is the ground speed). The procedure is shown in Figure 14.

The decrab or align phase, usually activated at 30 ft above the run-
way, is aimed at setting the azimuth angle Ψ  to zero (relative to the 
azimuth angle of the runway) so that the fuselage is aligned with the 
runway axis at touchdown. This phase is essential in case of cross 
wind. It is realized by a PID controller that delivers the appropriate 
sideslip angle cβ  to be tracked as a function of Ψ.

Results

Complete landing simulations, including the flare and decrab phases, 
are successfully run for different initial conditions with regard to 
mass, center of gravity position, uncertainties and initial flight path 
angles. These are shown in Figure 15. Two lateral wind gusts are gen-
erated at 35 sec and 55 sec. Arriving above the runway, the azimuth 
angle is brought back to 0° using the rudder inputs (see Figure 15d). 
One can check that during this procedure the aircraft does not shift 
out of the runway when landing (see Figure 15a), and that the wings 
stay in an horizontal position (Figure 15c). Finally, after having prop-
erly recovered the glide reference slope, the flare procedure allows the 
aircraft to land at around 400 m after the threshold (Figure 15b), while 
bringing the flight path angle to the proper value allowing the vertical 
air speed (Figure 15e) to be kept within.

Table  2 summarizes the landing minimum, maximum and mean 
values for the final azimuth angles ψ , vertical speeds zV , pitch 
angles θ , pitch rates lX  and landing distances lX  obtained for every 
simulation, in order to check whether the landing requirements are 
met. The main difficult variable to control was the pitch rate q which 
is not positive but still near 0 deg/s. The other values are within an 
acceptable range with regard to the mean value and also the standard 
deviation is not higher than the limits, which shows that the whole 
method (controller synthesis, guidance laws and flare+decrab laws) 
is clearly robust to uncertainties and allows a proper landing to be 
performed under many flight conditions. There are a few extreme 
condition cases (especially for a maximum amount of uncertainties) 
for which the objectives are slightly exceeded, but this is not critical 
(the aircraft still lands safely).

Parameters min max mean standard 
deviation objectives 

Azimuth angle Ψ (deg) –1.06 0.59 0.01 0.32 0±1
Vertical speed Vz (ft/s) 0.88 4.46 2.33 0.82 2.5±1

Pitch angle θ (deg) –2.81 13.01 3.95 4.19 >0
Pitch rate q (deg/s) –0.73 0.25 –0.25 0.26 >0

Landing distance Xl (m) 190 567 393 115 0 < Xl < 500

Table 2 – Final minimum/maximum/mean values for the relevant landing 
parameters considering all of the simulations.
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Conclusion

Inspired by dynamic inversion techniques, an original methodology is 
proposed in this paper to design nonlinear controllers over possibly 
large flight envelopes. The procedure combines a partial feedback 
linearization of the plant with a fixed-structure multi-model H∞ design 
technique. Our methodology also includes a preliminary μ-based 
validation phase, during which worst-case models are obtained and 

then used to enrich the set of design models. Finally, a global non-
linear robustness analysis strategy is briefly sketched and the paper 
concludes with a detailed application of the methodology to a real-
istic aircraft landing problem. Future work will be devoted to further 
improvements of the design strategy and its application to a small 
autonomous aircraft, including flight tests 
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Figure 15 – Complete landing simulations in the presence of lateral wind, for various initial aircraft configurations.
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This article is dedicated to the design of a complete guidance & control system for 

the roll/pitch/yaw-channels of a 155 mm dual-spin projectile equipped with nose-
mounted trajectory correction canards. The projectile airframe parameter-dependent 
nonlinear model including aerodynamic and actuator/sensor uncertainty descriptions 
is given and the subsequently computed linearized models necessary for autopilot 
design are presented. The pitch/yaw-channel dynamics linearized system is useful for 
highlighting important properties specific to these dynamics, in particular in relation 
with the parameter vector dimension and the sensor position. The computation of a 
linear structured controller for the nose roll-axis and of a gain-scheduled structured 
compensator for the airframe pitch/yaw-axes, using an H∞ loop-shaping design 
approach, is detailed with the assessment of the obtained performance and 
robustness properties. Finally, various guided flight nonlinear 7DoF simulation results 
are exposed for the purpose of evaluating over the projectile flight envelope the 
effectiveness of the proposed guidance & control scheme.

Introduction

Destroying a target on a battlefield with an artillery unit traditionally 
requires several ballistic rounds to be fired due to the lack of accuracy 
of such weapons. Significant ballistic impact point miss distances 
can originate from incorrect launch initial conditions (muzzle velocity 
and gun barrel pointing and azimuth) or wind perturbations. However, 
the multiplication of the number of firings causes potential unwanted 
collateral damage, pushes the mission costs higher, and can lead to 
an excessive engagement time and logistical issues that render the 
artillery crew vulnerable to enemy counter fire. The interest of indus-
trial and academic communities in developing projectile trajectory 
correction mechanisms has grown over the last forty years, in order 
to improve the ballistic shell terminal accuracy and subsequently to 
overcome the aforementioned drawbacks.

An attractive approach consists in equipping a projectile with aero-
dynamic control surfaces, despite their fragile mechanical structure, 
which can be rotating or reciprocating nose-mounted canards, tail 
fins, or both [24, 31, 10, 26, 12, 9, 33, 13, 34]. Those possess 
the advantage of creating efforts that are quite easily modeled and 
the generated control is a continuous-time signal. In addition, these 
trajectory control mechanisms are very similar to the well-mastered 

ones mounted on traditional missiles [35, 29, 36, 3, 25, 37, 7]. The 
projectile concept studied here results from retrofitting an existing 
unguided 155 mm ballistic spin-stabilized shell with a roll-decoupled 
nose equipped with two pairs of rotating canards, hence leading to 
a so-called dual-spin control configuration. The latter is also, here, 
of a Skid-To-Turn (STT) type, i.e., the projectile trajectory correc-
tion is performed thanks to maneuvers in the pitch and yaw planes 
using the two pairs of canards, while the nose is maintained at a fixed 
angular position. The previous guided spin-stabilized projectile con-
cept, which is dynamically stabilized thanks to its high body roll rate 
[21, 6], is attractive for maintaining low development and production 
costs. However, spin-stabilization, which causes a strong coupling 
between the highly nonlinear pitch/yaw-channel dynamics, makes the 
design of a truly multivariable nose-embedded guidance & control 
(G&C) function necessary in order to devise a smart weapon, which 
is more challenging than for classical missiles with decoupled pitch 
and yaw axes.

The flight G&C system, which must retain a quite simple structure, 
easy to tune and implement while delivering high-performance over a 
large operating domain, has to handle additional constraints, such as 
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the use of low-cost, small and gun-hardened actuators and sensors 
with limited performance, which are also inevitably integrated in the 
projectile nose and not at the center of mass (CM), as is usually done 
in the literature regarding guided projectiles. Considering this severe 
practical position restriction constitutes a major novelty with respect 
to the previous works of [33, 34]. In addition, sensor measurement 
noise and aerodynamic and component uncertainty, along with exter-
nal disturbances, must be taken into account.

The linearization-based divide-and-conquer gain-scheduling control 
approach [19, 27] coupled with the linear robust control theory tools 
[41, 30] have proven their value in computing efficient autopilots for 
aerospace applications. Hence, the parameter-dependent nonlinear 
system dynamics are first linearized around an equilibrium manifold 
covering the operating domain [20]. The set of designed linear con-
trollers is then smoothly interpolated to yield a gain-scheduled con-
troller, in order to operate at any nonlinear system operating point. 
However, the previous local control design technique lacks global 
stability and performance property guarantee, hence necessitating a 
multitude of nonlinear simulations to be performed for validation. With 
regard to the design of guidance module, proportional navigation (PN) 
algorithms are traditionally used in the case of missiles.

This paper is aimed at extending and improving the works of [33, 34] 
concerning autopilot design for guided ammunition. A nonlinear 
model for the complete projectile dynamics is first presented, based 
on a more generic aerodynamic force and moment description, in 
addition to the aforementioned critical sensor position constraint. Dis-
tinct linearized models for the nose roll and for the complete projectile 
pitch/yaw dynamics are then computed to design, using an H∞ loop-
shaping design procedure [22, 23] offering an alternative to the stan-
dard robust control technique used in [34], separate two-degree-of-
freedom (2DoF) fixed structure and reduced order autopilots. Indeed, 
the regulated roll-channel dynamics must respond faster than the 
controlled pitch/yaw ones in the STT control configuration employed.

A single robust linear controller is sufficient for the purpose of con-
trolling the nose roll-channel throughout the projectile flight envelope, 
whereas a gain-scheduling control strategy is developed for the 
parameter-highly varying pitch/yaw dynamics. A robust stability anal-
ysis is then proposed for both linear controller designs using various 
robustness tools, such as μ-analysis [41, 30]. Finally, the effective-
ness of the obtained PN guidance & gain-scheduled control system 
to intercept a ballistic impact point is assessed through extensive 
nonlinear simulations.

This paper is organized as follows. The first part addresses the devel-
opment of the projectile nonlinear and linearized models. The second 
part presents the autopilot designs and robustness analyses for both 
the nose roll-channel and the complete projectile pitch/yaw-channels. 
The third part addresses PN guidance. Finally, the fourth part details 
nonlinear simulation results for the STT guided projectile.

Airframe Modeling

Canard-Guided Projectile Concept

The studied dual-spin STT canard-guided projectile concept is given 
in Fig. 1 with several of the flight mechanics state and control vari-
ables used in the nonlinear mathematical model representing its 

behavior. The rapidly spinning aft part incorporates the explosive 
charge, whereas the forward part embeds two servomotors deflect-
ing the steering canards and a coaxial servomotor used for decou-
pling and controlling the nose roll-axis dynamics. The forward part 
also integrates a three-axis IMU assisted by a GPS module, along with 
the necessary guidance and control processors.

Nonlinear Parameter-Dependent Dynamics & Kinematics

The 7DoF nonlinear model for a canard-guided dual-spin projectile 
is composed of translational & attitude dynamic equations. The first 
ones describe the linear motion of the projectile CM B with respect 
to the Earth inertial frame E, whereas the second ones represent the 
rotational movements of the forward "f " and aft "a " projectile parts 
Bf , Ba with respect to the inertial frame. Those dynamic equations, 
which are expressed in a coordinate system (CS) related to a non-
rolling frame B', are defined as:

0
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The nonlinear model comprises additional translational & attitude 
kinematic equations symbolizing a change from the inertial CS to the 
non-rolling frame CS that is applied to the linear and angular velocities 
of both projectile parts:
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Figure 1 – 155 mm canard-guided dual-spin projectile concept



Issue 13 - September 2017 - Gain-Scheduled H∞ Loop-Shaping Autopilot Design
	 AL13-03	 3

The system dynamic state variables in Eqs. (1), (2) are the projectile 
CM linear E

B
T B[ ] [ ]u v w ′= v  velocities and the forward and aft part 

angular faB E B
f a[ ] = [ ]p p q r ′Τ ω  rates. The system kinematic states 

are the CM linear E
e e e BE[ ] = [ ]x y z Τ s  positions and the body and 

nose angular faB E
f a[ ] =φ φ θ ψ Τ e  orientations. The external forces 

X, Y, Z are composed of gravitational (g) and aerodynamic contribu-
tions [drag/lift forces being mainly applied to the projectile body (dl), 
canards (c) and Magnus (m)] and are given by:
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The external moments consist of similar aerodynamic components, 
along with additional aerodynamic damping (d) and mechanical 
control/friction (cf ) terms: 
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The coaxial motor torque is denoted by coL , whereas the friction 
moment f aL −  created between the forward and aft parts is defined as: 

( ) ( )( )f a A0 F a f s v a f= , , signL qSd C p p K K p pα β− ⋅ − + − 	 (5)

The variables z y,δ δ  are the system virtual normal and lateral control 
signals, which depend on the actual canard pair deflections m n,δ δ  and 
on the nose roll angular position fφ  as: 
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The elements A0 Y0 N0, ,C C C  represent the drag/lift-induced, Y N,C Cδ δ  
the canard, and Y N,p pC C  the Magnus force aerodynamic coefficients, 
whereas the elements m0 n0,C C  symbolize the drag/lift-induced, 

m n,C Cδ δ  the canard, m n,p pC C  the Magnus, and l m n, ,p q rC C C  the 
damping moment aerodynamic coefficients. Due to imperfect wind-
tunnel measurements and computational fluid dynamics simulation 
results, those aerodynamic coefficients (and their partial deriva-
tives used below in the linearized model) take uncertain values with 
variations around the nominal values of up to 5% for A0C , 10% for 

Y0 N0,C C , m0 n0,C C , Y N,C Cδ δ  and m n,C Cδ δ , 20% for lpC , and 30% for 
Y N,p pC C , m n,p pC C  and m n,q rC C . All of the aerodynamic coefficients 

are tabulated in a highly nonlinear manner as a function of the Mach 
number = /V a , and of the aerodynamic angles of attack (AoA) α 
and sideslip (AoS) β  for some of them. The airframe velocity V and 
the angles ,α β  given in Fig. 1 are defined as follows under a no-wind 
assumption [40]:

	 2 2 2V u v w= + + 	 (7a)
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The preceding force and moment dynamic equations (1) also depend 
on the altitude-dependent ( e=h z ) gravitational acceleration ( )g h , 
on the projectile mass m and on the roll-axis projectile forward and aft 
part moments of inertia xf xa,I I , along with the transversal moment of 
inertia tI . Finally, the forces and moments (3)-(5) are parameterized 
by the reference area S, caliber d, and static and viscous friction coef-
ficients s v,K K , and they vary with the dynamic pressure 21

2=q Vρ , 
where = ( )hρ ρ  and = ( )a a h  are the altitude-dependent air density 
and speed of sound.

As is generally done in the literature [8, 5], the complete aforemen-
tioned translational nonlinear dynamic equations include the linear 
velocities ( ), ,u v w  as state variables, which are however less suited 
for pitch/yaw-channel autopilot design than the wind-frame W vari-
ables ( ), ,V α β . Equivalent (under a no-wind assumption) nonlinear 
translational dynamic equations using the states ( ), ,V α β  are hence 
preferred, and those are obtained by first differentiating Eqs. (7) with 
respect to time:
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The projectile linear velocities, which are obtained as follows by 
inverting Eqs. (7):

	 cos cosu V α β= 	 (9.a) 

	 sinv V β= 	 (9.b) 

	 sin cosw V α β= 	 (9.c)
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are then inserted into the wind-frame variable dynamics equations (8) 
along with the expressions of ( ), ,u v w    given in Eq. (1a), in order to 
provide the equivalent nonlinear translational state dynamics: 
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Equivalent nonlinear translational kinematics can be derived by insert-
ing Eqs. (9) into Eq. (2a).

The projectile nonlinear state dynamics & kinematics mathemati-
cal model in ( ), ,V α β  is then complemented with nonlinear output 
dynamics & kinematics equations providing the signals measured at a 
longitudinal distance IMU > 0x  from the projectile CM. The output Euler 
angles are directly the nose state angular positions fB E

f[ ] =φ θ ψ Τ e , 
whereas the load factors f fB E B

x,f y,f z,f[ ] = [ ]n n n Τ n  and the angular 
rates f fB E B

f,f f f[ ] = [ ]p q r Τ ω , which are obtained in the nose frame 
fB  CS from the accelerometer and gyrometer measurements, respec-

tively, are given as follows, together with the nose GPS inertial positions 
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E
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where the load factors T BE B
CM,x CM,y CM,z[ ] [ ]n n n ′= n  at the projectile 

CM and expressed in the non-rolling frame CS are equal to the spe-
cific forces divided by the projectile weight.

Linearized Dynamics

Roll-Channel

The nose roll angular position and velocity state dynamics given in 
Eqs. (1b), (2b) are first augmented with the coaxial DC servomotor 
current i linear dynamics, and the result is rearranged into the follow-
ing linear parameter-dependent form: 
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 	 (12)

with: 

	 ( ) ( )a R A0
xf

= , ,qSdK C
I

α β
 
 
 

λ 	 (13)

and the time-varying parameter vector [ ]R = V hα β Τλ  capturing 
the dependence of the system dynamics on the projectile operating 
condition, and taking its values inside an operating domain 4

R
λ ⊂Γ  . 

The system inputs are the control applied voltage eV  with a saturation 
level e,sat 60V = ± V  and the time-varying external disturbances 

, ,p id d dφ  defined as:

	 ( ) ( )a R a f s v a

1
b a

tan
= = signp

i

d r
d K p p K K p
d K L p

φ θ

−

  
   − +    
     

d λ  	 (14)

The electromotive force constant bK , the motor inductance L , resis-
tance R, and torque constant mK  verifying co m=L K i, along with the 
viscous friction coefficient vK  are taken as real uncertain parameters 
with errors of 15% for b m, , ,L R K K  and of 40% for vK .

Finally, the projectile flight-condition dependence of the model 
( )R R

λ λ  is transformed into an uncertainty on the aerodynamic ele-
ment ( )a RK λ  corresponding to its variations over R

λΓ , and to the 
errors on the axial force aerodynamic coefficient A0C . This practice 
leads to defining a new unique uncertain linear (not parameter-depen-
dent) model R

λΣ  used for nose roll-channel autopilot design, with the 
nose angular position and rate being the feedback signals.

Pitch/Yaw-Channels

The STT projectile trajectory correction feedback system, which 
acts on the nonlinear pitch/yaw axis dynamics represented by the 
α ,q and β ,r state dynamic equations in Eqs.  (10), (1b), uses the 
canard deflections m n= [ ]δ δ Τδ  as the control inputs, the normal/
lateral load factors zy,f z,f y,f= [ ]n n Τn  as the tracking outputs, and 
the pitch/yaw angular rates ,f f f= [ ]qr q r Τω  as additional measured 
outputs. The state and output pitch/yaw dynamics are directly influ-
enced by the airframe airspeed V, the projectile nose and body rates 

f a,p p  and some of the kinematic states. Actually, the normal inertial 
position ez  enters the aerodynamic coefficient and dynamic pressure 
expressions, the pitch angle θ influence is due to the flight mechan-
ics equation structure, and the nose roll angle fφ  is used in the vir-
tual control and measured output expressions. A parameter vector 

PY f a f= [ ]V p p h φ θ Τσ  is then defined, takes its values from a set 
6

PY
σ ⊂ Γ  and is considered as a relatively slowly-varying external 

input to the pitch/yaw dynamics.

In the context of a linearization-based, divide-and-conquer gain-
scheduling control strategy, the computation of a pitch/yaw 
dynamics linearized model needs to calculate a set of equilibrium 
points for any admissible fixed value of the parameter vector PYσ  
by imposing = = = = 0q rα β   . The result is an underdeter-
mined system of four nonlinear algebraic equations with the six 
unknown states , , ,q rα β  and controls m n,δ δ . A solution for mak-
ing the problem solvable is to define an extended trimming vector 

[ ] 8
PY f a f PY= V p p h ρα β φ θ Τ ∈ ⊂ρ Γ  by imposing the aero-

dynamic angles ,α β . An efficient home-made trimming analytical 
procedure that is specifically developed for spin-stabilized projectiles 
with strongly coupled pitch/yaw-axes dynamics can be found in [33].
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The linearized model, whose state-space matrix elements are func-
tions of the trimming vector PYρ , and which possesses a q-LPV form 
due to the trimming vector dependence on the system states ,α β , is 
expressed in the following generic form:

	
( ) ( ) ( )
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,
	 (15)

with the state PY, PY PY PY( ) = ( ) [ ( )] = [ ]t t t q rε ε ε ε εα β Τ−x x x ρ , the 
control PY, PY PY PY m, n,( ) = ( ) [ ( )] = [ ]t t tε ε εδ δ Τ−u u u ρ  and the output 

PY, PY PY PY z, y,( ) = ( ) [ ( )] = [ ]t t t n n q rε ε ε ε ε
Τ−y y y ρ  deviation vectors. 

The state-space matrices PY( )A ρ , PY( )B ρ , PY( )C ρ  and PY( )D ρ  
are given below by Eqs. (16a)-(16d), in which the matrix ( )fφT  is 
the transpose of ( )fφT  defined in Eq. (6). Similar expressions for the 
force , ,Z Z Zαα αβ βα, Zββ and the moment 

z
, , , , ,q qq q qr qM M M M Mα β δ  

y
, , , ,r rq r rr rM M M M Mα β δ  elements of Eqs. (16a)-(16d) and for the 

load factor elements 
z z y

, , ,n n nN N Nα β α  
y z z y y

, ,n n nN N Nβ δ δ  of Eqs. (16c), 
(16d) can be found in detail in [34].

As shown in [33], the stability matrix of the q-LPV model given in 
Eq.  (16a) is very useful for highlighting the important pitch/yaw-
axes dynamics cross-coupling of spin-stabilized projectiles, which is 
caused by their high body roll rate ap . Hence, the design of a separate 
autopilot for each axis, as for missiles, is to be undoubtedly avoided 
since the resulting closed-loop system would experience poor perfor-
mance and even instability.

The pitch/yaw-dynamics q-LPV model finds also four important 
applications in addition to autopilot design, which are only summa-
rized here for brevity. The first application concerns a pitch/yaw-axis 
internal dynamics analysis [33], from which the two precession and 
nutation modes that are specific to spin-stabilized bodies as stated 

by the classical aeroballistic theory [6, 21], are clearly identified. The 
second application addresses the investigation of open-loop local 
stability properties and shows that a spin-stabilized projectile, which 
should be unstable statically by referring to non-spinning missile 
stability theory [36, 16], is however maintained stable dynamically 
thanks to the sufficiently high body roll rate [33].

The third application demonstrates, through a sensitivity analysis, 
that retaining only the airframe airspeed and altitude in a reduced 
dimension, slowly-varying and fully-measurable trimming vector 

PY PY PY= [ ]V h λ ρΤ ∈ ⊂Γ Γλ  is sufficient to maintain a good local 
approximation of the nonlinear dynamics with a resulting simplified 
q-LPV model PY PY( )λ λ  parameterized by PYλ . This practice leads 
to significantly attenuating the computational burden, thanks to a 
reduction in the number of controllers to be designed now for a trim-
ming envelope PY

λΓ  of a dimension of 2 only, instead of 8 initially. In 
addition, the gain-scheduling control design method is more easily 
adapted for any value of the reduced two-dimension trimming vector, 
and the complexity of the implemented controller interpolation law is 
reduced. However, this practice introduces additional uncertainty on 
the trimming operating point, making the design of an autopilot even 
more challenging.

Finally, the fourth application shows the influence of the accelerom-
eter position on the pitch/yaw load factor output nonlinear dynamics, 
and the necessity of considering the actual position for designing the 
best possible autopilot [28]. The actual position of the nose-embed-
ded accelerometers is critical and needs a specific treatment due to 
low-frequency non-minimum phase (NMP) transmission zeros in the 
I/O SISO load factor-related transfer functions of the linearized model, 
which are close to the autopilot desired bandwidth [2, 15].

The projectile simplified q-LPV model PY PY( )λ λ  is now augmented for 
autopilot design by uncertain 2nd order linear models for the canard 
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actuators, accelerometers and gyrometers, with additional amplitude 
and rate saturation levels sat = 30δ ± °  and sat = 100δ ± °/s for the 
actuators. Uncertainty represents here unstructured high-frequency 
neglected dynamics [30].

Autopilot Design

The same H∞ loop-shaping controller design approach [22, 23] 
detailed in the following section is applied for designing a robust 
structured controller, first for the nose roll-channel angular position 
dynamics, and second for the more complex projectile pitch/yaw-
channel dynamics linearized at any equilibrium fixed operating point. 
The pitch/yaw-channel gain-scheduled controller is also described.

H∞ Loop-Shaping Controller Design Methodology

The H∞ loop-shaping controller design method comprises two 
main distinct steps, named as open-loop shaping and robust sta-
bilization. As seen in Fig. 2, the first step consists in attaining a 
desired level of closed-loop performance by shaping over fre-
quency, using pre- and post-filters 1 2( ), ( )s sW W  for the initial open-
loop system ( )K sG , the singular values of the open-loop system 

S 2 1( ) = ( ) ( ) ( )Ks s s sG W G W . Typically, high gains at low frequen-
cies and low gains at high frequencies are desirable for reference 
tracking/disturbance rejection and for noise attenuation, respectively, 
with no excessive roll-off ( 20 dB/dec ) at intermediate frequencies 
around the crossover frequency.

The second step is dedicated to robustness optimization by calculat-
ing an H∞ controller ( )s∞K  robustly stabilizing S ( )sG  with respect 
to unstructured normalized coprime factor (NCF) uncertainties. 

The  maximal stability margin maxε  potentially reached can be cal-
culated exactly and before robust controller computation. This mar-
gin indicates the success of loop-shaping: an max 1ε   means an 
incompatibility between performance and robustness specifications 
and the pre- and post-filters must be adapted; an max 0.3ε   is sat-
isfactory. A good value for maxε  also indicates that the open-loop 
shaped plant singular values should not be degraded too much by the 
robust controller. Finally, the global implemented controller is obtained 
as 1 2( ) = ( ) ( ) ( )s s s s∞K W K W .

The previous design technique is an alternative to standard H∞ 
closed-loop shaping methods [41, 30], since the performance and 
robustness requirements are treated separately. It also tends to pro-
duce more robust controllers, since for robustness optimization those 
minimize implicitly the H∞-norm of a set of four closed-loop sensi-
tivity functions with each of them being associated with a specific 
uncertainty type.

Open-Loop Shaping

The definition of an open-loop shaped plant S ( )sG  is here facilitated 
using the results of a first mixed-sensitivity H∞ controller synthe-
sis [17, 41, 30] incorporating a model-matching constraint [14] 
whose design setup is given in Fig. 3. In the linearized-based gain-
scheduling control context for pitch/yaw dynamics autopilot design, 
this technique is relatively easy to adapt automatically to the syn-
thesis point. In addition, since the same fixed control structure can 
be imposed for any operating condition using the H∞ non-smooth 
optimization techniques proposed in [1], similar performance prop-
erties can be obtained over the whole projectile trimming envelope. 
Interpolation and implementation of the designed local controllers are 
also simplified.

	 Step 1	 Step 2	 Step 3

       

 

 

    

W1 W1

W1 W2
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Figure 2 – The H∞ loop-shaping controller design procedure
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Figure 3 – Mixed-sensitivity H∞ controller synthesis block diagram for open-loop shaping
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The H∞ synthesis problem of Fig. 3 consists in computing a control-
ler ( )sC  with output ( )su  and inputs c 1 2( ) = [ ( ) ( ) ( )]s s s s Τv y y y  
containing a reference signal c ( )sy , a tracking output 1( )sy  and an 
additional measured output 2 ( )sy , in order to maintain nominal (no 
uncertainty) internal stability and to guarantee that the closed-loop 
transfer function from the exogenous input c( ) = ( )s sw y  to the per-
formance outputs ( ) = [ ( ) ( ) ( ) ( )]S KS T Ms s s s s Τz z z z z  satisfies the 
following standard condition, given a performance index > 0γ  to be 
minimized [41, 30]:

( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

LS LS
l= , = <

M

S
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s s
s s

s s s
s s
s s

γ
∞ ∞

∞

 
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     
 
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

W M
W S

T P C
W KS

W T

	 (17)

where the augmented nominal open-loop standard form ( )LS
C sP  is the 

interface between, on the one hand, the exogenous inputs and the con-
troller outputs and, on the other hand, the performance outputs and con-
troller inputs. The latter system comprises the nominal open-loop plant 

( )C sG  and a target closed-loop model ( )r sT  used for model match-
ing. It also contains the weighting filters ( ) ( ) ( ), ,M S KSs s sW W W  and 

( )T sW  which are used for shaping over frequency, in accordance with 
the desired closed-loop time and frequency objectives, the singular val-
ues of the closed-loop transfer functions related to the model-matching 
error r r 1( ) = ( ) ( )s s s−e y y  (model-matching sensitivity ( )sM ), track-
ing error c 1( ) = ( ) ( )y s s s−e y y  (sensitivity ( )sS ), control input ( )su  
(control sensitivity ( )sKS ), and tracking output 1( )sy  (complementary 
sensitivity ( )sT ), respectively.

If the sensitivity functions meet the design requirements, an open-
loop shaped plant S 2 1( ) = ( ) ( ) ( )Ks s s sG W G W  is obtained by open-
ing the closed-loop system 

1

LS ( )y w sT . The latter, which results from 
connecting the designed controller ( )sC  to the plant ( )C sG  to be 
controlled, is the closed-loop transfer function between the exoge-
nous reference c( ) = ( )s sw y  and the tracking output 1( )sy  of the 
block diagram in Fig. 3.

The closed-loop system 
1

LS ( )y w sT  is here broken at the level of the 
tracking error ( )y se . The initial open-loop system ( )K sG  contains 
the plant to be controlled ( )C sG , along with elements of the control-
ler ( )sC , whereas the pre- and post-filters 1 2( ), ( )s sW W  only com-
prise controller elements. In addition, the point where the closed-loop 
system is broken corresponds to the point where the H∞ controller 

( )s∞K  is subsequently included.

2DoF H∞ NLCF Robust Stabilization

The open-loop shaped plant S ( )sG  is factored as: 

	 ( )1
S S S S S( ) = ( ) ( ), ( ) ,s s s s s−

∞ ∞∈ ∈G M N M Nwith  H H 	 (18)

where S S( ), ( )s sM N  are stable normalized left coprime factors 
(NLCF). A family S,∆  of perturbed open-loop shaped plants S, ( )s∆G  
defined about the nominal open-loop shaped plant S ( )sG  and reflect-
ing the modeling uncertainty is given by:
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where the stable unknown unstructured perturbations ( ), ( )M Ns s∆ ∆  
represent the uncertainty. The objective of H∞ NLCF robust stabili-
zation is to calculate a controller ( )s∞K  stabilizing both the nominal 

S ( )sG  and any perturbed S, ( )s∆G  open-loop shaped plants, and 
also verifying the following robustness condition with > 0γ  mini-
mized:

	 ( ) ( ) ( ){ } ( )1 1 1
S S =

s
s s s γ ε

− − −∞
∞

∞

 
− ≤ 

 

K
G K M


	 (20)

The stability margin 1/γ  obtained with the controller ( )s∞K  is upper 
bounded by the maximum achievable stability margin max min= 1/ε γ , 
which is calculated exactly as a function of the NLCF S S( ), ( )s sM N  
as follows: 

	 ( ) ( )
2

max S S H
= 1 , > 0s sε −   N M 	 (21)

where 
H
⋅  denotes the Hankel norm.

In this work, robust stabilization with an H∞ controller ( )s∞K  leads 
to significantly degrading the closed-loop system time-domain 
performance properties initially obtained with a good open-loop 
shaping. A solution is to devise a 2DoF controller for the set S,∆  
of perturbed open-loop shaped plants with input S ( )su  and output 

S 1( ) = ( )s sy y  due to the structure chosen above for S ( )sG , gener-
ally at the expense of an increase in the stability margin. The 2DoF 
controller f f( ) = [ ( ) ( )]s s s∞ ∞K K K  here possesses the structure of 
Fig.  4, comprising a robustifying controller ( )s∞K  acting on the 
tracking error ( )y se  and an injection filter f ( )sK  used for recover-
ing the time-domain performance specified by the target system 

r ( )sT .

A stabilizing structured 2DoF controller f ( )s∞K  is designed, again 
using the algorithms of [1], to minimize the H∞-norm of the closed-
loop system from the exogenous reference c ( )sy  and disturbance 

( ) = ( ) ( )NM N Ms s s+d d d  inputs symbolizing the NLCF uncertainty 
to the performance outputs r( ), ( ), ( )N Ms s sz z z , where r ( )sz  is the 
model-matching error: ( )RS2Tzw s γ

∞
≤  with > 0γ . The param-

eter η  permits the designer to adapt the weighted reference signal 
c, c( ) = ( )s sη η ⋅y y , in order to place more or less emphasis on model-

matching at the expense of robustness.
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Figure 4 – 2DoF H∞ robustifying controller synthesis block diagram
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Robust stability is guaranteed if the closed-loop system RS2T ( )
NM NMz d s  

from the disturbance input ( )NM sd  to the performance output 
( ) = [ ( ) ( )]NM N Ms s s Τz z z  satisfies the following condition: 

	 ( )RS2 1T = , > > 0
NM NMz d s γ ε γ γ−

∞
≤ with 	 (22)

where γ  is the obtained stability margin.

Roll-Channel Autopilot

The complete nose roll-channel autopilot structure illustrated in Fig. 5 
is composed of two cascaded loops. The internal fast loop contains 
the rate controller ( )pK s  that is used for reducing the nose rate 

f,f ( )p t  following the reference signal f,c ( )p t , during the ballistic flight 
subphase ( start switch<t t t≤ ). The preceding rate loop also aids the 
outer slow loop containing the position controller ( )sφK  to ensure 
tracking of the reference position f,c ( )tφ  during the guided phase 
( switch impactt t t≤ ≤ ). The two controllers are designed separately, with 
the rate controller obtained first and the position one subsequently 
computed using the compensated internal rate control loop.

The design of a SISO PID rate controller ( )pK s  using the classical 
loop-shaping approach [30] is not detailed here for brevity purposes. 
This controller is sufficient to provide good performance properties 
in terms of robustness, as well as reference tracking and disturbance 
rejection, as shown from the nonlinear simulation results given at the 
end of the paper. A position controller ( )sφK , which must satisfy 
critical and stringent performance and robustness specifications, is 
calculated by applying the particular H∞ loop-shaping design tech-
nique proposed in the previous Subsection "H∞ Loop-Shaping Con-
troller Design Methodology".

The uncertain open-loop transfer function R ( )sG  of the uncertain LTI 
model of Eqs. (12)-(14) can be written as follows: 

	
( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

f
R R, R,

f,f e e

= = d u

s s s
s s s

p s V s V s
φ     

             
G G G

d d
   	 (23)

where the control R, ( )u sG  and disturbance R, ( )d sG  dynamics are 
expressed as: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

R, R,

R, R, R, R,

R, R, R,

=

0
p i

p i

d u

d d d u

pd pd pu

s s

G s G s G s G s

G s G s G s
φφ φ φ φ

  
 
 
 
 

 

   

  

G G (24)

Only the control dynamics R, R, R, ( )( ) = [ ( ) ]u u pu ss G s Gφ
ΤG    are used 

here to design a nose position controller, since the effects of the dis-
turbances ( )sd  of Eq. (14) are insignificant.

Open-Loop Shaping

The design of a position controller uses the open-loop system 
R, ( )uF sφ , which is obtained as the series interconnection of the nomi-

nal (no uncertainty) control dynamics of the compensated internal 
loop of Fig. 5 with the nominal position control dynamics R, ( )uG sφ  
and which is given by: 

	 ( ) ( )
( ) ( ) ( )

( ) ( )
f

R, R,
f,c R,

= =
1

p
u u

pu p

K ss
F s G s

p s G s K sφ φ

φ
⋅
+

	 (25)

Following the general H∞ linear controller design setup of Fig.  3, 
where the open-loop system R,( ) = ( )C uG s F sφ  has f,c( ) = ( )u s p s  
as input and 1 f( ) = ( )y s sφ  as tracking output (no additional output 

2 ( )y s ). With the reference signal c f,c( ) = ( )y s sφ , the controller 
inputs are c 1 f,c f( ) = [ ( ) ( )] = [ ( ) ( )]s y s y s s sφ φΤ Τv  and the tracking 
error f,c f( ) = ( ) = ( ) ( )ye s e s s sφ φ φ− . The target model r ,r( ) = ( )T s T sφ  
with input f,c ( )sφ  and output r f,r( ) = ( )y s sφ  is chosen as a second-
order filter with a desired natural frequency ,rφω = 14.5 rad/s and a 
damping ratio ,r =φξ = 0.79, giving a settling time ,s = 0.254t sφ = 0.254 s for a 
2% envelope around steady state. The settling time ,stφ  is taken as 
sufficiently large compared to that of the nose-channel internal rate 
loop and sufficiently small compared to that of the projectile pitch/
yaw-channel control loop without leading to saturation of the coaxial 
motor.

Controller design is here performed by shaping only the closed-loop 
model-matching, sensitivity and control sensitivity functions using 
the following model-matching filter ( )MW s :

	 ( )
1

= Mk M
M

M M

s
W s

s
ω

ω ε
+

+
	 (26)

whose inverse is a high-pass filter, since the model-matching transfer 
function frequency content is in the shape of a bell centered on the 
intermediate frequencies (see Fig.  7b). The error between the 
responses of the target and shaped closed-loop transfer functions is 
reduced as much as possible at low frequencies in order to ensure a 
good reference tracking and, at intermediate frequencies, to improve 
the transient response. The values given to the parameters M Mandkε  and M Mand kε  
adequately adjust the gain of 1( )MW s−  at low and high frequencies, 
respectively, whereas the critical parameter Mω , initially set to the tar-
get closed-loop system bandwidth ,cφω , is used to adapt the cutoff 
frequency. The tracking error filter ( )SW s  is chosen as:

	 ( )
2 2

,r ,r ,r
2

,r ,r

2
=

2S
S

s s
W s

s s
φ φ φ

φ φ

ξ ω ω
ξ ω ε

+ +
+ +

	 (27)

whose inverse is equal to the 2nd -order low-pass filter 
,r ,r( ) = 1 ( )S s T sφ φ− , in which a small > 0Sε  is added to obtain a 

stable filter. The weighting ( )SW s  is used to adjust the closed-loop 
system bandwidth, steady-state error and overshoot. The control filter 

( )KSW s  is defined as:

	 ( ) = KS KS KS
KS

KS KS

k sW s
s

ε ω
ω ε

  +
⋅  + 

	 (28)

whose inverse is a 1st -order low-pass filter with a static gain 1
KSk − , a 

bandwidth KSω  and a high-frequency negative real zero ensured by 
> 0KSε  and used to obtain a proper and stable weighting ( )KSW s . The 

control signal weight limits the control bandwidth at high frequencies 
by adjusting KSω , initially fixed to ,cφω , in order to limit the risk of 
coaxial motor saturations.

  + 
_ 
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Figure 5 – Complete nose roll-channel autopilot architecture
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Controller synthesis results
The designed reduced-order (RO) controller ( )sC  of Fig. 3 possesses 
the PI-P (proportional-integral & proportional) structure illustrated in 
detail in Fig. 6. It comprises a tracking error PI servo-controller ( )eK sφ , 
an output feedback regulation proportional gain Kφφ  and a roll-off/pro-
tection 1st-order filter ( )pK sφ . The control signal is given by: 

	 ( ) ( ) ( ) ( ) ( ) ( ){ }f,c f,c f= p e ep s K s K s s K s K sφ φ φ φφφ φ − +  	 (29)

with:

	 ( ) p, i,  e e
e

K s K
K s

s
φ φ

φ

+
= 	 (30a)

	 ( ) 1
1p

p

K s
sφ

φτ
=

+
	 (30b) 

Figures 7a-7d give the RO and fixed structure controller synthesis 
results (blue), which are compared to those obtained for the design 
of a full-order (FO) controller (magenta). The target (red) and shaped 
(magenta for FO and blue for RO controllers) closed-loop transfer 
functions possess the desired properties conforming to robust con-
trol theory [11, 30]. For the sensitivities ( )sS , the small low-frequency 
gains indicate a very good minimization of the steady-state tracking 
error and the peak at intermediate frequencies, which remains small, 
leads to a good robustness with respect to unstructured inverse mul-
tiplicative uncertainties. For the model-matching sensitivities ( )sM
, the small gains, in particular at intermediate frequencies, show a 
good target model following. For the control sensitivities ( )sKS  that 
present a peak around the desired closed-loop system bandwidth 

,cφω , those possess a good roll-off from the intermediate frequencies 
avoiding large controller gains and limiting the control bandwidth, and 
hence maintaining moderate actuator usage. Finally, for the comple-
mentary sensitivities ( )sT , the low-frequency gains close to 0  dB 
also indicate the excellent steady-state tracking error reduction, the 
absence of a peak at intermediate frequencies denotes robustness 
with respect to unstructured multiplicative uncertainties, and small 
high-frequency gains help with measurement noise attenuation.

Open-loop shaped plant
A nominal RO open-loop shaped plant S 2 1( ) = ( ) ( )KG s W G s W s , 
which is illustrated in Fig. 8, is here defined by breaking the closed-
loop system of Fig.  6 at the level of the tracking error ( )e sφ , as 
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Figure 6 – Structure of the nose position PI-P controller ( )sC
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Figure 7 – Frequency responses of the position loop target (red) and shaped (magenta: FO, blue: RO) closed-loop transfer functions related to the: (a) tracking 
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explained in Subsection "H∞ Loop-Shaping Controller Design Meth-
odology". The gain of S ( )G s  (blue), along with that of a similar FO 
open-loop shaped plant built with the closed-loop system containing 
the FO controller (magenta), are shown in Fig. 9 and compared to the 
initial open-loop system R, ( )uF sφ  (black). The RO and FO open-loop 
shaped plants have close gains with desired properties, and possess 
crossover frequencies larger than that of the open-loop system denot-
ing a faster system response obtained thanks to open-loop shaping. 
Finally, the very good value max = 0.5942ε  is achieved for the maxi-
mum stability margin associated with S ( )G s .

2DoF NLCF H∞ Robust Stabilization

A 2DoF fixed structure and reduced order controller f ( )sφ ∞K , which 
is calculated for the open-loop shaped plant S ( )G s  depicted in Fig. 8 
using the linear controller design setup of Fig. 4, here comprises a 
robustifying gain Kφ ∞  and an injection 1st-order lead-lag filter f ( )K sφ  
with time constants lead

fφτ  and lag
fφτ  and defined as: 

	 ( )
lead
f

f lag
f

1
=

1
s

K s
s

φ
φ

φ

τ
τ

+
+

	 (31)

The target system ,r ( )T sφ  is used again for NLCF H∞ robust stabi-
lization, and controller tuning using η  =  0.1 gives the reasonable 
performance index RO2 = 1.8473γ . The actually achieved stabil-
ity margin RO2 RO2= / = 0.5487ε γ1   is excellent and close both to 
the stability margin FO2 FO2= / = 0.5933ε γ1   obtained with a robus-
tifying FO 2DoF controller and to the very good maximum stability 

margin max = 0.5942ε . Consequently, the degradation of the low and 
high-frequency gains of the initial open-loop shaped plant S ( )G s  is 
very limited.

The complete external nose-channel position 2DoF structured con-
troller ( )sφK  of Fig. 5 is obtained by combining the PI-P controller 

( )sC  used for open-loop shaping, along with the 2DoF robustifying 
RO controller f ( )sφ ∞K , as illustrated in detail in Fig.  10. A static 
pre-filter scKφ  is added after robust stabilization, in order to ensure 
a unitary steady-state gain for the closed-loop transfer function 
between the reference f,c ( )sφ  and the output f ( )sφ  signals, given 
the integral action in the PI-P controller. This pre-filter is obtained 
as follows: 

	
( )sc

f =0

=
s

K
K

K K s
φ

φ
φ φ

∞

∞ +
	 (32)

The control signal f,c ( )p s  is given by: 

	
( ) ( ) ( ) ( ){ } ( )

( ) ( ){ } ( )
f,c f sc f,c

f

= p e

p e

p s K s K s K s K K s

K s K s K K s

φ φ φ φ φ

φ φ φ φφ

φ

φ

∞

∞
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− +
 	 (33)

The singular value of the complete nose position 2DoF RO controller 
( )sφK  (green) possesses a limited bandwidth with a good roll-off at 

high frequencies, as shown in Fig. 11. It also remains close to the sin-
gular values of the PI-P controller used for open-loop shaping (black), 
and of a 2DoF controller built with the PI-P and the robustifying 2DoF 
FO controllers (magenta).
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Finally, Figs. 12a, 12b give the step responses for the transfer func-
tions of the complete nose position control loop of Fig. 10, which 
are related to the output f ( )tφ  and voltage e ( )V t  (green), for a step 
amplitude of π rad corresponding to the maximal value potentially 
taken by f,c ( )tφ  at the beginning of the projectile flight guided phase. 
In Fig. 12a, the output-related time response follows very well the tar-
get system response (red), contrary to that of a closed-loop system 
obtained with the open-loop shaped plant S ( )G s  and a 1DoF robusti-
fying controller (blue). Hence, the time performance initially obtained 
for the closed-loop system used for open-loop shaping (black) is 
perfectly recovered. The use of the robustifying 2DoF FO controller 
does not give satisfactory performance results. In Fig. 12b, the volt-
age e ( )V t  applied to the coaxial motor remains reasonable.

Robust Stability Analysis

The preceding complete nose position autopilot is tested for robust sta-
bility, first with respect to an NLCF uncertainty block [ ( ), ( )]N Ms s∆ ∆  , 
using the robustness criterion of the H∞ loop shaping design proce-
dure. The estimated size ε = 0.0627 of this unstructured uncertainty, 
which corresponds to the various uncertain parameters considered 
in the nose-channel dynamics linear model of Eq.  (12), verifies 

RO2 = 0.5413ε ε≤  and hence robust stability is guaranteed1.

Robust stability is also tested by applying the µ-analysis theory 
tools [41, 30] to the uncertain closed-loop system 

f f ,c
( ) =sφ φ

T  
l[ ( ), ( )]K s sφ
 P K  associated with the nominal closed-loop model of 

Fig. 10. The uncertain open-loop augmented plant ( )K sP  enclosing 
all of the real parametric uncertainties can be written as the u-LFT of 
a nominal open-loop system ( )K s∆P  and of a stable, diagonal, real, 
normalized parametric perturbation ∆  as:

	 u( ) = [ ( ), ]K Ks s∆P P  ∆ 	 (34)

with:

{ }a b m v1 1 1 1 1 1= diag , , , , , : 1,K K K K L R i iδ δ δ δ δ δ δ δ  ≤ ∈       ∆ 	(35)

1	 It is worth noting that a good robustness to coprime uncertainty to the open-shaped 
plant S ( )G s  of Fig. 8 does not necessarily lead to good robustness margins at the input 
and outputs of the actual nominal control dynamics plant R, ( )u sG  given by Eqs. (23), 
(24), the latter plant being contained in the system R, ( )uF sφ  given by Eq. (25). Satisfac-
tory multi-loop disk gain and phase margins [4] are, however, obtained here at the actual 
plant input ( 10.4= ±MDG dB and 56.4= ±MDP °) and outputs ( 3.7= ±MDG dB and 

24.1= ±MDP °).

The uncertain closed-loop system 
f f ,c

( )sφ φT  can hence be obtained as 
the following l-LFT: 

	
( ) ( )

( ) ( ) ( ) ( )
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s s

s s s s
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∆
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 + − 

T N

N N N N

 ∆

∆ ∆ 
 	(36)

where the nominal system ( )K s∆N , internally stabilized by the control-
ler ( )sφK , is given by: 

	 ( ) ( ) ( )l= ,K Ks s sφ
∆ ∆  N P K 	 (37)

The only source of instability in the uncertain closed-loop system 
of Eq. (36) can originate from the feedback term ,11 1[ ( ) ]K s∆ −−N ∆  
between the stable systems ,11( ) = ( )K Ks s∆ ∆M N  and ∆. Robust sta-
bility (RS) of the uncertain closed-loop system with respect to the 
uncertainty ∆ is guaranteed if and only if:

	 ( ) < 1,K jµ ω ω∆ +
∆  ⇔ ∀ ∈ M RS 	 (38)

where ( )µ∆ ⋅  is the structured singular value (SSV).

Upper and lower bounds for the SSV are numerically calculated over 
a frequency grid for the levels of parametric uncertainties presented 
in Subsection "Roll-Channel" of Part "Airframe Modeling". Given that 
the upper bound is always smaller than 1, as seen in Fig. 13, RS is 
confirmed with an important stability margin here.
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Figure 12 – Closed-loop step responses: (a) roll angle f ( )tφ , (b) actuator input voltage e ( )V t  
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Two additional linear simulation results are given in Figs. 14, 15. The 
first figure depicts nose-channel output angle f ( )tφ  and actuator volt-
age e ( )V t  step responses of 200 uncertain closed-loop system ran-
dom samples, from which robust stability can be verified again and 
no excessive input voltage to the coaxial motor is demanded. The 
second figure shows step responses related to the output roll position 
and rate f f,f( ), ( )t p tφ , internal loop input roll rate f,c ( )p t , and voltage 

e ( )V t , given actuator input transmission delays of up to 9 ms, i.e., 
around 5 times a rate of 1/600 s with which the control signal could 
be sampled. Stability is preserved, the degradations appearing on the 
different time responses remain more or less limited with respect to 
the nominal case, and there is no actuator saturation. Hence, the nose 
position control loop can handle realistic delays of up to 3 times the 
control signal sampling rate [32], i.e., 5 ms.

Pitch/Yaw-Channel Autopilot

Augmented Plant for Controller Synthesis

Autopilot design for the pitch/yaw-channel dynamics linearized at any 
operating point is based on the open-loop actuator/projectile/sensor 
dynamics q-LPV model described in Subsection "Pitch/Yaw-Channels" 
of Part "Airframe Modeling". The load factor output measurements are 
actually provided at the projectile nose, and hence those do not match 
the necessary feedback signals, which must be available here at the 
projectile CM, since the nonlinear force dynamic equations are written 
for this point. The load factor feedback signals are calculated at the CM 
through a transformation based on an inverse Grubin transformation 
[40] and using the measured load factor and angular rate outputs. The 
angular rate measurements remain valid for any point of the projectile. 
The transformation system PY( , )n sρ

ωT ρ , which calculates in the non-
rolling frame B′ CS at the CM the load factors zy, z, y,( ) = [ ( ) ( )]s n s n sε ε ε

Τn    
and angular rates , ( ) = [ ( ) ( )]qr s q s r sε ε ε

Τ  ω , from the measurements 

zy, ,m z, ,m y, ,m( ) = [ ( ) ( )]s n s n sε ε ε
Τn  and , ,m ,m ,m( ) = [ ( ) ( )]qr s q s r sε ε ε

Τω  
obtained in the nose frame Bf  CS, is defined as:
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with the matrix ( )fφT  given in Eq. (6). The diagonal parameter- 
dependent 1st-order approximated derivative filters d, PY( , ) =sωW λ  

d, PY d, PYdiag[ ( , ), ( , )]W s W sω ω−λ λ  are applied to the angular rates, 
and the identical diagonal parameter-dependent 2nd-order low-pass 
filters b, PY b, PY b PY b PY( , ) = ( , ) = diag[ ( , ), ( , )]n s s W s W sωW Wλ λ λ λ , 
which are obtained as the product of two 1st-order systems, are used 
for measurement noise attenuation. Tuning the parameters of the pre-
vious filters is critical due to their significant influence on closed-loop 
system performance and robust stability.

Finally, controller synthesis following the strategy presented in Subsec-
tion "H∞ Loop-Shaping Controller Design Methodology" is performed 
with an augmented open-loop uncertain plant PY PY( , )sG λ , which is 
composed of the simplified q-LPV model of the uncertain actuator/
projectile/sensor dynamics parameterized by PY = [ ]V h Τλ , and of 
a simplified transformation system PY( , )n sλ

ωT λ  obtained by imposing 
f f,f( , ) = (0,0)pφ  in Eqs.  (39). The multivariable plant PY PY( , )sG λ , 
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Figure 14 – Uncertain closed-loop system step responses: (a) roll angle, (b) actuator voltage
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having the actuator commands mn, ,c ( )sεδ  as inputs and the feedback 
signals zy, ,( ), ( )qrs sε ε

 n ω  as outputs, contains zeros in its SISO load 
factor transfer functions that are potentially NMP as a function of 
the operating condition. These zeros are, however, sufficiently fast 
compared to the desired closed-loop bandwidth, contrary to those 
of the projectile pitch/yaw-channel dynamics (see Subsection "Pitch/ 
Yaw-Channels" of Part "Airframe Modeling").

Open-Loop Shaping

The various systems and signals, appearing in the H∞ linear controller 
design diagram of Fig. 3 used here for defining at any fixed synthesis 
point PYλ  a pitch/yaw-channel open-loop shaped plant,  are explicitly 
presented. The system to control ( )C sG  is equal to the augmented 
plant PY PY PYPY PY, PY,( , ) = [ ( , ), ( , )]ns s sω

Τ
  

G G Gλ λ λ  with input 
mn, ,c( ) = ( )s sεu δ  and outputs 1 zy, 2 ,( ) = ( ), ( ) = ( )qrs s s sε ε

 y n y ω . The 
target model r ( )sT , with input c zy, ,c z,c y,c( ) = ( ) = [ ( ) ( )]s s n s n sε

Τy n  
and output r zy, ,r z,r y,r( ) = ( ) = [ ( ) ( )]s s s sε

Τy n n n , is a block-diagonal 
2nd-order system ,r ,r ,r( ) = diag[ ( ), ( )]n n ns T s T sT  with a natural fre-
quency ,r = 4.9nω rad/s  and a damping ratio ,r = 0.79nξ  giving a 
settling time ,s = 0.751nt s for a 2% envelope around steady state. 
The obtained pitch/yaw-channel closed system response is hence 
sufficiently fast without saturating the canard actuators, while being 
sufficiently slow with respect to the nose-channel position control 
loop response.

The parameter-dependent model-matching PY( , ) =M sW λ  
PY PYdiag[ ( , ), ( , )]M MW s W sλ λ  and the performance ( ) =S sW

diag[ ( ), ( )]S SW s W s  weights are defined as for nose position auto-
pilot design, whereas the control signal weight PY( , ) =KS sW λ

PY PYdiag[ ( , ), ( , )]KS KSW s W sλ λ  is: 

	 ( ) ( ) ( )
( )

2
1/2

PY PY
PY

1/2
PY

, = KS KS
KS

KS KS

s k
W s

s

ω

ε ω−

 +
 
 + 

λ λ
λ

λ
	 (40)

The inverse of PY( , )KSW s λ  is equal to the product of two identi-
cal 1st-order low-pass filters with a steady-state gain 1/2

PY( )KSk − λ , a 
bandwidth adjusted with PY( )KSω λ , and a high-frequency negative 
real zero ensured by > 0KSε  and making the weight proper and 
stable. For any synthesis point PYλ , the steady-state gain 1

PY( )KSk − λ  
of PY( , )KSW s λ  is conditioned by the low-frequency minimal singu-
lar value of the synthesis system: PY PYPY( ) [ (0, )]KSk σ



λ λG . The 
frequency PY( )KSω λ , which is initially set to the target closed-loop 
system bandwidth ,r = 4.9nω rad/s, can be increased for specific 
operating conditions where a faster control signal is needed, such 
as, for example, at a low airspeed/high altitude flight point. Finally, 
the output signal weight ( ) = diag[ ( ), ( )]T T Ts W s W sW  is defined as: 

	 ( )
( )

2 2
,r ,r ,r

22 1
,r

2
=

1
n n n

T

n T

s s
W s

s

ξ ω ω

ω ε −

+ +

+
	 (41)

The filter ( )TW s  is the result of inverting the target system and add-
ing two high-frequency negative real poles > 0Tε  to render it proper 
and stable. The output signal weight leads to attenuating noise on the 
feedback output load factors zy,ε

n  and helps both the performance 
filter to minimize the steady-state error ( )n se  and the model-matching 
filter to reduce the difference between the target and shaped closed-
loop system at intermediate frequencies.

Controller synthesis results
The PI-P-P fixed and RO structure chosen for the controller ( )sC  of 
Fig. 3 comprises four blocks, as shown by Fig. 16: a tracking error 
PI servo-controller PY( , )ne sK λ  containing the gain matrix pi

PY( )neK λ , 
two output feedback regulation proportional controllers PY( )nnK λ  and 

PY( )ωK λ  applied to the output load factors and angular rates, respec-
tively, and finally a block-diagonal roll-off and actuator protection filter 

( )sδK  composed of 1st -order low-pass systems. The control signal 
zy, ,c ( )sεδ  is given by:

( ) ( ) ( ) ( )
( )
( )
( )

zy, ,c

zy, ,c zy,

,

= , ,ne ne nn

qr

s
s s s s s

s

ε
λ λ λ λ

ε δ ω ε

ε

 
  − − −   
  





δ
ω

K K K K K
n
n  	(42)

where, i.e., PY( ) = ( , )ne nes sλK K λ , and with:

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

p,11 p,12
PY PY

PY
p,12 p,11
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The actual controls mn, ,c ( )sεδ  sent to the canard actuators are com-
puted from the virtual ones zy, ,c ( )sεδ  using the matrix f( )φT  of Eq. (6). 
The preceding controller structure, including only gains and simple fil-
ters with particular symmetries, permits the designer to significantly 
reduce interpolation and implementation efforts and costs compared 
to a FO controller. The eight controller gains are tuned for any synthe-
sis point, whereas the roll-off filter bandwidth remains fixed.
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Figure 16 – PI-P-P structure of the pitch/yaw-channel linear controller 
PY( , )sC λ
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The RO and fixed-structure controller synthesis frequency results 
(blue) for a fixed critical low airspeed/high altitude operating point are 
illustrated in Figs. 17a-17d and compared to the results obtained with 
a FO controller (magenta). The various shaped closed-loop transfer 
functions verify the constraints imposed by the weighting filters (red), 
and hence possess the desired properties as in the case of nose posi-
tion autopilot design (see Figs. 7a-7d).

Open-loop shaped plant
A nominal RO open-loop shaped plant S 2 1( ) = ( ) ( )Ks s sG W G W  
defined by breaking the computed closed-loop system before the 
tracking error PI servo-controller is shown in Fig. 18. Figure 19 gives 
the singular values for the RO open-shaped plant (blue), for a FO one 
that is similarly defined using the previously calculated FO control-
ler (magenta), and for the initial airframe load factor open-loop sys-
tem PYPY, ( , )n s



G λ  (black). The RO and FO open-loop shaped plant 
singular values are close to each other, with desired properties. In 
addition, open-loop shaping leads to significantly dampening (more 
than 60 dB) the precession and nutation modes. Finally, the maximum 
stability margin calculated for the RO S ( )sG  plant is very good, with 

max = 0.6131ε .

2DoF NLCF H∞ Robust Stabilization

A 2DoF H∞ controller f ( )n s∞K  computed with the loop-shape of 
Fig. 18 using the controller design diagram of Fig. 4 is chosen with the 
parameter-dependent RO and fixed structure robustifying static part 

PY PY PY( ) = diag[ ( ), ( )]n n nK K∞ ∞ ∞K λ λ λ  and injection dynamic part 
f PY f PY f PY( , ) = diag[ ( , ), ( , )]n n ns K s K sK λ λ λ . The latter is composed 

of two identical 1st-order lead-lag systems f PY( , )nK s λ  with a steady-
state gain f PY( )nk λ  and time constants lead lag

f PY f PY( ), ( )n nτ τλ λ : 

	 ( ) ( ) ( )
( )

lead
PYf

PY PYf f lag
PYf

1
, =

1
n

n n
n

s
K s k

s

τ

τ

+
⋅

+

λ
λ λ

λ
	 (44)

The parameters to be tuned are the controller PY( )n∞K λ  and the 
steady-state gain and time constants of the injection filter PYf ( , )n sK λ . 
For the same target model ,r ( )n sT  as that used for open-loop shaping 
in the previous Subsection "Open-Loop Shaping" and = 0.1η , con-
troller parameter tuning at the critical low airspeed/high altitude oper-
ating point gives the very good performance index RO2 = 1.7588γ . The 
excellent stability margin RO2 RO2= 1/ = 0.5721ε γ   remains close to a 
stability margin FO2 FO2= 1/ = 0.6114ε γ   offered by a robustifying 2DoF 
FO controller and to the maximum stability margin max = 0.6131ε . 
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It can be then noticed, using the RO and FO actual open-loop shaped 
plants PYRO ( , )K sG K λ  and PYFO ( , )K sG K λ 2, which are obtained at 
system ( )K sG  output and plotted in Fig. 20a, that the degradations at 
low and high frequencies in the initial open-loop shaped plant due to 
the H∞ controller are very small.

The complete 2DoF RO and fixed structure obtained at any synthesis 
point for a pitch/yaw-channel linearized dynamics controller is shown 
in Fig. 21. It particularly comprises a parameter-dependent diagonal 
static pre-filter PY PY PYsc sc sc( ) = diag[ ( ), ( )]n n nK KK λ λ λ , which is 
added after robust stabilization to ensure a unitary steady-state gain 
for the closed-loop transfer function between the reference zy, ,c ( )sεn  
and tracking output zy, ( )sε

n  signals, given the integral action in the 
PI controller. The expression of the diagonal components PYsc ( )nK λ  is 
similar to Eq. (32). The controller fixed structure, which remains sim-
ple and easy to interpolate and implement, generates the virtual con-
trol signal zy, ,c ( )sεδ  given by Eq. (45), in which, i.e., PY= ( )λ

ω ωK K λ . 
The actuator commands mn, ,c ( )sεδ  are computed again using Eq. (6).

2	 RO and FO actual loop-shapes: RO 1 2=K K n∞G K G W K W  and FO
FO 1 2=K K n∞G K G W K W .

Figure 20b shows the singular values for the complete RO controller 
of Fig. 21 (green), for a complete FO controller containing the robus-
tifying 2DoF FO controller instead (magenta), and for the PI-P-P con-
troller of Fig. 16 used for open-loop shaping (black). All of the singular 
values remain close to each other and hence the good properties of 
the PI-P-P controller (low-frequency integral action, high-frequency 
sufficient roll-off, reasonable bandwidth) are well preserved.

Finally, Figs.  22a-22d illustrate the step responses for the transfer 
functions of the pitch/yaw-channel complete RO linear control loop 
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that are related to the load factor output zy, ( )sε
n  (green in Fig. 22a), 

the angular rate output , ( )qr sε
ω  (green in Fig. 22b), the control sig-

nal mn,c, ( )sεδ  (green in Fig.  22c), and the control signal derivative 
mn,c, ( )sε
δ  (green in Fig.  22d). The sufficiently large reference step 

amplitudes used on the pitch and yaw-axes are coherent with nonlin-
ear simulations. In Fig. 22a, the pitch/yaw-channel load factor-related 
responses match the target system responses (red), and hence the 
time performance in terms of reference tracking (solid lines) and load 
factor output decoupling (dashed lines) obtained before robust stabi-
lization (black) is very well recovered using the 2DoF RO structure for 
the robustifying controller, as with the robustifying 2DoF FO controller 
(magenta). The use of a robustifying 1DoF RO controller is clearly 
not satisfactory (blue). In Fig. 22b, the output angular rates used for 
feedback remain small and help to enhance closed loop damping. In 
Figs. 22c and 22d, the control signals behave well without any satura-
tion nor fast variations.

Robust Stability Analysis

The pitch/yaw-channel linear controller of Fig. 21 is tested for robust 
stability at the critical operating condition with respect to the projec-
tile dynamics aerodynamic parametric uncertainties, as well as the 
unstructured uncertainties representing neglected dynamics in the 
actuator and sensor models. As for the nose position autopilot design, 
robustness is first assessed using the criterion of the H∞ loop-shap-
ing design procedure. The estimated size = 0.3424ε  of NLCF pertur-
bations corresponding to all of the aforementioned modeling uncer-
tainties remains smaller than the stability margin RO2 = 0.5685ε , and 
hence robust stability is guaranteed.

The μ-analysis theory presented in Subsection "Robust Stability 
Analysis" of the previous Section "Roll-Channel Autopilot"  is also 
applied to the uncertain pitch/yaw-channel linear closed-loop system, 
in which the aerodynamic parametric uncertainty block nω∆  similar 
to Eq. (35), along with the unstructured actuator ( )sδ∆  and sensor 

,m ,m( ), ( )n s sω∆ ∆  perturbation blocks, are regrouped in a single block-
diagonal ,m ,m( ) = diag[ ( ), , ( ), ( )] , ( ) 1n ns s s s sδ ω ω ∞ ∞

∈ ≤∆ ∆ ∆ ∆ ∆ ∆H . 
Figure 23 gives the upper and lower SSV bounds calculated over a fre-
quency grid, which remain smaller than one and thus indicate robust 
stability with a good stability margin.

Figures 24a-24f present pitch/yaw load factor, actuator angle and rate 
time responses for 200 uncertain closed-loop system random sam-
ples, using pulse signals of constant amplitude for the reference pitch/
yaw-channel load factors. Robust stability of the closed-loop system 
can be verified, and performance in terms of reference tracking and 
load factor output decoupling is relatively well ensured, with no canard 
actuator saturation despite the various sources of modeling uncertainty.
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Finally, robust stability of the closed-loop system is verified with respect 
to transmission delays injected simultaneously at each canard actua-
tor input. For delays of up to 30 ms, i.e., 18 times a rate of 1/600 s with 
which the control signal could be sampled, Figs. 25a-25f show deg-
radations, on the different time responses considered, which become 
significant only for the biggest delays. However, for realistic delays of 
up to 3 times the control signal sampling rate [32], i.e., 5 ms, closed-
loop system stability and performance properties are well maintained.

Gain-Scheduled Nonlinear Controller

The development of a gain-scheduled nonlinear controller valid for the 
entire operating domain PY

λΓ  of the projectile parameter-dependent 
pitch/yaw-channel dynamics permits the designer to suitably adapt 
the control signal level to changes occurring in these dynamics, 
contrary to a single linear controller, which would be insufficiently 
robust to ensure desired stability and performance properties for all 
operating points. Linearly interpolating the eight tuned parameters of 
a set of controllers, each of which possesses the same structure of 
Fig.  21 computed by repeating the design procedure of the previ-
ous subsections over a grid of equidistant synthesis points covering 
the trimming envelope PY

λΓ , produces, for the simplified q-LPV model 
PY PY( )λ λ  of Subsection "Pitch/Yaw-Channels" in Part "Airframe 

Modeling", a gain-scheduled controller [18]. Implementing directly 
its structure with the projectile pitch/yaw-channel nonlinear dynam-
ics provides the gain-scheduled nonlinear controller of Eq. (46) in 
which, i.e., PY= [ ( )]tλ

ω ωK K λ . The time-dependent scheduling 
vector PY ( ) = [ ( ) ( )]t V t h t Τλ  is assumed to be measurable as well as 
slowly-varying for preserving closed-loop system stability. The actua-
tor commands mn,c ( )sδ  are computed again using Eq. (6).

The transformation system PY( , )n sρ
ωT ρ  of Eqs. (39) is also directly 

implemented with the nonlinear system dynamics in order to compute 
for any operating point the necessary feedback signals at the projec-
tile CM, depending on the simultaneously controlled nose angle and 
rate. The various parameters of the derivative d, PY( , )sωW λ  and low-
pass b, PY( , )n sW λ  and b, PY( , )sωW λ  filters are linearly interpolated 
using the selected values for the design point grid.

The design of 1886 linear controllers is performed for the same target 
performance level demanded throughout the entire operating domain. 
Both the derivative and low-pass filters contained in the transforma-
tion system and the model-matching and control signal weighting 
filters included in the linear controller design setup of Fig.  3 used 
for open-loop shaping are automatically and smoothly adapted. The 
PI-P-P controller gain surfaces obtained as a function of the projectile 
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airspeed V and altitude h are given in Figs. 26, 27, whereas the val-
ues of the different parameters of the pre-filter and of the robustify-
ing 2DoF H∞ controller, which remain almost constant over the flight 
envelope, are not shown for brevity purposes. The reasonable values 
of the PI-P-P controller gains vary relatively smoothly3, hence aiding 

3	 Whereas the proposed controller design procedure provides gain surfaces which 
are already relatively smooth, a subsequent smoothing could be applied to the gains in 
order to obtain smoother variations.

the obtainment of a good continuity of the gain-scheduled control 
signal during transitions between synthesis operating points, which is 
desirable for preserving the performance and robustness properties 
[19, 27].
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Figures 28a, 28b illustrate for all synthesis points the closed-loop pitch/
yaw load factor output-related step responses (blue, green) indicating 
that the reference tracking and output decoupling local performance 
objectives specified by the reference dynamics (red) are very well met 
over the trimming envelope. Figures 29a, 29b indicate that closed-loop 
system local robust stability is proved at each design point using both 
the robustness criterion of the H∞ loop-shaping design procedure and 
μ-analysis theory. For the considered modeling uncertainty, the inequal-
ities PY RO2 PY( ) < ( )ε ελ λ  and PYmax [M ( , )] < 1,K jω µ ω ω∆ +

∆ ∀ ∈λ   
are verified for any synthesis point PY PY

λ∈λ Γ .

The nonlocal stability and performance properties provided by the 
gain-scheduled controller are now verified using the simplified q-LPV 
model PY PY( )λ λ  proposed in Subsection "Pitch/Yaw-Channels" of 
Part "Airframe Modeling". The latter is simulated during 28 s along a 
parameter vector test trajectory PY ( )tλ  covering the flight envelope 

PY
λΓ , as shown in Fig. 30. The altitude trajectory originates from a 

ballistic simulation of 28 s between the apogee and the impact point, 
whereas the airspeed is a chirp sinusoidal signal whose frequency 
increases from 0.01 Hz to 0.1 Hz at a linear rate with time during 
15 s and then at the same rate up to 28 s. The simulation time results 
obtained with reference pitch/yaw load factors taken as pulse signals 
of constant amplitude are presented in Figs. 31a-31d. Performance 
in terms of reference tracking and decoupling is satisfactory and the 
pitch and yaw actuator angular position and rate signals behave well.

Proportional Navigation Guidance Algorithm

This part describes the gravity-compensation pure proportional 
navigation (PPN) guidance algorithm, which generates the suitable 
reference pitch/yaw-channel load factor orders commanded to the 

autopilot in order to steer with accuracy the projectile to a given tar-
get. The load factor commands expressed in the non-rolling frame CS 
are given by [40]:

	
[ ] [ ]

[ ]

B B B E EOE E
B BBE

c E
=

N
′ ′ ′

′    × −     
Tv g

n
g

ω
	 (47)

The vector OE B[ ] ′ω  is the line of sight O rate of change with respect to 
the inertial frame E and is defined as:

	 [ ]
[ ]

[ ]

EE E
B B E TB TBOE

2E
TB

=
′ ′  ×    ω T

s v

s
	 (48)

where the line of sight vector E E E
TB TE BE[ ] = [ ] [ ]−s s s  is the differen-

tial inertial position vector between the projectile CM B and the target 
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CM T positions, which are considered as perfectly known, and the 
differential velocity vector E E E E E E

TB T B[ ] = [ ] [ ]−v v v  of the projectile CM 
B with respect to the target frame T is the difference between the 
inertial projectile and target velocity vectors.

The PPN constant is here set to N = 2.5, since this value leads to 
reasonable amplitudes for the reference load factors, and to smaller, 
slower-varying and more homogenous over time amplitudes for the 
canard actuator control signals. Hence, the risk of actuator saturation 
is limited, while a very good impact accuracy is maintained.

The gravitational acceleration vector is given by E[ ] = [0 0 ]g Τg  in 
the inertial CS and it is expressed in the non-rolling frame CS using the 
transformation matrix B E[ ] ′T , which is defined as follows as a function of 
the projectile pitch and yaw Euler angles assumed as perfectly known:

	 [ ]B E
cos cos cos sin sin

= sin cos 0
sin cos sin sin cos

θ ψ θ ψ θ
ψ ψ

θ ψ θ ψ θ

′
− 

 − 
  

T 	 (49)

There exists an alternative true PN (TPN) guidance law [39, 40] 
which possesses a similar expression to that of the PPN law. The 
difference comes from the use in Eq. (47) of the differential velocity 
vector expressed in the non-rolling frame CS E B

TB[ ] ′v  instead of the 
projectile CM velocity vector E B

B[ ] ′v . A PPN guidance law generates a 
commanded load factor vector that is normal to the inertial velocity 
vector E E

B[ ]v , whereas a TPN guidance law orders a load factor vector 
normal to the line of sight, i.e., normal to the differential inertial veloc-
ity vector E E

TB[ ]v  . However, both PPN and TPN laws yield identical 
commanded load factors in the case of a non-maneuvering target.

Nonlinear Simulation Results

This part proves the effectiveness of the guidance & gain-scheduled 
nonlinear control (G&C) system designed for an STT canard-guided 
dual-spin projectile, when it is implemented with the complete 7DoF 
nonlinear model of Part  "Airframe Modeling" augmented with the 
transformation system, throughout various simulation scenarios of a 
complete guided flight. Such a guided flight here comprises two main 

phases: the ballistic phase (from launch to a few seconds after the 
projectile trajectory apogee) and the guided phase (from the end of 
the ballistic phase to the projectile impact).

The ballistic phase ( guid0 <t t≤ ), where no guidance func-
tion is engaged, starts at projectile launch with a muzzle velocity 
V0  =  803  m/s, and gun barrel pointing 0 899.9 = 50.62θ  mil ° 
and azimuth 0 2026.7 = 114ψ + + mil ° (south-easterly direction). 
The ballistic phase comprises three subphases: a first starting sub-
phase ( start0 < = 20t t≤ s), a second nose rate reduction subphase 
( start switch= 20 < = 40t t t≤s s), and a third nose position reset sub-
phase ( switch guid= 40 <t t t≤s ). During the first subphase, the nose 
embedded electronic components (G&C modules, actuators and sen-
sors) are started only a few seconds after launch, in order to avoid 
their potential degradation caused by the extreme launch accelera-
tions. Large disturbances appearing in different system signals are 
also sufficiently reduced during this first subphase. During the second 
subphase, the high roll rate of the nose initially fixed with the projectile 
body is reduced to zero using the rate autopilot. During the third sub-
phase, the nose angle is reset to f = 180φ ° by the position autopilot 
and the steering canards are deployed at eng = 40.5t s .

The guided phase ( guid impactt t t≤ ≤ ) starts after the trajectory apogee, 
when the projectile arrives at less than 10 km from the target. With the 
projectile maneuvering with an STT mode for trajectory correction, the 
nose angle is permanently regulated about f = 180φ ° from guidt . The 
pitch/yaw-channel PPN guidance function, which is however engaged 
only as from guid 3t + s when the large disturbances on the feedback 
signals due to canard deployment are sufficiently reduced, actively 
directs the projectile with accuracy towards a ballistic impact point.

Nonlinear simulation results are given in Figs. 32 and 33, considering 
nominal initial conditions (IC), no wind and no modeling uncertainty. 
Figures 32a-32f illustrate on the left for the pitch/yaw-channels the 
tracking load factors and the canard actuator deflection angles and 
rates, whereas on the right the nose roll-channel controlled angle, 
the angular rate and the input voltage to the coaxial motor are given. 
Figures  33a-33b show the aerodynamic angles AoA and AoS and 
their derivatives with respect to time. During the ballistic phase 
(0 49t≤  s), the nose roll rate is correctly reduced to zero from 

Time (s) Time (s)
0 05 510 1015 1520 2025 25

Lo
ad

 fa
ct

or
 (g

)

An
gl

e 
(°

)

0.2
0.15

0.1
0.05

0
–0.05

–0.1

30

20

10

0

–10

–20

z, ,c ( )n tε z, , r ( )n tε z, ( )n tε


m, ( )tεδ n, ( )tεδ

	 (a)	 (b)

Time (s) Time (s)
0 05 510 1015 1520 2025 25

Lo
ad

 fa
ct

or
 (g

)

An
gl

e 
ra

te
 (°

/s
)0.1

0.05

0

–0.05

40
30
20
10

0
–10
–20

y, ,c ( )n tε y, , r ( )n tε y, ( )n tε


m, ( )tεδ n, ( )tεδ

	 (a)	 (b)

Figure 31 – Closed-loop simulations: (a) pitch load factor, (b) yaw load factor, (c) pitch/yaw actuator angles, (d) pitch/yaw actuator angular rates
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start = 20t s (Fig. 32d), and the nose angle is then well reset to the 
position f = 180φ ° from switch = 40t s  (Fig.  32a), despite the distur-
bances of Eq. (14) appearing in the nose position and rate dynamics. 
In addition, the voltage applied to the coaxial motor never exceeds the 
saturation value e,sat = 60V V  and behaves almost always smoothly 
(Fig. 32f), hence aiding in saving energy.

During the guided phase (49 s  t  83 s), the nose position autopilot 
keeps on performing well (Figs. 32b, 32f) and does not inject any 
perceptible lag into the controlled pitch/yaw-channels, for which the 
commanded load factor tracking starting at t  52 s is excellent even 
for fast reference load factors sent by the PPN guidance loop at the 
end of the flight (Fig. 32a). The ballistic impact accuracy for a range 
of more than 20 km is very good, using here a perfect navigation, as 
the range and crossrange errors are both smaller than 25 cm.

The STT projectile globally maneuvers more in the vertical plane 
rather than in the horizontal plane, as shown in Figs. 32c and 32e, 
where the pitch canard actuator is the most solicited. However, the 

canard actuator deflection angles and rates remain all the time quite 
far from the saturation limits sat = 30δ ± °  and sat = 100δ ± °/s.

The large disturbances caused on the load factor output signals by 
canard deployment at teng = 40.5 s are well rejected. The gain-scheduled 
nonlinear controller also provides a very good nonlocal performance, 
although the aerodynamic angles illustrated in Fig. 33a take values more 
or less far from the zero values imposed in the trimming vector for com-
puting the set of linear controllers. Hence, the obtained performance is 
robust with respect to the resulting uncertainty on the trimming vector. 
In addition, performance is well maintained even though the pitch/yaw-
channel dynamics system does not actually operate at equilibrium, as 
seen from the non-zero values of ,α β  given in Fig. 33b.

Three additional nonlinear simulation scenarios are finally addressed. 
The first scenario considers uncertainty on the launch IC's through 
errors placed on the muzzle velocity V0 and on the gun barrel 
pointing θ0 and azimuth ψ0. The second scenario studies the capa-
bility of the autopilot to reject wind disturbances. The third scenario 
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Figure 32 – Nominal scenario: (a) pitch/yaw load factors, (b) nose angle, (c) pitch/yaw actuator angles, (d) nose angle rate, (e) pitch/yaw actuator angle rates, 
(f) actuator voltage
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Figure 33 – Nominal closed-loop simulations: (a) AoA and AoS, (b) AoA and AoS time derivatives
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evaluates the robustness to the uncertainty modeled in the projectile 
aerodynamic coefficients and in the actuator and sensor dynamics 
(see Part "Airframe Modeling").

Concerning the first scenario, 200 random cases are simulated, in 
which the variables V, θ, ψ are independent, normally distributed, 
random numbers with a mean value equal to their nominal values  
V0 = 803 m/s, θ  899.9 mil, ψ0  +2026.7 mil and a standard 
deviation of 10 m/s for V and of 0.5°  8.9 mil for ,θ ψ . Figure 34a 
illustrates the top view of the various projectile trajectories, where it 
can be seen that the designed G&C system performs well to always 
direct the projectile to the target with good precision and accuracy. 
Figure 34c gives the trajectories for the pitch/yaw-channel control-
ler scheduling vector PY = [ ]V h Τλ . For the flight conditions corre-
sponding to the projectile guided phase, all of the trajectories belong 
to the controller scheduling envelope PY

λΓ .

Concerning the second scenario, the MATLAB/Simulink Horizon-
tal Wind Model 07  is used for a latitude of 47.1° north, longitude
of 2.4° east and altitude covering the interval [0.12000m], at 1 a.m. 
UTC of October 2nd 2015, using an Ap index of 48. As seen from 
the 3D projectile trajectories given in Fig. 34b, even though the wind 
leads to significantly modifying the projectile trajectory compared to 
the no-wind case, the wind disturbances are very well rejected by the 
autopilot and the projectile hits the target.

Concerning the third scenario, 300 trajectories are simulated using for 
each of them independent, uniformly distributed, random values for the 
16 aerodynamic coefficients and the 5 coaxial motor parameters, along 
with random perturbed systems for the pitch/yaw-channel actuator and 
sensor uncertain models. Figure 34d shows that closed-loop system 

robust stability is ensured and that the guidance commands are suc-
cessfully followed, permitting the projectile to hit the target in each case.

Concluding Remarks

This paper deals with the development of guidance and control func-
tions for the roll, pitch and yaw-channels of a 155 mm Skid-To-Turn 
canard-guided spin-stabilized projectile. The complete 7DoF nonlin-
ear and subsequently derived linearized models are addressed, and 
those consider the actual nose-mounted sensor position for modeling 
realism improvement. The application of an H∞ loop-shaping design 
approach provides a linear autopilot for the nose roll-channel, along 
with a gain-scheduled controller for the complete airframe pitch/yaw-
channels. Both separately designed autopilots offer high performance 
and robustness linear properties despite their quite simple fixed and 
reduced order structures. The proposed pure proportional navigation 
guidance and gain-scheduled control scheme is proved to be very 
efficient for hitting a ballistic target with a high level of precision and 
accuracy, through various guided flight scenarios considering nomi-
nal, perturbed or uncertain nonlinear operating conditions.

Future works for autopilot design could focus on developing an anti-
windup control scheme for handling potential actuator amplitude and 
rate saturations. Alternative controller interpolation laws, theoretically 
guaranteeing global closed-loop system stability, contrary to the lin-
ear interpolation technique used here, could also be studied. In addi-
tion, it would be interesting to design a purely LPV controller and 
compare it to the gain-scheduled autopilot proposed here 
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R-RoMulOC is a freely distributed toolbox aimed at making easily available to the 
users various optimization-based methods for dealing with uncertain systems. 

It implements both deterministic LMI-based results, which provide guaranteed 
performance for all values of the uncertainties, and probabilistic randomization-
based approaches, which guarantee performance for all values of the uncertainties 
except for a subset with arbitrary small probability measure. The paper is devoted 
to the description of these two approaches for analysis and control design when 
applied to a satellite benchmark proposed by the CNES, the French Space Agency. 
The paper also describes the modeling of the DEMETER satellite and its integration 
into the R-RoMulOC toolbox as a challenging test example. Design of state-feedback 
controllers and closed-loop performance analysis are carried out with the randomized 
and robust methods available in the R-RoMulOC toolbox.

Introduction

The last decades have witnessed an increase of interest in the area of 
analysis and design of systems in the presence of uncertainty. This is 
due to the continuous development of novel and efficient theoretical 
and numerical tools for robustness (ability of the system to maintain 
stability and performance under large variations of the system param-
eters), see [18] for a recent overview.

In particular, two main paradigmatic approaches have gained popu-
larity. On one side, the worst-case, or deterministic, paradigm is 
aimed at guaranteeing a desired level of performance for all system 
configurations. This approach has largely benefited from the introduc-
tion of the linear matrix inequality (LMI) formalism, which led to many 
important results, enabling a large variety of uncertainty models and 
performance requirements to be tackled. Recently, the correspond-
ing numerical tools have been collected in a Matlab toolbox named 
Robust Multi Objective Control toolbox (RoMulOC) [16]. The toolbox 
provides a variety of functions for describing and manipulating uncer-
tain systems, and for building LMI optimization problems related 
to robust multiobjective control problems. We refer to [18] for and 
extensive review of deterministic and probabilistic methods in robust 
control design and analysis.

The deterministic approach can be seen as "pessimistic", in the 
sense that the guaranteed (and certified) performance is usually 
significantly worse than the actual worst case performance, due to 
unavoidable conservatism of the developed methodologies. This fact 
motivated the introduction of a probabilistic approach [23, 4], which 
consists in testing a finite number of configurations among the infi-
nitely many admissible ones. This approach is said to be "optimistic", 
in the sense that even if a level of performance is valid for all tested 
cases, it may not hold for some of the unseen instances. However, 
rigorous theoretical results, based on large-deviation inequalities, 
have been derived to bound the probability of performance violation. 
This theory has now reached a good level of maturity, and the main 
algorithms have been coded in the Randomized Algorithm Control 
Toolbox (RACT)  [24], which can be freely downloaded from http://
ract.sourceforge.net/pmwiki/pmwiki.php/. This toolbox allows the 
user to define and manipulate various types of probabilistic uncer-
tainties, providing efficient sampling algorithms for the various uncer-
tainty types commonly encountered in robust control. Furthermore, 
it includes sequential and batch randomized algorithms for control 
system design.



Issue 13 - September 2017 - Randomized and Robust Methods for Uncertain Systems
	 AL13-04	 2

It is important to remark that these two paradigms are not in competi-
tion, but rather they represent complementary approaches that pro-
vide additional tools to the systems engineer for the design of control 
systems under uncertainty. Inspired by these considerations, a joint 
effort between the two teams at the core of RoMulOC and RACT has 
been recently carried out, with the aim of merging the features of the 
two toolboxes in an integrated framework. This led to the develop-
ment of R-RoMulOC. The main feature of this toolbox is to allow the 
user to input the system's description only once, using the well tested 
formalism of RoMulOC. Then, both deterministic and probabilistic 
methods can be applied to the same system, efficiently moving from 
a deterministic to a probabilistic description of the uncertainty, by 
simply changing some parameters in the code.

Like the two tools from which it originates, R-RoMulOC is freely dis-
tributed, and can be downloaded from http://projects.laas.fr/OLO-
CEP/rromuloc/. We refer the interested reader to this webpage for a 
detailed list of references to the various worst-case and probabilistic 
methods coded in R-RoMulOC. For a description of the R-RoMulOC  
toolbox, the reader is referred to [5].

In this paper, the effectiveness of the toolbox is shown by introducing 
the modeling of the DEMETER satellite [19] in the R-RoMulOC  tool-
box. Then, we show how the design of state-feedback controllers and 
the analysis of closed-loop performance can be performed with the 
randomized and robust methods available in the R-RoMulOC toolbox.

Notation
In stands for the identity matrix of dimension n. AT is the transpose 
of A. { }A  represents the symmetric matrix { } = TA A A+ . ( )Tr A  
is the trace of A. ( )A B   means A – B is positive (semi-)definite. 

[ ]idiag F   is a block-diagonal matrix whose diagonal blocks 
are Fi. The symbol ⊗ refers to the Kronecker product. Given vectors 

3,v w∈ , the matrix 3 3v× ×∈  is a skew-symmetric matrix defined in 
such a way that =v w v w×× ; i.e., 

	

0
= 0

0

z y

z x

y x

v v
v v v

v v

×

 −
 − 
 − 

	

for = [ ]T
x y zv v v v . The three-dimensional sphere 3  is parameter-

ized by quartenions 4q∈  satisfying the constraint | |= 1q . Finally, 
thestar-product describes Linear-Fractional Transformations (LFT) 
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DEMETER benchmark

DEMETER is a satellite of the CNES Myriade series. Launched in 
2004, it observed electric and magnetic signals in Earth's ionosphere 
for more than 6 years. Its characteristic is to be composed of a central 
body and four long and flexible appendices – as shown in Figure 1 – 
oriented in different directions and fixed to the rigid-body at different 
positions distinct from the center of gravity. The model of this satellite 
has been provided as a benchmark in [19]. This model with uncer-
tainties is revisited in the following. A specific function incorporated 
in R-RoMulOC allows variants of the complete benchmark to be gen-
erated. The variants are such that the user can generate models of 
various sizes, both in terms of order of the plant and in terms of the 
number of uncertainties involved.

Nonlinear model without flexible modes

Assuming full actuation for attitude control 3u∈  and modeling in the 
body-fixed frame, the nonlinear dynamics of the satellite are

	
1=     ,    =
2 0TJ J u q q

ω ω
ω ω ω

ω

×
×  −

+  − 
  ,	 (1)

where 3ω∈  is the rotational velocity of the satellite body-fixed 
frame with respect to the inertial frame, 3 3J ×∈  is the symmetric 
positive definite matrix corresponding to its moment of inertia and 

3q∈  are the quaternion coordinates. A classical control problem 
related to this nonlinear model is to build an ideal state-feedback con-
trol law ( , )u qω  guaranteeing global stability. A more involved prob-
lem is to take into account in the design phase implementation issues 
such as saturation of reaction wheels, sensor delays and failures, the 
periodic sub-actuated character of magneto-torquers, etc. The model 
complexity depends on the considered actuators. For example, con-
sidering reaction wheel control, the model becomes 

	
1( ) = , = , =
2 0ext TJ J h T T h T q q

ω ω
ω ω ω

ω

×
×  −

+ + − +  − 


  ,	 (2)

where 3h∈  is the vector of the angular momenta of the wheels, T 
is the vector of the torques applied to the wheels, and Text represents 
the external disturbances that the controller should reject.

Linear model with flexible modes

Let 3θ ∈  be the three-axis angular deviation of the satellite from 
some reference constant orientation. The linearized model of (1) is 

	 =J uθ ,	 (3)

which is a three-dimensional double integrator. We remark that, so far, 
we assumed that the satellite is composed only of a rigid body. Unfor-
tunately, this is not the case because of solar panels and other scien-
tific equipment onboard. At small pointing errors (the attitude control 
is required to have less than 0.1 degree precision), the flexibility of 

Figure 1 – DEMETER satellite. ©CNES November 2003, ill. D. Ducros
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appendices is not negligible and needs to be considered in the model. 
The linearized model including flexible modes is [19] 

	
1/2

21/2

0 0
=

2 0T

IJ J L
u

ZL J I
ηθ
ηη

        
+       Ω Ω       







,	 (4)

where 2 fnη∈  is the vector of angular deviations in torsion and bend-
ing of the flexible appendices (up to nf = 4 in the DEMETER model), 
L is a matrix modeling the cross influence of flexible modes on the 
rigid body, which depends on how the appendices are attached to the 
rigid body, [ ]2= iZ diag Iζ   is a diagonal matrix of all flexible 
mode damping factors and [ ]2= idiag IωΩ    is a diagonal 
matrix of all flexible mode natural frequencies (the low damped oscilla-
tory flexible dynamics are such that 2 1/22 = T

i i i i i i iL Jη ζ ωη ω η θ+ + − 

  ). 
The same parameters apply for the bending and torsion effects and, 
in most cases, one can assume that the appendices are identi-
cal ( = = 1, ,i fi nζ ζ ∀   and = =,1 ,i fi nω ω∀  ). In (4), the force 

1/2TL J θ that acts on the flexible modes comes from the derivative of 
the angular momentum of the rigid body, and its symmetric feedback 
reaction on the rigid body is 1/2J Lη. An analysis in the frequency 
domain shows that only the first flexible modes of the appendices 
have significant influence on the system dynamics, while all other 
flexible modes, including those of the solar panels, can be neglected.

Parametric uncertainties

In (4) the matrix L, which is only due to positioning of the appendices, is 
assumed to be perfectly known. All other parameters, i.e., J, iζ  and iω , 
cannot be precisely measured on the Earth due to gravity, and hence are 
considered to be uncertain. The damping ratio and natural frequencies 

,i iζ ω  describe the first flexible modes of the four appendices. These 
appendices are of same length and same material, and hence their flex-
ible modes are almost identical. However, there are discrepancies from 
one appendix to another, which are not known. The damping ratio and 
natural frequencies are assumed to be bounded in the intervals

	 4 3[ 0.2 2  , 0.6 2  ] , [ 5 10 , 5 10  ]   = 1, ,4i i iω π π ζ − −∈ ⋅ ⋅ ∈ ⋅ ⋅ ∀  .	

The inertia J has the following nominal value on the ground 
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o o o

o o o o
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.	

Uncertainties in J are assumed to be at most of 30% for the diago-
nal entries and ±3 for the off-diagonal entries. That is, for example, 

11 11 11[ 0.7  , 1.3  ] = [ 21.97 , 40.80 ]o oJ J J∈  and 12 12 12[ 3 , 3 ] = [ 4.11 , 1.89 ]o oJ J J∈ − + −
12 12 12[ 3 , 3 ] = [ 4.11 , 1.89 ]o oJ J J∈ − + − .

LFT modeling of uncertain matrices

We first derive the LFT model of the 2[2 ]ZΩ Ω  matrix. Note that 
the uncertain matrices Ω and Z are defined as a nominal matrix with 
normalized discrepancies around the nominal value. Hence, one can 
write Ω as 

	

2 2 2 21 2 3 4

0
= =  

=

a b
b a

I
I I I

diag I I I Iω ω ω ω

ω ω δ δ ω ω

δ δ δ δ δ
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Ω
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

,

	

where 1
2= (0.6 2 0.2 2 ) = 0.4 2aω π π π⋅ + ⋅ ⋅  is the mean between the 

two extreme values, 1
2= (0.6 2 0.2 2 ) = 0.2 2bω π π π⋅ − ⋅ ⋅  is the maxi-

mal deviation and | | 1, = 1, ,4
i

iωδ ≤   are norm bounded uncertain-
ties. The uncertain matrix Z can be derived in a similar way 
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with 3 4 31
2= (5 10 5 10 ) = 2.75 10aζ

− − −⋅ + ⋅ ⋅  being the mean between 
the two extreme values, 3 4 31

2= (5 10 5 10 ) = 2.25 10bζ
− − −⋅ − ⋅ ⋅  being 

the maximal deviation and | | 1, = 1, ,4
i

iζδ ≤   being the norm 
bounded uncertainties. Using properties of the star-product we have 

	 [ ]
0 0 0

0
2 = 0 0 0

0
2 2

Z

b b a a

I
Z I

I I I I

δ
δ

ζ ω ζ ωΩ

 
  

Ω   
   

 

 ,	

and

	

[ ]2

2

2 = 2

0 2 2
0 0 0 0 0 0

= 0 0 0 0 0 0
0 0 2 2

b b a a

Z

b a b a b a a a

Z Z

I I I I
I

I
I I I I I

ζ ω ζ ω
δ

δ
δ ω ω ζ ω ω ω ζ ω

Ω

Ω

 Ω Ω Ω Ω 
 

   
   
   
    

  

 .
	

We remark that the LFT defined in this way is minimal. An alternative 
is to build separately the LFTs for 2ZΩ and 2Ω  matrices and then to 
concatenate the two. This alternative gives an LFT with δΩ repeated 3 
times, which is clearly non-minimal.

We next focus on the LFT modeling of the matrix depending on the 
uncertain matrix J. The difficulty can be observed arising from mod-
eling the square-root of J. In [19], it is implicitly assumed that off-
diagonal terms in J 1/2 are sufficiently small to be neglected in the 
computation of J 1/2. That is, defining 

	

[ ]

12 13

1 1 2 1 23

2 11 22 33

0
=   :  = 0 0

0 0 0

 =

T

J J
J J J J J J

J diag J J J

 
 + +  
  

,

,

	

it is assumed that 1/2 1/2
2J J . Then, in order to further simplify 

the model, the paper [19] makes the second assumption that 
the square root can be replaced by a first order approximation 

2 2

1/2 1/2 1
2 2 2 22( )a b J a b JJ J J Jδ δ+ + . The relative error of this last 

approximation is less than 2%, which is indeed reasonable. Based on 
this approximation, the minimal LFT model is such that 

2Jδ  is repeated 
twice. As we will show next, there is no reason for performing the first 
order approximation, and this can be avoided without increasing the 
size of the LFT.

Two ways for improving the square root LFT modeling are explored 
next. The first still assumes that 1/2 1/2

2J J  but avoids the first-order 
approximation of the square root. To this end, we define the following 
LFT model of the square root of inertia diagonal components 

	
2 2

1/2
ˆ ˆ2 2 2

2 2

0
ˆ ˆ= = ˆ ˆa b J J

b a

I
J J J

J J
δ δ

 
+  

  
 ,	
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where 1/2 1/21
2 2 22

ˆ = ((1.3 ) (0.7 ) )a a aJ J J+  is the mean between the two 
extreme values, 1/2 1/21

2 2 22
ˆ = ((1.3 ) (0.7 ) )b a aJ J J−  is the maximal devi-

ation, 
2 11 22 33

ˆ ˆ ˆ ˆ= [ ]J J J Jdiagδ δ δ δ  and ˆ| | 1Jii
δ ≤  are the norm bounded 

uncertainties. Using properties of the star-product, one obtains 

	

1/2 1/2
1/22 2 2
21/2

2

2
2 2 2 2

ˆ
2

2
ˆ 2 2 2 22

2 2

=

ˆ ˆ ˆ ˆ0
0 0 0 0

= ˆ ˆ ˆ ˆ0
ˆ ˆ0

T T T

b b a b

J

a b a aJ

T T T
b a

J J L J
J L

L J L L L

J J J J L
I

I J J J J L

L J L J L L

δ

δ

   
      

  
 
           
  

 .

Notice that –  as in [19]  – the uncertainties 
2Ĵδ  are repeated only 

twice; hence, the LFT size is not increased by precise modeling of 
the square root.

Next, consider the cross inertia dependent matrix 

	
1 1

1
1 1 1 1

1 1

0ˆ ˆ ˆ= = c
a b J c J

b a

J
J J J J J Jδ δ

 
+  

  
 ,	

	
12 13

1 23 1 1

0 3 3 0 0 1 0
= 0 0 = 0 0 3 = 0 0 1

0 0 0 0 0 0 0 0 1

o o

a o b c

J J
J J J J

     
     
     
          

,	

	
1 12 13 23

=    :   | | 1
ijJ J J J Jdiagδ δ δ δ δ  ≤  .	

Using properties of the star-product we finally arrive at 

	
1

1

2

2

1/2
1 1 2 2

1/2
2

1

1

2
2 2 2 2

ˆ

2
1 1 2 2 1 1 2 2ˆ

2 2

0 0 0 0 0
0 0 0 0 0

ˆ ˆ ˆ ˆ0 0 0
0 0 0 0 0

ˆ ˆ ˆ ˆ

ˆ ˆ0 0 0

T

c
T

J b

J b b a b

J
T T

b c a b a a a aJ
T T

b a

J J J J L
LJ

J
J

J J J J L
diag I

J J I J J J J J J L

L J L J I

I

δ

δ

δ

δ

 +


+

 
          =         +



+  
 
 

 

 .

	

The second approach for improving the LFT modeling of the square-
root 1/2J  first requires the relevance of modeling the coefficients of 
J in intervals to be questioned. The matrix J is symmetric positive 
definite, which can be defined as 1/2 2

ˆ= ( )o JJ J + ∆  with an uncertain 
symmetric matrix Ĵ∆  constrained by a convex quadratic constraint 

	 ˆ ˆ ˆ ˆ 0 ,J J J JX Y Y Z Z I+ ∆ + ∆ + ∆ ∆   ,	

where all X, Y and Z matrices are chosen as symmetric, to match the 
symmetric nature of 

Ĵ∆ . The set is also written as 

	 ˆ ˆ( ) ( )o o o oJ JZ Z X∆ −∆ ∆ −∆ ∆ ∆ − ,	

where 1=o YZ −∆ −  is the center of the set. Recall that 1/2 2
ˆ= ( )o JJ J + ∆  

is (as formulated in [19]) a matrix whose 6 independent coefficients 

are in intervals. The matrix J can therefore be defined as the convex 
linear combination of 26 vertices – denoted as [ ] 6, = 1, ,2vJ v   – and 
constructed taking all of the extreme combinations of the interval 
uncertainties. A natural way of defining X, Y, Z matrices is to 
impose on the set the requirement of containing the convex com-
bination of the square-roots of extremal values, that is, the matrices 

[ ] [ ]1/2 1/2
ˆ =v v

oJ J J∆ −

	 [ ] [ ] 6
ˆ ˆ( ) ( )   = 1, ,2v v

o o o oJ JZ Z X v∆ −∆ ∆ −∆ ∆ ∆ − ∀  .	 (5)

A natural choice for the center of the set is to take the mean value of 
all vertices

	

62
[ ]
ˆ6

=1

1=
2

v
o J

v
∆ ∆∑ .	 (6)

Of course, one aims at defining the smallest set containing the matri-
ces [ ]

ˆ
v

J∆ . It is rather easy to see that the size of the set is highly depen-
dent on the matrix o oZ X∆ ∆ − . The smaller it is, the smaller the set 
of Ĵ∆  matrices will be. It is suggested to minimize this matrix with 
respect to its Frobenius norm, which amounts to taking 

	 * *

, ,(5)
( , ) = arg ( )min o o

Z I
X Z Tr Z X∆ ∆ −


,	

and * * 1= oY Z −−∆ . Having performed this LMI optimization, the iner-
tia of the satellite is now defined as 

	 [ ]
* *

1/2 2
ˆ ˆ * *= ( )   ,   =  :  0T

o J J

IX Y
J J I

Y Z
     + ∆ ∆ ∈ ∆ ∆ ∆    ∆    

 .	

LFT modeling with respect to this newly defined uncertainty is rather 
simple, following the same lines as the first method, and gives 

	

1/2

1/2
ˆ

1/2 1/21/2
ˆ

1/2

0
0 0 0 0

=
0

0

o

J
T

J o o o
T T

o

I J L
IJ J L

I J J J LL J I
L L J I

 
 ∆        ∆     
  

 .	

The LFT built in this way has two remarkable features: i) to the best of 
our knowledge, it is the first time that the modeling involves an uncer-
tain matrix that is constrained to be symmetric, ii) this matrix is 

repeated twice ˆ
ˆ 2

ˆ

0
=

0
J

J
J

I
∆ 

∆ ⊗ ∆ 
. To build LMI type results for 

such uncertainties one needs to build some DG -scaling like result 
[11]. That is, to characterize, via linear matrix equalities and inequali-
ties, the matrices ĴΘ  that satisfy 

	

[ ]

ˆ ˆ2
ˆ 2

* *

ˆ * *

0

 =  : 0

J J
J

T
J

I
I I

I

IX Y
I

Y Z

 
 ∆ ⊗ Θ    ∆ ⊗ 

     ∀∆ ∈ ∆ ∆ ∆    ∆    



 .

	

A choice of such matrices DG is a natural generalization of the well-
known DG -scalings that work for scalar repeated uncertainties 

	
* * 2 2

ˆ * * 2 2

= 0
=   :  

=

T

J T

X D Y D I G D D
Y D I G Z D G G

×

×

 ⊗ ⊗ + ⊗ ∈
Θ  ⊗ − ⊗ ⊗ − ∈ 

 
 .
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The proof of this fact is trivial: in the formula below, the G dependent 
terms cancel one another thanks to the fact that ∆ is symmetric and 
remains only 

	 [ ] [ ]
* *

2 * *
2

=
I IX Y

I I D I
I Y Z

     
∆⊗ Θ ⊗ ∆      ∆⊗ ∆     

,	

which is negative semi-definite because it is the result of a Kronecker 
product of a positive definite matrix and a negative semi-definite 
matrix.

LFT modeling of the uncertain system

Based on the described modeling of uncertain matrices discussed in 
the previous section and with some rather trivial additional manipula-
tions – independent from the choice of model for the inertia J – the 
system dynamics can be converted to the following descriptor state-
space form 

	 =d c d c
E A

b a b a

E E A A
X X Bu

E E A A
      
∆ ∆ +      

      
  ,	 (7)

where ( )=
TT T T TX θ η θ η

  is the state of the satellite including its 
flexible modes; [ ]=A Zdiag δ δ δΩ Ω∆ ; 

1 1 2 2
ˆ ˆ= [ ]E J J J Jdiag δ δ δ δ∆  

or ˆ 2=E J I∆ ∆ ⊗  depending on the choice of model for the inertia; E 
and A matrices are built accordingly. Taking the inverse of the left-hand 
side of (7) this formula allows a usual state-space model to be built,

	

1 1 1 1

1 1 1 1

= 0 0
d c a b c a b c a a c a

E
d c

A
a b a b a a a

E E E E E E A E E A E E B
X

X diag A A
u

E E E A E A E B

− − − −

− − − −

  − − − −
 ∆     
    ∆        

  ,	

which is the same as the following linear system  
1 1 1 1

1 1 1 1

0 0

a a a b a b a

c a a d c a b c a b c a

c d

X E A X E E E A w E Bu

E E A E E E E E E A E E B
z X w u

A A

− − − −
∆

− − − −

∆ ∆

  = + + 
      − − − −

= + +      
     



,

in a feedback loop with the uncertainty = E

A

w diag z∆ ∆

∆ 
 ∆ 

. Such a 

system with feedback uncertainties can be easily defined in the 
R-RoMulOC toolbox. A dedicated function has been developed that 
yields this model. The output is of the following type 

	 =
u

u

y y yu

X AX B w B u
z C X D w D u w z
y C X D w D u

∆ ∆

∆ ∆ ∆∆ ∆ ∆ ∆ ∆

∆ ∆

 = + +
 = + + ∆
 = + +



.	

Reduced size variations of the uncertain model

In order to test methods with respect to the dimensions of the prob-
lem to be solved (both in terms of order of the systems and in terms 
of size of the uncertainty block) several variants have been coded. 
The variations are threefold:
•	 Select only one or two of the three axes. This of course reduces 

the number of states describing the satellite attitude. More-
over, in the case when only one axis is considered, the torsion 
and bending effects of the flexible modes can be combined. It 
produces models with twice less flexible mode states and twice 
smaller matrices A∆ .

•	 Select only some of the appendices. One can (virtually of 
course) remove any of the appendices. It produces models with 
reduced number of flexible modes and smaller matrices A∆ . 

•	 Impose that all appendices have the same frequency and 
damping characteristics, =iω ω  and =iζ ζ . In such case, the 
number of flexible modes can be reduced to only three modes 
(one per axis) that are the projections of all bending and torsion 
modes on the attitude axes.

The simplest and rather realistic models amount to assuming (a) 
zero cross influence between satellite axes and (c) that all appendi-
ces have exactly identical characteristics. Such assumptions reduce 
the study to three fourth-order models, one per angular axis. Each of 
these models ( = 1,2,3i ) are described by two scalar equations 

	
2

=

2 = 0
ii i ii i i i

ii i i i i i

J J l u

J l

θ η

θ η ζωη ω η

 +


+ + +







 

,	 (8)

and illustrated in Figure  2 (where = ii iJ lα ). Corresponding LFT 
models have a 5 × 5 uncertain matrix where scalar uncertainties on 
Jii appear twice, scalar uncertainties on ω  appear twice and scalar 
uncertainties on ζ  appear once.

State-feedback design model

The control design problem is to build a control that ensures the fol-
lowing performances:
•	 As small as possible pointing error. To this end, the control 

should contain an integrator to improve the low frequency dis-
turbing torque rejection.

•	 Avoid saturation of the reaction wheel actuators. These actua-
tors have the following nonlinear model 

	 ( ) ( )1=  W T cu sH s sat sat u
s

 
 
 

,	

where uc stands for the torque control input computed by the control-
ler and u is the actual torque applied by the reaction wheel. satT is a 
saturation on the torque to be applied, which is of 5 × 10–3 Nm. It is, 
in general, not critical and can be neglected. The term 1

s  is an inte-
grator that yields the reaction wheel angular momentum. This angular 

u
1/J s

–α α

ω

ω2ζ

1/s

1/s 1/s

+

+

θ θ θ

η ηη  ηηη  ηηη 

Figure 2 – Block diagram of a one axis model with one flexible mode
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momentum is saturated (satW), with a saturation level of 0.12 Nms. 
This saturation is critical: when it occurs, the system is no longer 
actuated and is open-loop unstable. Finally, ( )sH s  is a transfer func-
tion describing the dynamics of the reaction wheel.
•	 Other specifications, such as noise rejection, robustness to 

time-delays in the control, etc., as discussed in [19].

In order to take into account the two specifications (i) and (ii), we 
add to the model an integrator of the output and a pseudo integrator 

1
0.001( ) = sI s +  of the input. We remark that an integrator in the input 

– instead of a pseudo integrator – would result in instability since the 
states of the integrator are not controllable in the formulation. These 
are represented with dotted lines in Figure 3. The dotted lines indicate 
that these blocks are added by the designer, and are hence part of the 
control law.

For that augmented model we seek a robust state-feedback control, 
as illustrated in Figure 3. The dotted lines represent the state-feedback 
with eight gains. Pk , Ik , Dk  are the feedback gains with respect to 
the angular error θ, its integral, and its derivative, respectively. Pfk  
and Dfk  are the gains on the angular position of the flexible mode η  
and on its derivative, respectively. Wk  is the gain on the state of the 
pseudo-integrator that models the reaction wheel speed. 1 2

HK ×∈  is 
the gain on the states of the reaction wheels. The aim of the control 
is to minimize the peak of z2 (the reaction wheel speed), especially 
when the satellite starts from a large non-zero angle and angular rate 
initial conditions that are represented as input signals w2. We assume 
a maximal ±0.08 deg/s angular rate initial deviation and ±15 deg 
angular initial deviation. Simultaneously, the control should minimize 
the effect of unknown input perturbations on the system precision; 
that is to minimize the transfer for w1 to z1.

The design of such a state-feedback controller is possible using 
the R-RoMulOC toolbox [5, 16]. In particular, a function named 

demeterPerformance is developed to generate models required for 
controller design. The following lines of codes define three models 
being:
•	 The augmented model with integrator on the output, reaction 

wheel model and pseudo-integrator of the input.
•	 Model with 1 1/w z  performance input output.
•	 Model with 2 2/w z  performance input output. 

usysIW=demeterPerformance(ConsideredAxis,Considered 
Appendices,... model_type,uncertainty_type, rwheels,0);

usysIW1=demeterPerformance(ConsideredAxis,Considered 
Appendices,... model_type,uncertainty_type, rwheels,1);

usysIW2=demeterPerformance(ConsideredAxis,Considered 
Appendices,... model_type,uncertainty_type, rwheels,2);

Next, we briefly explain various arguments of the demeterPerformance 
function.

The parameters ConsideredAxis and ConsideredAppendices define 
the number of axes and appendices used in the model respectively. 
If model_type=2, all flexible modes have the same frequency and 
damping characteristic with the same uncertain parameters but, if 
model_type=1, uncertain parameters are allowed to be independent 
for different appendices. If uncertainty_type=1, all uncertainties are 
norm-bounded scalars; if uncertainty_type=2, all uncertainties are 
scalars in intervals; and if uncertainty_type=3, uncertainties on iner-
tia are norm-bounded deterministic; others are uniformly distributed in 
intervals. If rwheels=1, the reaction wheels are included in the model 
and if rwheels=0, the model does not include reaction wheel dynamics.

Let aN  be the number of considered axes and fN  be the number of 
appendices. The satellite dynamics involve 2* 4*a fN N+  states, to 

–α α

ω

ω2ζ

1/Js 1/s

1/s 1/s

1/s

z2

z1

w1

w2

u

kw kD kp

kPfkDf

kII (s)

H (s)

KH

+

+

+

+

–

–

θ θ θ

η ηη  ηηη 
ηηη 

Figure 3 – Block diagram of a state-feedback design model.
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which one adds actuator models and aN  integrators of the control law. 
If model_type=1 (all appendices have different characteristics) the 
satellite dynamics involve ( 1) / 2 2*a a fN N N+ +  scalar uncertain-
ties. If model_type=2 (all appendices have identical characteristics) 
the satellite dynamics involve ( 1) / 2 2a aN N + +  scalar uncertainties. 
A special case is when = 1aN  and all appendices are considered 
identical. In such a case, the satellite dynamics involve only 4 states 
and 3 uncertainties, see (8).

In R-RoMulOC there are two approaches to design the robust state 
feedback controller. The first approach is based on deterministic 
multiobjective methods, in which the performance specifications are 
enforced to hold for the entire set of uncertainties. The second para-
digm is probabilistic and randomized methods, in which the design 
specifications (including stability) are enforced to hold up to a prob-
ability level. In the next two subsections, we study the two mentioned 
approaches in state feedback design.

Controller design

Deterministic approach

In R-RoMulOC the deterministic state-feedback design LMI problem 
is defined as

quiz=ctrpb('state-feedback','unique')...
+1*hinfty(usysIW1)...
+100*i2p(usysIW2)...
+dstability(usysIW,region('plane',-1e-4))...
+dstability(usysIW,region('plane',-10,pi));

The LMI problem built in this way is based on quadratic stability type 
results with Lyapunov shaping paradigm [21], that is, a unique Lyapu-
nov matrix is used for assessing all four specified performances and 
for all values of uncertainties. The four specifications are: the H∞ 
performance with respect to the input/outputs 1 1/w z ; the impulse-
to-peak performance with respect to the input/outputs 2 2/w z  (which 
is equivalent to looking at peak response to the initial conditions); 
the pole location performance such that all closed-loop poles should 
have a real part smaller than –1 × 10–4 and greater than –10 (which 
influences the rapidity of the time response). The LMI problem is 
solved in R-RoMulOC using the following commands that return the 
state-feedback gain

Ksf_det=solvesdp(quiz,sdpsettings('verbose',1,'solver', 
'mosek'));

Probabilistic Design 

There are two paradigms in probabilistic techniques for controller 
design. The first approach is non-sequential, in which a sampled 
version of the original problem is solved in one shot. The scenario 
approach [2, 3] is a non-sequential approach for solving uncer-
tain convex problems. The main idea in this approach is to refor-
mulate a semi-infinite convex optimization problem as a sampled 
convex optimization problem subject to a finite number of random 
constraints extracted from the uncertainty set. The second class of 
probabilistic design algorithms are sequential methods, in which, at 
each iteration, a candidate solution is constructed – based on the 
gradient [20], ellipsoid [14], cutting plane [9] or sampling based 

technique [7] – and its robustness is verified through a sequential 
probabilistic validation algorithm [1]. In R-RoMulOC, the scenario 
approach and sequential algorithms based on the gradient update 
rule [20] and the sequential approach presented in [7] are used 
to solve the uncertain state-feedback design problem. A control-
ler addressing the same performance requirements as in the deter-
ministic case can be formulated and solved using the sequential 
algorithm [6, 7]

quiz = ctrpb('state-feedback','rand')...
+1*hinfty(usysIW1)...
+100*i2p(usysIW2)...
+dstability(usysIW,region('plane',-1e-4))...
+dstability(usysIW,region('plane',-10,pi));

opts=randsettings('epsilon',0.1,'delta',1e-9,...
'method','sequential','sdpopts',...
sdpsettings('verbose',0,'solver','mosek'));
Ksf_prob=solvesdp(quiz,opts);

The parameters epsilon and delta defined in the randsettings func-
tion are the required accuracy and confidence levels of the solution. In 
words, the probability that the solution does not satisfy constraints is 
smaller than epsilon and this statement holds with a probability of at 
least 1-delta. We refer to [4, 23] for the exact definition of accuracy 
and confidence levels. We remark that one can solve the same prob-
lem using the scenario approach [2, 3] by changing 'sequential' to 
'scenario' in the code.

Closed-loop analysis of the state-feedback law

An important feature of R-RoMulOC is to provide, within a unified 
framework, a variety of available tools for analyzing the robust per-
formance of uncertain closed-loop systems. In particular, a user can 
check whether several performance criteria, such as for instance the 
H2 and H∞ norms, impulse-to-peak response, pole location, etc., 
hold either robustly or with a guaranteed level of probability. Similar to 
design techniques, analysis can be performed either in a determinis-
tic setting or through randomized algorithms resulting in a probabilis-
tic estimate of robust performance. 

Deterministic analysis

The deterministic analysis methods implemented in R-RoMulOC are 
based on Lyapunov-type certificates. In particular, it can be based 
on either a parameter-dependent Lyapunov function [10, 13, 15] or a 
common Lyapunov function [21]. An upper bound of the closed-loop 
H∞ norm for the transfer 1 1/z w  can be computed using parameter-
dependent Lyapunov matrices, as follows

usysIW1cl=sfeedback(usysIW1,Ksf_det);
quiz = ctrpb('analysis', 'PDLF')+hinfty(usysIW1cl);
solvesdp(quiz,sdpopts);

Probabilistic analysis

The probabilistic analysis is based on a Monte Carlo algorithm, in 
which a number of random samples are extracted from the uncer-
tainty set and the performance index is measured only for the 
extracted samples. There are two probabilistic analysis algorithms: 
1) Worst-case performance estimation, in which an estimate of the 
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worst-case performance is defined as the worst-case performance 
among all extracted samples. The sample size in this case is defined 
by a log-over-log bound [22]. 2) Randomized performance verifica-
tion, where the objective is to estimate the probability of a given level 
of performance being satisfied, for instance, estimating the probabil-
ity of instability or the probability that the H∞ norm of the system is 
below a given level. The number of samples in this case is defined by 
the Chernoff bound [8]. The next command computes the wost-case 
H∞ norm of the closed-loop system usysIW1cl using a randomized 
worst-case performance estimation algorithm.

quiz = ctrpb('analysis', 'rand')+hinfty(usysIW1cl);
opts=randsettings('epsilon',1e-1,'delta',1e-6);
solvesdp(quiz,opts);

Numerical tests

In this section, we compare probabilistic and deterministic approaches 
in terms of performance and complexity. To this end, we generate a 
number of DEMETER models – based on the discussion of Subsec-
tion "Reduced size variations of the uncertain model", by changing the 
parameters ConsideredAxis, ConsideredAppendices, model_type, 
uncertainty_type and rwheels – and design various deterministic 
and probabilistic controllers. Next, the performance of the designed 
controllers is measured using the deterministic and probabilistic anal-
ysis methods of Section "Closed-loop analysis of the state-feedback 
law", in order to quantify the level of conservatism associated with 
different design approaches. The result of these numerical tests is 
reported in Table 1, where we consider different numbers of axes and 

appendices, and different model and uncertainty types, and design 
probabilistic and deterministic controllers for the generated models. 
The probabilistic controller is designed using the scenario approach, 
and the probabilistic accuracy epsilon and confidence delta levels 
are set to 0.1 and 10–9, respectively. In most cases – as expected – 
the probabilistic controller achieves less conservative performance 
levels in handling various uncertainties. In terms of computational 
complexity, the deterministic approach is less computationally 
demanding for the case in which all uncertainties are considered to 
be norm bounded. However, if we require uncertainties to be defined 
in intervals (and hence in polytopes), the computational complexity 
associated with the deterministic approach increases significantly. 
For such uncertainties, R-RoMulOC applies a vertex-separator result, 
as proposed in [12]. Unlike highly sparse DG-scaling type separa-
tors with few constraints built in the case of norm-bounded uncer-
tainties, the vertex-separator is known to be less conservative but 
with an increased number of decision variables (full matrices) and an 
increased number of constraints (one for each vertex, and the number 
of vertices is 2N where N is the number of uncertain parameters). We 
remark that in some problem instances of Table 1 the optimization 
problem – for controller design – is infeasible; there does not exists 
a "robust" state-feedback controller satisfying all required specifica-
tions and the optimization problem becomes infeasible, even for large 
probabilistic accuracy epsilon and confidence delta levels.

To further validate our design, a posteriori analysis using Monte-Carlo 
simulation was carried out for the controller designed in the second 
row of Table 1. To do so, we extracted 100 random samples from the 
uncertainty set, closed the loop for each of them and measured the 
impulse response –  from 2w  to 2z   – of each sampled closed-loop 
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Design Analysis 

 

       Det Prob Complexity(s) 
Design 
Method 

Impulse 
to Peak 

Infinity
Norm

Impulse
to Peak

Infinity 
Norm 

Impulse
to Peak

Infinity
Norm

1 1 1 1 1 Prob 22.3 2.9 0.36 1.5 0.13 1.01 160
1 1 1 1 Det 22.3 4.7 0.41 1.5 0.16 1.16 1

1 1,2 1 1 1 Prob Inf Inf NA NA NA NA NA
1,2 1 1 1 Det Inf Inf NA NA NA NA NA

1 1,2,3,4 2 1 1 Prob 22.5 3 0.42 1.3 0.14 0.84 520
1,2,3,4 2 1 1 Det 22.5 3 0.43 1.3 0.13 0.99 1.3

1,2 1,2,3,4 2 1 1 Prob Inf Inf NA NA NA NA NA
1,2 1,2,3,4 2 1 1 Det Inf Inf NA NA NA NA NA
1,2 1,2 2 1 1 Prob 22.4 2.8 0.67 Inf 0.2 0.06 2215
1,2 1,2 2 1 1 Det 22.7 5 Inf Inf 0.16 0.5 142
1,2 1,2 2 2 1 Prob 22.46 2.69 0.7 1.38 0.19 0.08 1750
1,2 1,2 2 2 1 Det 22.6 4.24 0.75 1.03 0.19 0.14 46

1,2,3 1,2 2 2 1 Prob 22.5 3.3 Inf Inf 0.23 0.66 16387
1,2,3 1,2 2 2 1 Det 22.7 8.1 Inf Inf 0.2 1.34 14111

Table  1 – Simulation results for various probabilistic and deterministic controllers designed using R-RoMulOC for the DEMETER model. "Inf" indicates the cases 
where the optimization problem is infeasible; "NA" also refers to Not Applicable.
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system. Figure 4 shows the result of this simulation. Figure 5 also 
demonstrates the time trajectories of the angular rate θ and angular 
deviation θ  of the satellite for the same sampled closed-loop systems. 
One can see that θ starts from the initial condition 0.08π  / 180 = 
1.4 × 10–3  rad/s and θ  starts from 15π  / 180 = 0.262  rad. This 
is considered as the worst-case initial configuration. It is such that 
the pointing error θ  tends to increase at the start due to the positive 
angular rate.

An interesting feature of randomized methods is that the computational 
complexity does not depend on the number of uncertain parameters. 
This feature is known as "breaking the curse of dimensionality". There-
fore, increasing the number of uncertain parameters does not influence 
the complexity of solving a state-feedback problem using randomized 
methods. On the other hand, the stability and performance achieved 
using the controller designed by this approach is not guaranteed to hold 
for the entire set of uncertainties. That is, there might exist a subset of 
the uncertain set – although with very small probability measure – for 
which the guaranteed performance level is not attained.

It is noted that the designed controllers referred to in this paper are 
of the state-feedback type, requiring all of the states to be available 
for feedback. This requirement is not realistic in practice. In fact, in 
practice, sensors report ,θ θ  and θ∫ . Observers are needed for flex-
ible modes ,η η. Therefore, an observer can be designed using the 
approach presented in [17], in order to estimate the states of the 
system and then use the state-feedback controller formulated in this 
paper to control the DEMETER satellite.

Conclusions

This paper shows how the features of the recently released Matlab toolbox 
R-RoMulOC can be exploited to perform both deterministic and probabi-
listic analysis, and the design of systems in the presence of uncertainty. 
The potentialities of R-RoMulOC are illustrated on the DEMETER satellite 
benchmark. The performed numerical simulations are fully reproducible, 
since both the DEMETER model and the R-RoMulOC toolbox are freely 
downloadable at http://projects.laas.fr/OLOCEP/rromuloc/ 
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To analyze a non-linear, uncertain and time-varying closed loop representing a 
fighter aircraft model interconnected with a control law, an Integral Quadratic 

Constraint (IQC) approach has been used. This approach is particularly interesting 
for two reasons. The first one is that it is possible with the same stability criterion 
to analyze a large class of stability problems. The second reason is that the stability 
criterion is based on frequency dependent inequalities (FDI). Usually, the Kalman-
Yakubovich-Popov (KYP) lemma is used, in order to transform this infinite set of 
inequalities into one linear matrix inequality (LMI). However, this kind of approach leads 
to a steep increase in the number of optimization variables. Consequently, a new FDI-
based algorithmic approach has been developed. Usually, the number of FDI that must 
be satisfied is infinite or, thanks to a frequency domain gridding, it is possible to avoid 
this problem but with the drawback of not being able to guarantee the validity of the 
solution throughout the frequency domain continuum. To tackle this problem, a specific 
technique has been developed. It consists in computing a frequency domain where the 
solution is valid. By an iterative approach, this domain is extended to cover [0, [+∞ . 
Thus, the solution obtained from the FDI is necessarily valid throughout the frequency 
domain continuum and the number of optimization variables remains limited, which 
makes the IQC approach tractable for high-order models.

Introduction

The IQC technique, which appeared during the nineties, at least in 
its modern form [13], can be viewed as the merging of two well-
known robustness analysis techniques, namely the (scaled) small 
gain techniques, the best known of these being µ analysis [3], and 
the positivity/passivity techniques, which study the interconnection 
of a linear time invariant (LTI) operator with non-linearity (the famous 
"Lur'e problem"). As a consequence, the IQC technique enables a 
wide range of problems to be studied, namely the robust stability 
and performance properties of the interconnection ( )G s − ∆ of an 
LTI operator G (s), with a structured model uncertainty ∆ contain-
ing non-linearities, LTI and/or linear time-varying (LTV) parameters, 
neglected dynamics, delays, and specific non-linearities such as fric-
tion or hysteresis, etc. The principle is to replace each block of uncer-
tainty by an IQC description of its inputs/outputs, i.e., the inputs/out-
puts of the block (e.g., a non-linearity inside a sector, possibly with a 
bound on its slope) are assumed to satisfy a set of Integral Quadratic 

Constraints [13, 7]. The finer the IQC description of the block is, the 
less conservative the result will be. This approach is very interest-
ing for two reasons. It includes in the same formalism a large set of 
linear and non-linear stability theorems. The formalism used in the 
IQC approach can be described as a unified formalism. Secondly, 
this unified formalism is based on an input/output approach, namely 
a frequency domain approach.

In the context of our fighter aircraft application, we use standard IQC 
descriptions of the uncertainties and focus on the algorithmic issue. 
Let us recall that the stability criterion of this approach is based on 
FDI. Thus, the most classical way to solve an IQC analysis prob-
lem consists in solving the state-space LMI conditions derived from 
the KYP lemma, so that the optimization variables come from the 
IQC multipliers, but also from the Lyapunov matrix P. However, this 
solution becomes intractable when the order n of the state-space 
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representation becomes too high, since the number of scalar opti-
mization variables in P grows quadratically with n. Note moreover 
that the initial state-space representation of G (s) is augmented with 
the state-space representations of the dynamic multipliers, so that 
even if the order of the initial state-space representation is low, it may 
increase very fast when introducing dynamic multipliers. Various 
approaches based on a Hamiltonian matrix have been developed [9, 
14, 15] to avoid this problem. Other references propose new multi-
pliers or methodologies to improve results [5, 16, 12, 11]. Here, an 
alternative technique is implemented.

A first solution is to solve frequency-dependent LMIs, i.e., the FDI, on 
a frequency domain gridding. However, the main drawback is that it is 
not possible to guarantee the validity of the solution between the grid-
ding points, even if it is possible to analyze the result a posteriori with 
a very fine frequency domain gridding. However, formally the solution 
cannot be validated throughout the frequency domain continuum.

A second and more interesting approach, which consists in checking 
the validity of the solution over the entire frequency domain, has been 
developed. More precisely, the validation of the solution is done dur-
ing the optimization problem resolution. In other terms, when the final 
solution is obtained, this solution is necessarily valid over the entire 
frequency domain. This validation step is based on a mathematical 
result for the singular-value maximum of an LFT structure [18] where 
the ∆ block is a real perturbation model. More precisely, when a solu-
tion is obtained from a frequency domain gridding, the stability crite-
rion, which depends on frequencies, is written in an LFT form in order 
to make the frequency ω  appear as a real parameter in the ∆ block 
of the LFT [4]. Then, the validity domain of the solution is computed 
using an algebraic approach. If this domain is [0, [+∞  the solution is 
valid over the entire frequency domain. Otherwise, frequencies for 
which the FDI are not satisfied are detected and are added to the initial 
frequency domain gridding and a new solution is computed with the 
new gridding, and so on. If no solution is obtained on the gridding, 
the problem is considered as unfeasible. In brief, the stability problem 
is recast as an LMI feasibility problem, where the constraints (FDI) 
are added iteratively. Finally, the number of optimization variables is 
completely independent from the model order.

However, it remains a problem, since the IQC stability criterion is 
based on FDI, i.e., a positivity constraint and not a weak gain con-
straint [18]. However, thanks to a specific bilinear transformation, 
namely the Cayley transformation [1], this positivity condition, which 
corresponds to our stability criterion, is replaced by a weak gain con-
dition. By this transformation these two kinds of inequalities are per-
fectly equivalent. Consequently, it becomes straightforward to evalu-
ate the validity of the solution for the stability criterion.

This is applied to a fighter aircraft interconnected with a control law. The 
closed loop is written in LFT form, where the ∆ block contains one non-
linearity, LTV, and LTI parameters. The LTV parameters correspond to the 
scheduling parameters Mach and Vc (calibrated airspeed), represented 
by repeated real scalars. Moreover the scheduling parameters are 
known to be rather slowly time-varying, so that considering arbitrarily 
time-varying scheduling parameters will lead to conservative results. 
Thus, the IQC description of time-varying parameters with a bounded 
rate of variation is used [8]. LTI parameters represent parametric uncer-
tainties of the aircraft model. The non-linearity corresponds to a satura-
tion / dead-zone on the actuator rate output. The objective is to analyze 
the stability of this non-linear, uncertain and time-varying closed loop.

Notations
Given three operators ( )P ⋅ , ( )M ⋅  and ( )∆ ⋅  of compat-
ible dimensions, the lower and upper Linear Fractional Transfor-
mations (LFTs) are respectively defined (for appropriate parti-
tions of P and M ) by 1

11 12 22 21( , ) = ( )l P P P I P P−∆ + ∆ −  and 
1

22 21 11 12( , ) = ( )u M M M I M M−∆ + ∆ − . The star product  of P 
and M is defined by:

	
( ) ( )

( ) ( )

1
11 12 11 22 12

1
21 22 11 21 22

,
=

,
l

u

P M P I M P M
P M

M I P M P M P

−

−

 −
 
 − 





	 (1)

IQC generalities

IQC-based analysis techniques enable us to study a wide range of 
problems, namely, the robust stability and performance properties 
of the interconnection ( )G s − ∆ of an LTI operator G (s) with a struc-
tured model uncertainty ∆ containing non-linearities, LTI and/or linear 
time-varying parameters, neglected dynamics, delays, and specific 
non-linearities such as friction and hysteresis.

Here, standard IQC descriptions are used for both LTI uncertainties/
LTV parameters, ∆, and sector non-linearities, denoted by ϕ. The 
originality of our approach resides in the specific algorithm that has 
been developed to reduce the computational burden. Indeed, standard 
IQC-oriented analysis methods consist in solving Kalman-Yakubo-
vitch-Popov-based LMI conditions [13]. These standard approaches 
are, however, intractable for high-order models, since the number of 
scalar optimization variables quadratically increases with the closed-
loop order [2, 19].

An IQC describes a relation between input and output signals of an 
operator. Since these two formulations are completely equivalent, these 
constraints can be defined either in the time or the frequency domain. 
Nevertheless, frequency-domain constraints are often preferred, since 
this leads to obtaining stability conditions that are easier to handle in 
comparison with the impulse response for the time domain represen-
tation. The definition of an IQC is given in the frequency domain.

Definition 1
Two signals, respectively of dimension m and p, square-integrable over 
the interval [0, )∞ , i.e.: 2 2[0, ), [0, )m pv L w L∈ ∞ ∈ ∞ , satisfy the IQC 
defined by ( ) ( ): m p m pjR C + × +Π → , and the Hermitian-valued function, if
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where ( )v jω  and ( )w jω  respectively correspond to Fourier trans-
forms of v and w, such as w = ∆v.

A priori, the operator Π, called the multiplier, defined from jR in 
( ) ( )m p m pC + × +  can be any measurable Hermitian-valued function. 

In most situations, it is sufficient to use rational operators that are 
bounded on the imaginary axis.

e G (s)

∆
b

+

+

+
+

Figure 1 – non-linear, uncertain and time-varying closed loop
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The problem consists in analyzing the closed loop that corresponds 
to the interconnection by a positive feedback of G (s) with ∆, where 
∆ can be nonlinear and non-stationary. Let us suppose that the input 
and output signals of ∆ satisfy the IQC defined by Π. The following 
result gives the stability criterion [13].

Theorem 1
Let us assume that G (s) is stable and that ∆ is a causal and bounded 
operator; if
•	 the interconnection G-τ∆ is well posed for any [0,1]τ ∈ ,
•	 τ∆ satisfies the IQCs defined by Π, [0,1]τ∀ ∈ , 
•	 there exists > 0ε  such that:
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	 (3)

then, the closed-loop system is stable in the sense of the global 
asymptotic stability.

It is important to note that if τ∆ satisfies several IQC 1, , nΠ Π , then 
a sufficient condition for the stability is that 1, , 0nx x ≥  exist such 
that the inequality (3) is satisfied for 1 1= n nx xΠ Π + + Π , which is 
a variant of the S-procedure.

The following proposition is very useful to consider the case with 
several multipliers [6].

Proposition 1
Let us assume a block-diagonal structure 1= ( , , )ndiag∆ ∆ ∆  and 
that each i∆  satisfies the IQC defined by iΠ , where = 1,...,i n. Then, 
∆ satisfies the IQC defined by 1= ( , , )ndaugΠ Π Π , where the 
operator daug is defined as follows. If 
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then
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List and parameterization of IQCs and stability

In this section, the parameterization of the global multiplier is built to 
be implemented and solved using the Matlab LMI toolbox.

Sector non-linearities

Let us consider a non-linearity that is memoryless, possibly time-
varying, piecewise continuous in t and locally Lipschitz in y. The non-
linearity is required that to satisfy a sector condition.

Definition 2
A memoryless non-linearity :[0, ) p pψ ∞ × →   is said to satisfy a 
sector condition if 
	 ( ) ( ) 0Tw kv w kv− − ≤ 	 (6)

where k  and k  are gains that represent the limits of the sector and 
w and v represent the inputs/outputs of the non-linearity.

This definition is illustrated by Figure 2 in the SISO case. The IQC for 
sector non-linearity ϕ with a sector (0,1) is the following one [13]:
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Π = Π +Π = ≥ λ∈ − λ − 
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Readers can refer to the literature for more details.

Slowly time varying real parameter

Here, | ( ) | 1tδ ≤ , ( )t dδ ≤ , *=X R R and *=Y S S− . Let us define:

	 ( ) ( ) 1=C R RR s C sI A −− 	

	 ( ) ( ) 1=B R RR s sI A B−− 	

	 ( ) ( ) 1=C S RS s C sI A −− 	

	 ( ) ( ) 1=B R SS s sI A B−− 	

Let us consider the multiplier that corresponds to LTV parameters [8]: 
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 and *= CR Rϒ . From the parameterization 

	 ( ) ( ) ( ) ( ) ( )* *= =X R UR R Rj j j j jω ω ω ω ω  	

	 ( ) ( ) ( )* *= =TY VS S V S Sj j jω ω ω− −  	 (9)

with = TU U , the following multiplier is obtained:
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We can clearly see that this multiplier is bilinear in U and V. Then, to 
satisfy the following inequality
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Figure 2 – Sector non-linearity
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is not a convex problem.

In order to make this problem convex, let 
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; then, the inequality (10) becomes:

	 * * * 0lin WWΛ Π Λ +Λ Λ ≤ 	 (11)

From this relation, it is possible to use the Schur lemma to obtain the 
following LMI constraint:

	
* *

* < 0lin W
W I

 Λ Π Λ Λ
 Λ − 

	 (12)

where linΠ  and W are affine in U and V. Of course, if = 0d  then 
= 0W , and only the first term of the LMI remains, *

linΛ Π Λ, which 
corresponds to the constant real scalar.

The global multiplier

In this section, the global multiplier, which corresponds to the gen-
eral analysis problem, is presented. If ϕ is the sector non-linearity 
and 1( ) = [ ( ) , , ( ) ]n k kt diag t I t Iδ δ δ  the time varying real vec-
tor, the closed loop to analyze corresponds to the interconnection 
of G (s) with = ( , ( ))diag tϕ δΦ . Also, | ( ) | 1i tδ ≤ , | ( ) |i it dδ ≤  and 

1= [ , , ]n k kd diag d I d I . In the case of a constant real scalar it suf-
fices to set = 0id .

Thus, the global multiplier, which corresponds to Φ, is obtained from 
Proposition 1:
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	(13)

The LMI feasibility problem

In brief, the stability of the closed loop, which corresponds to the 
interconnection by a positive feedback of a sector non-linearity (0,1)  
and time-varying and/or constant real scalars with a linear part G (s), 
is ensured by solving the following LMI feasibility problem.

Find , , = ,Tx U U Vλ  such that: 
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	 ( ) ( )* > 0R j UR j Rω ω ω∀ ∈  	 (15)

	 > 0x 	 (16)

If a solution exists, the closed loop is stable.

Remark 1
This form cannot be directly implemented; a factorized form allowing 
the dynamic part to be separated into decision variables is involved. 

Remark 2
If nf frequencies are considered, then a problem with 2nf + 1 LMI 
constraints is obtained.

Remark 3
The number of decision variables is completely independent from the 
closed loop order, but only depends on the structure and the size of 
the ∆ block. 

Proposed method

State space approach

The classical approach is based on the Kalman-Yakubovitch-Popov 
lemma.

Lemma 1
Let us consider M a symmetric matrix, , , ,A B C D a state space rep-
resentation of Φ such as 1( ) = ( )s C sI A B D−Φ − + , and Rω∀ ∈  

( ) 0det j I Aω − ≠ ; then, the two following propositions are equivalent:
(i) the quadratic constraint 

	 ( ) ( )* < 0j M jω ω ω∀ Φ Φ 	 (17)

is satisfied

(ii) there exists 0TP P= >  such that
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	 (18)

The important point is that the second proposition can easily be 
solved, since it is a feasibility problem under LMI constraints. We 
notice that the inequality does not depend on the frequency, but a new 
optimization matrix P has appeared. In other terms, an infinite set of 
constraints has been transformed into one constraint with a new opti-
mization variable P. To involve the stability criterion (3) in Theorem 1 
it suffices to choose a multiplier such as:

	 ( ) ( ) ( )*

=1
=

r

i
i

x j j M jω ω ωΠ Ψ Ψ∑ 	 (19)

where M is a symmetric matrix, structured according to the problem 
considered. This matrix contains a set of optimization variables. With 

	 ( ) ( ) ( ) 1=
G j

j C j I A B D
I
ω

ω ω − 
Ψ − + 

 
	 (20)

the previous lemma allows the inequality (3) to be transformed into an 
LMI with respect to the optimization matrices P, and M.

Proposed innovative method

An infinite number of LMI constraints has been replaced by one LMI 
constraint. Nevertheless, this transformation has a major drawback 
since a new optimization matrix P appears whose size depends on 
the order of G plus the dynamics of Ψ. More precisely, the number 



Issue 13 - September 2017 - Stability Analysis by a New Algorithmic Approach
	 AL13-05	 5

of decision variables grows quadratically, which can lead to a com-
putational problem.

In this paper, the optimization problem is directly solved from fre-
quency-domain inequalities, through a grid-based approach. Of 
course, the drawback to this approach is the lack of guarantee of the 
validity of the solution throughout the frequency domain continuum.

To guarantee that the solution is valid over the entire frequency 
domain, a specific technique based on [4] and [18] is adapted. Also, 
another advantage is to limit the number of LMI constraints, since 
only active constraints are added in the LMI optimization problem. 
Here, the main result is presented:

Let = ( , , , )A B C DΞ Ξ Ξ ΞΞ  be the realization of ( )sΞ  (of order m), 
with 1( ) = ( ( ))( ( ))j I Z j I Z jω ω ω −Ξ − +  (( )I Z+  is invert-
ible) where *( ) = ( )Z j Z jω ω  is the stability criterion (3), and 

0 0( ( )) = ( ( ), )l mj S Iω δω ω δωΞ +  , with 0 δω ω∀ ≥ − , i.e., 0( )S ω  is 
interconnected to δω  as a lower LFT, where δω  is a real parameter. 

0( )S ω  is written as

	 0
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 

 	 (21)

Proposition 2
If 0( ( )) < 1σ ωΞ  then 0( ( ( ), )) < 1l mS Iσ ω δω  holds true for 

0 [ , ]ω δω ω ω+ ∈ , where ω  and ω  are computed as 1
0=

nη
ω ω +  

and 1
0=

pη
ω ω + , where nη  and pη  are the maximal magnitude real 

negative and positive eigenvalues of T, respectively, defined as
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where,
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Remark 4
When ( ( )) = 1σ Ξ +∞ , = = 0pω η+∞⇔ , a null eigenvalue is 
obtained, which means that ( ( ))σ ωΞ  crosses the 0  dB axis for 

=ω +∞. However, the intersection of the stability criterion with the 
0 dB axis has no physical meaning.

Remark 5
The bilinear transformation 1( ) = ( ( ))( ( ))j I Z j I Z jω ω ω −Ξ − +  with 
( )I Z+  invertible allows a positivity condition to be transformed into 
a weak gain condition: 

	 ( ) *1 0Z Zσ Ξ ≤ ⇔ + ≥ 	 (24)

In brief, if we consider a transfer matrix Ξ, in order to determine the 
frequency domain containing 0ω  such as the maximal singular value 
of ( )jωΞ  is inferior to 1, it suffices to evaluate ω  and ω  as above.

In the iterative approach, proposed in Algorithm 4.2.1, the validation 
step is performed a priori and during the LMI optimization problem res-
olution. The choice of the initial grid has no influence on the feasibility 

problem. It is possible to choose a singleton at the first iteration. How-
ever, in order to limit the number of iterations, and consequently the 
calculation time, without any a priori knowledge, it is recommended to 
take some frequencies roughly spread over the frequency domain. It is 
possible, when first solutions are obtained, to tune this initial frequency 
grid, in order to decrease the number of iterations.

Sketch of the algorithm

The algorithm can be summarized by the following steps:

This algorithm is a specific case of outer approximation algorithms 
[17, 14]. Of course, if no solution is obtained on the finite set of fre-
quencies, the problem is considered as infeasible. If a solution is 
obtained, necessarily this solution is valid over the entire frequency 
domain.

Remark 6
The stability condition is checked as described in Section 4.2, 
where critical frequencies are added iteratively. However, it is 
necessary to check the positivity constraint of the multiplier 

*( ) = ( ) ( )X j R j UR jω ω ω   for all ω . Of course, it is possible to pro-
ceed in the same way: frequencies for which the multiplier is nega-
tive are added in the optimization problem by an iterative approach. 
However, this approach is useless and increases the computational 
burden. By noting that X is hardly ever positive when the stability 
condition is satisfied for any frequency, the positivity condition of X is 
checked by the technique presented previously just once at the end 
of the algorithm, i.e., when the stability criterion is satisfied over the 
entire frequency domain. In the exceptional case where a frequency 
exists such that ( ) < 0X jω , then this frequency is added in the opti-
mization problem and another solution is sought, to satisfy the stabil-
ity condition and the positivity of X.

Algorithm 1: Iterative IQC resolution

Data: ( )G jω  the stable fixed block of the LFR, multiplier ( )iωΠ  and 
i Rω +∈ , = 1, fi n .

Result: A stability proof of the LFR model, including nonlinear sector 
saturations.
while Stability not checked do

For = 1, fi n , check the stability criterion

	
( ) ( ) ( )*

0i i
i

G j G j
I I
ω ω

ω
   

Π <   
   

.	 (25)

if (25) has solutions then
•	 Set ( )i iωΠ ←Π  be the solution obtained at iω .
•	 Set 0 iwω ←  and apply Proposition 2.
•	 For each solution iΠ , a frequency-domain = [ , ]ii iω ωΩ  is 

obtained. 
=1, ,

=
f

valid ii n
Ω Ω





.

if = [0 )validΩ +∞  then
The solution composed by the set of iΠ  is validated over 
the entire frequency domain.
Stability is proved, stop.

else
•	 Determine the complementary set [0, )=novalid validC +∞Ω Ω .
•	 Select one or several frequencies in novalidΩ  and update 

the grid.
Stability cannot be proved, stop.
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Remark 7
It is possible by this approach to solve directly over the frequency 
domain without any approximation based on rational functions. A 
solution based on irrational multipliers is proposed in [19]. 

Application

The objective is to analyze the stability problem with a fighter aircraft 
model. For the problem considered, the critical static non-linearity 
is the rate limiter, which has been transformed into a dead zone. In 
brief, the analysis is performed as follows. For specific values of the 
speed variation d, a sector size (0, )k  is determined by a dichotomic 
approach, so the closed loop stability is guaranteed. This analysis 
is performed for two cases essentially: one case with one static 
non-linearity, which corresponds to the rate limiter, and another case 
with one non-linearity and all other LTV and LTI parameters. The LTV 
parameters are the Mach number and calibrated air speed. These two 
time-varying parameters represent the flight case. The Mach number 
and the calibrated airspeed, respectively, vary from 0 to 1 and from 
150 to 275 kts. The nominal rate of variation is d = 0.2 for both. 
The LTI parameters correspond to real uncertainties on the model. 
This LFT real uncertainties are a combination of various physical 
real uncertainties, such as mass, center of gravity position, etc. 
This transformation is necessary to obtain a limited size for the LFT 
model. In brief, it is not possible to associate a real uncertainty of the 
LFT model to a physical parameter of the aircraft model. However, 
the important fact to keep in mind is that the stability analysis is per-
formed for the maximum variation of real uncertainties and not for a 
restricted domain. In other words, if the stability is guaranteed with 
all LTI parameters for all possible uncertainty values, the stability is 
guaranteed for the entire domain of physical parameters. Of course, 
this kind of transformation can lead to a difficult interpretation if the 
analysis is performed over a restricted domain for LTI parameters, 
since it is not possible to easily link this restricted domain to the 
physical domain; however, this is not the case here.

Another and last point is the following one. The sector size is deter-
mined by the value k. However, this value can be interpreted as an 
amplitude of the non-linearity input u. Since the problem has been 
normalized, for a rate limiter of 80  deg  /  s, u  =  1 corresponds 

to 80  deg  /  s and, more generally, to a physical signal equal to 
u* 80 deg / s, For example if k = 0.5, this value corresponds to a 
normalized non-linearity input 1

1= = 2ku − . It means that, for any nor-
malized 2u ≤ 2, or equivalently 160 deg / s, the stability of the non-lin-
ear closed loop is ensured. In other words, if any realistic pilot order, 
turbulence or discrete gust leads to having 2u ≤ 2 for the normalized 
signal, the stability is ensured. If there exists a realistic input signal 
that leads to having > 2u 2 for the normalized non-linearity input, 
then the stability cannot be guaranteed. In brief, the stability can be 
interpreted as an input/output approach: for any bounded input sig-
nal; any output signal of the non-linear closed loop is bounded. This 
bound corresponds to classical norms of signals, as 1 2, , ,...l l l∞ . To 
be complete, the case where k = 1 corresponds to an infinite stability 
domain.

The parameter occurrence is the following: 1 for the rate limiter, 2 and 
8 for the 2 LTV parameters, and 1,1,1,1 and 1 for the 5 LTI param-
eters. The dynamic for the multipliers R  and S  is a first order low-
pass filter with a pole at 10 rad/s.

Analysis with one rate limiter

In this section, the analysis is performed with just one non-linearity of 
sector (0,1) . This case is interesting for several reasons:

•	 This case represents the best result that can be expected, since 
the size of the sector decreases with the number of LPV and LTI 
parameters that are considered in the analysis problem.

•	 This case can be interpreted very easily using a SISO represen-
tation like the Popov and Nyquist plot.

Let us recall that the Popov plot represents the plot [ ( )]Re G jω  versus 
[ ( )]Im G jω ω . The closed loop stability is ensured if the Popov plot 

of ( )G jω  lies to the right of the line that intercepts the point 1 0 j− +  
with a slope 1 / λ [10].
 
•	 The size of the sector is consistent with the Popov and the Nyquist 

plot, since the value obtained for the sector leads the Nyquist and 
the Popov plot to be very close to the critical point -1. 
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•	 The solution obtained by the IQC approach is consistent with 
the graphical interpretation, since we note that the Popov plot 
lies to the right of the red line whose slope is 1 / λ. 

•	 To confirm the solution, the eigenvalues of the stability crite-
rion and singular values of the transformed criterion by the 
Cayley method are respectively negative and inferior to 

= 0.81 = 5.26k u⇔ .

The limit of the sector is = 0.81 = 5.26k u⇔ . Of course, this size is 
determined for the nominal case, i.e., without uncertainties and LTV 
parameters.

Analysis with one rate limiter, LTV Mach number, and five real 
uncertainties

This case is interesting, since it combines three kinds of problem: a 
static non-linearity, LTV parameter and LTI real uncertainties. It is the 
typical problem treated by the IQC approach. In addition, since the ∆ 
block is not very large, the computational burden is very limited and 
it is possible to perform several simulations with different bounded 
rates d to test the algorithm. The LTV parameter considered is the 
Mach number. Finally, the ∆ block has 8 inputs/outputs.

LTI d=0 d=0.1 d=0.2 d=0.5 d=0.8 d=10 d=100 d=1000 X,Yconstant

k 0.89 0.89 0.86 0.85 0.85 0.84 0.81 0.80 0.74 0.78

u 9.09 9.09 7.14 6.67 6.67 6.25 5.26 5.00 3.85 4.55

From this table, we can make several remarks:

•	 For the LTV case, we note that the size of the sector decreases 
with the rate of variation, which is consistent physically and 
mathematically since d appears as a penalty in the LMI con-
straints.

•	 The LTV case with d = 0 is equivalent to the LTI case, from a 
mathematical point of view. However, it is important to check 

this point from an algorithmic point of view. The results are the 
same, or very similar.

•	 The LTV case with d →∞  is equivalent to the case where the 
multipliers X and Y are chosen as constant. Indeed, as indicated 
previously, if the rate of variation is arbitrary high, the multiplier 
must be constant. In brief, the size of the sector is evaluated in 
the LPV context with d = 100 or 1000 and compared to the 
solution obtained with constant multipliers. The results are very 
closed in terms of sector limits. 

To complete these previous results, the stability analysis is performed 
when the LTV calibrated air speed Vc is replaced by a specific value 
and d  =  0.2. Of course, the nominal case is represented by the 
value 0.

Vc=+1 Vc=+0.5 Vc=0 Vc=–0.5 Vc=–1

k 0.81 0.83 0.85 0.80 0.77

u 5.26 5.88 6.67 5.00 4.35

Analysis with one rate limiter, LTV Mach number and airspeed, and 
five real uncertainties

This system represents the final case, which combines all LTV and LTI 
parameters. The ∆ block has 16 inputs/outputs.

Two results have been obtained: for the LTI case (d  =  0) and the 
nominal case (d = 0.2).

•	 With d = 0 the sector obtained is = 0.45 = 1.82k u⇔ .

•	 With d = 0.2 the sector obtained is = 0.31 = 1.45k u⇔ .

In this last case, the number of optimization variables is 309, with 
some dozens of constraints. The calculation time varies from a few 
to ten minutes.
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Conclusion

In this ar ticle, a new algorithmic approach based on IQC technique 
has been presented. Usually, the KYP lemma is used to transform 
the stability criterion, which consists in an infinite set of LMI con-
straints, into one LMI. The main drawback is that a decision matrix 
P is added and consequently the number of decision variables 
grows quadratically. To avoid this kind of problem, the frequency 
domain criterion is explicitly used. To guarantee the solution over 
the entire frequency domain and not only over the frequency 
domain gridding, an LFT structure is involved where ∆ contains 
the frequency ω. Then, it becomes possible to treat this variable 

as a continuous variable, as for any µ analysis problem, and to 
check the validity of the solution over the frequency domain con-
tinuum. In brief, the number of decision variables is independent 
from the order of G (s) and the solution obtained using the grid-
ding is valid over the entire frequency domain. Finally, to illustrate 
the approach, this is applied to a fighter aircraft. This application 
presents one sector non-linearity, two LTV parameters, which cor-
respond to the flight case, and five real uncer tainties. The results 
show that the algorithm is effective for dealing with a large class 
of stability analysis problems 

Acronyms

KYP	 (Kalman-Yakubovich-Popov)
FDI	 (Frequency Dependent Inequalities)
LTI	 (Linear Time Invariant)
LTV	 (Linear Time-Varying)
IQC	 (Integral Quadratic Constraints)
LMI	 (Linear Matrix Inequalities)
LFT	 (Linear Fractional Transformation)
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An approach for extending classical robustness margins to linear parameter varying 
 (LPV) systems is presented. LPV systems are often used to model aircraft 

dynamics that are highly dependent on the operating conditions such as altitude and 
airspeed. Classical gain and phase margins are evaluated in the frequency domain 
and therefore cannot be applied to LPV systems. The proposed approach is based 
on a time-domain interpretation for disk margins. Specifically, a norm bounded 
linear time invariant (LTI) uncertainty is interconnected to the nominal LPV system. 
Next, a time-domain worst-case metric is applied to evaluate both the robustness 
margin and also the robust performance degradation. The approach does not require 
detailed uncertainty modeling. In addition, the analysis can be formulated as a convex 
optimization leading to reliable numerical analysis tools. As an example, the LPV gain 
margin of a flutter suppression controller for a flexible aircraft is evaluated. 

Introduction

This paper presents a method for extending the notion of gain and 
phase margins to linear parameter varying (LPV) systems. LPV sys-
tems are often used in aerospace engineering to model dynamics 
that strongly depend on the operating conditions, where the state 
matrices depend on measurable exogenous parameters that vary 
over time. If the state matrices of the LPV model have a rational 
dependence on the scheduling parameters, finite dimensional semi-
definite programs (SDPs) can be formulated for controller synthesis 
and analysis [1],[8],[14]. However, in many engineering applications 
the state matrices have an arbitrary dependence on the parameters. 
In this case, the analysis and synthesis problem leads to an infinite-
dimensional set of linear matrix inequalities (LMIs). A finite approxi-
mation approach based on gridding is proposed in [19]. The existing 
results on LPV modeling, as well as controller design and synthesis 
have been widely studied and successfully used for many industrial 
applications. Results on robustness analysis for LPV systems, which 
depend rationally on the scheduling parameter, can be found, for 
example, in [18]. However, there is still a gap in the literature when it 
comes to standard robustness analysis tools for LPV systems with 
arbitrary parameter dependence. The classical phase and gain mar-
gins are evaluated in the frequency domain and can therefore not be 
applied to LPV systems due to their time varying dynamics. A stan-
dard approach is to impose a grid on the scheduling-parameter space 
and to evaluate the robustness margins at each grid point. However, 
this does not guarantee the robustness for the entire LPV system. 
This paper seeks to combine the knowledge about standard robust-
ness margin analysis for linear time invariant (LTI) systems and new 
results for the analysis of uncertain LPV systems.

Recently, the framework of Integral Quadratic Constraints (IQCs) has 
gained a lot of attention in the research community. IQCs where first 
introduced in [7] as a general robustness analysis framework for LTI 
systems. The authors in [11] propose a time domain interpretation 
that can be used to extend the IQC framework to LPV systems. Spe-
cifically, a worst-case gain metric was proposed to extend the known 
performance analysis conditions for nominal LPV systems [19] to 
uncertain LPV systems. Here, the uncertain system is divided into 
a nominal system and a perturbation block. The IQC can then be 
imposed on the input/output behavior of the latter. The focus in this 
paper is on norm bounded LTI uncertainties, used to model simulta-
neous phase and gain variations in a system. The constraint can be 
directly obtained by reformulating the norm bound conditions of the 
uncertainty without having to go into too much detail concerning the 
IQC framework. The main contributions of this paper are based on the 
theoretical results in [12]. First, the worst-case metric is used to pro-
vide a notion of LPV stability margins. These margins are then used 
to formulate a simple robustness test for a gain scheduled controller, 
similar to the classical stability margins in LTI control. Additionally to 
the single margin point where instability occurs, this new technique 
can also be used to determine the robust performance of the LPV 
systems. The theory is finally applied to an aerospace engineering 
example. Here, the LPV robustness margins of a flutter suppression 
controller for a flexible aircraft are evaluated and compared to classi-
cal LTI analysis results based on µ -theory at each grid point.



Issue 13 - September 2017 - Robustness Margins for Linear Parameter Varying Systems
	 AL13-06	 2

Background

In many aerospace applications the dynamics strongly depend on 
the operating conditions of the aircraft, such as altitude or airspeed. 
The LPV framework can be used to consider this dependency in the 
modeling procedure as well as the controller synthesis. The dynamics 
are expressed as a function of a scheduling parameter. This section 
provides a brief summary of LPV modeling and introduces the perfor-
mance of nominal LPV systems. This work is aimed at extending clas-
sical (LTI) robustness margins and robust performance analysis to 
LPV systems. The approach is based on the concept of disk margins 
for LTI systems as reviewed in Section "Disk Margins for LTI Systems".

Linear Parameter Varying Systems

Linear parameter varying (LPV) systems are a special class of 
time varying systems where the dynamics depend on an exog-
enous parameter vector ( )tρ  restricted to remain in a compact set 

( )    
n

t ρρ ∈ ⊂  for all 0t ≥ . An nth-order LPV system Gρ  as depicted 
in Figure 1 has the form 

	 ( ) ( )( ) ( ) ( )( ) ( )=x t A t x t B t d tρ ρ+ 	 (1)

	 ( ) ( )( ) ( ) ( )( ) ( )=e t C t x t D t d tρ ρ+ 	

with the continuous functions : , : , :x x x d e xn n nn n n n n nA B Cρ ρ ρ× × ×→ → →     , : , : , :x x x d e xn n nn n n n n nA B Cρ ρ ρ× × ×→ → →      , 
: , : , :x x x d e xn n nn n n n n nA B Cρ ρ ρ× × ×→ → →       and : e dn n nD ρ ×→  . In addition, ( ) xnx t ∈  is the 

vector containing the states of the system, ( ) yne t ∈  is the output 
vector and ( ) und t ∈  the input vector. Given by the physical restric-
tions of most practical applications the admissible parameter trajec-
tories are defined by 

	 ( ) ( ){ }:= : | , 0n t t tρρ ρ ρ+ → ∈ ∈ ∀ ≥

    	 (2)

where the admissible parameter rate is given by the subset 

	 { }:= || | , = 1, ,n
i i i nρ

ρρ ρ ν∈ ≤

 

  	

iν  is the fastest admissible parameter variation rate. 

The performance of an LPV system Gρ can be measured in terms of 
the induced 2 -norm. First define the norm of a signal d as 

( ) ( )2 0

Td d t d t dt
∞

= ∫ . The set of bounded signals, i.e. 2d ∈ , 

are those that satisfy 2 <d ∞ . The gain of the system from the input 
d to the output e can be defined using the signal 2 -norm: 

	
( )2

2

0 , , 0 =0 2

:= sup
d x

e
G

dρ
ρ≠ ∈ ∈ 

	 (3)

A bounded-real type result exists to bound the induced 2 -norm of 
an LPV system. First, define the following differential operator for a 
symmetric matrix function : xnP →  : 

	 ( ) ( )
=1

, =
n

i
i i

P
P

ρ ρ
ρ ρ ρ

ρ
∂

∂
∂∑  	 (4)

The theorem below provides a matrix inequality condition to prove sta-
bility and bound the induced 2  gain of an LPV system with bounded 
parameter variation rate.

Theorem 2.1 (Bounded Real Lemma [20])
An LPV System Gρ  as defined in (1) is exponentially stable and 
Gρ γ<  if there exists a continuously differentiable symmetric matrix 

function : xnP →   such that the following two conditions hold 
( ),ρ ρ∀ ∈ ×     

	 ( ) > 0P ρ 	 (5)

	

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( )

( ) ( )2

,

1 < 0

T

T

T

T

P A A P P P B

B P I

C
C D

D

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

ρ
ρ ρ

γ ρ

 + + ∂
 
 − 

 
 +   
  



	 (6)

Proof. This is a standard result but a sketch of the proof is provided 
since it will be extended for the robustness result. Multiply (6) on 
the left and right by ,T Tx d   and ,

TT Tx d   , respectively, to obtain 
(neglecting the dependence on time): 

	 ( ) ( ) ( ) 2

1, < 0T T T T Tx P x x P x x P x e e d dρ ρ ρ ρ
γ

+ + ∂ + −
 

	 (7)

Define a storage function : nxV +× →   as ( ) ( ), = TV x x P xρ ρ  . 
Evaluating V along the state and parameter trajectory gives 

	 2

1 < 0T TV e e d d
γ

+ − 	 (8)

Integrating over the time interval [ ]0,T  and applying ( )0 = 0x  yields 

	 ( ) ( ) ( ) ( ) ( )2 0 0

1 < 0
T TT TV T e t e t dt d t d t dt

γ
+ −∫ ∫ 	 (9)

Let T →∞  and use ( ) 0V T ≥ , as well as the definition of the 2 -norm, 
to obtain bound 2 2e dγ≤ . A slight modification of the arguments 
(using the compactness of  ) yields the strict inequality 2 2<e dγ  . 

Disk Margins for LTI Systems

In many applications, it is important to provide a high level of robust-
ness. Specifically, the system performance should be insensitive to 
deviations between the model used for the controller synthesis and 
the actual system dynamics. Classical robustness measures, e.g., 
gain and phase margins, can be easily evaluated given the frequency 
response of the nominal system dynamics. More modern tools, e.g. 
µ analysis, require more detailed descriptions of the uncertainty. In 
general, an uncertain system can be described by "pulling out the 
uncertainty", as shown in Figure 2 [21]. This corresponds to an inter-
connection of a nominal (not-uncertain) system G and an uncertainty 
block ∆, as shown in Figure 2. The signals d and e correspond to 
exogenous inputs and system outputs, respectively. The signals v and 
w correspond to the signals related to the modeling uncertainty. The 
notation ( , )uF G ∆  is used to represent this interconnection structure.

As noted above, classical gain and phase margins are common 
robustness metrics. These margins measure the amount of (individ-
ual) gain or phase that can be tolerated before a single closed-loop 

Gρ ed

Figure 1 – LPV System
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becomes unstable. On the other hand, symmetric disk margins, as 
described in [3, 5], allow for simultaneous variations in both gain and 
phase within a prescribed disk. The remainder of the section briefly 
reviews the disk margin concept, since this will be used to formu-
late the proposed robustness margins for LPV systems. Consider the 
interconnection shown in Figure 3 where G and K are single input / 
single output (SISO) LTI systems and ∆ is an LTI uncertainty. The 
symmetric disk margins are related to robustness with respect to this 
uncertainty interconnection.

The open loop transfer function, without ∆, from input w to output v is 

given by 
1

i iS T−
, where 

1
1

:=i GK
S

+
 and 

1
:=i

GK
GK

T
+

 are the sensi-

tivity and complementary sensitivity functions at the plant input. Thus 

the disk margin interconnection is equivalent to 
1 ,u

i k

F
S T

 
∆ − 

 (with 

no disturbance and error channels). By the small gain theorem  [6, 
21], the uncertain disk margin interconnection is stable if and only if 

1<
i iS T∞

∞

∆
−

. Thus, the stability radius (margin) can be defined 

as := 1/ i ir S T−  where 0 < < 1r  typically satisfies 0 < < 1r .

Block diagram manipulation can be used to bring the disk margin 
interconnection into the equivalent form shown in Figure 4. This alter-
native form provides a useful connection back to classical gain and 
phase margins. This implies that the interconnection is stable for all 

real gains from uK to u in the interval 
1 1,
1 1

r r
r r

− + 
 + − 

. This proves the 

following symmetric lower and upper disk gain margins: 

	
1 1GM = , GM =
1 1l u

r r
r r

− +
+ −

	 (10)

Similarly, stability of Figure 4 for all < r
∞

∆  can be used to show 
that the loop is stable for all additional phase (from uK to u) within the 
following disk phase margin limits: 

	 ( ) ( )PM = 2cot , PM = 2cotl ur r− 	 (11)

These are called disk margins due to a connection in the Nyquist 
domain. Specifically, stability of the interconnection in Figure  4 for 
all < r

∞
∆  implies that the open loop Nyquist curve of GK remains 

outside the disk containing –1 and with diameter passing through 
[ ],u lGM GM− −  . Figure 5 shows the disk margins for an example transfer 
function. The critical point (–1,0) is marked in red. The interval on the 
real axis between the disk (orange) and the critical point corresponds 
to the gain margin and the intersection of the disk and the circle around 
the origin with radius 1 marks the arc of the phase margin. For further 
information on disk margins the reader is referred to [5], for example.

LPV Robustness Margins

Classical gain and phase margins are widely used as a standard for-
mulation for robustness requirements in the aerospace industry. They 
do not require specific, detailed uncertainty models and, hence, these 
margins are easy to evaluate. Additionally, engineers have significant 
experience on the interpretation of the analysis results. At the same 
time, gain scheduling is a commonly used design method in aero-
space. Since the classical margins are evaluated in the frequency 
domain, they cannot be directly applied to LPV systems due to the 
time varying nature of the dynamics. It is typical to simply evaluate the 
margins at "frozen" flight conditions. However, this fails to capture the 
effects of varying flight conditions. This motivates the proposed gener-
alized robustness margins for LPV systems. The approach presented 
in this section provides two main extensions to the classical margins. 
A time domain worst-case metric can be used to formulate a general-
ized robustness margin for LPV systems. Additionally, this approach 
also considers the performance degradation before instability occurs.

eG

∆

d

w v

Figure 2 – Uncertain LTI System

GK
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∆

w

v uuK y

Figure 3 – Input Disk Margin Interconnection
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+ ∆

Figure 4 – Equivalent Input Disk Margin Interconnection
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LPV Disk Margins

The generalized disk margin interconnection in Figure 6 will be used 
for the analysis. This contains two significant differences from the 
previous disk margin interconnection in Figure  3. First, the plant 
Gρ  and controller Kρ are allowed to be LPV systems. Here ρ  is a 
parameter vector defining the flight condition. Second, an input d and 
output e are added in order to consider performance criteria. This 
corresponds to a plant input disturbance and plant output error. More 
generally, performance inputs/outputs can be included at any point in 
the feedback diagram depending on the specific application.

It is common to evaluate the classical margins with Gρ  and Kρ  evalu-
ated at specific grid points of ρ . With a constant ρ , both the plant 
and controller are then LTI systems at the fixed operating condition. 
The disk margin analysis presented in Section "Disk Margins for LTI 
Systems" can be directly applied to this LTI interconnection. However, 
the resulting analysis does not consider the actual time varying nature 
of ρ . The approach proposed in this paper directly deals with the time 
varying operating conditions using the framework developed in [12].

Two basic robustness analysis problems will be considered, based on 
the LPV interconnection in Figure 6:

•	 LPV Disk Margins: Let ∆ be an LTI uncertainty. Compute a sta-
bility margin r such that the LPV interconnection is stable for all 

< r
∞

∆  and all ρ ∈ . 

•	 Worst-Case Gain: Again let ∆ be an LTI uncertainty. In addi-
tion, assume that the uncertainty satisfies a given norm-bound 

<b r , i.e., < b
∞

∆ . Compute the worst-case gain from d to e 
over this set of uncertainties and all ρ ∈ . 

The analysis requires a time-domain characterization of the uncer-
tainty. Let ( )w v= ∆ , where both w and v are assumed to be sca-
lar signals, in order to simplify this discussion. The norm-bound 

< b
∞

∆  implies the following frequency-domain constraint on the 
input-output signals: 

	
( ) ( ) ( )( ) ( )

2 2 2

* *2

| ( ) | | ( ) | =

0

b V j W j d

V j b j j V j d

ω ω ω

ω ω ω ω ω

∞

−∞

∞

−∞

−

− ∆ ∆ ≥

∫
∫

	 (12)

where ( )V jω  and ( )W jω  are the transforms of the signals ( )v t  and 
( )w t . By Parseval's theorem [21], this inequality is equivalent to an 

infinite-horizon, time-domain constraint: 

	
( )
( )

( )
( )

2

0

0
0

0 1

T
v t v tb

dt
w t w t

∞     
≥    −    

∫ 	 (13)

The causality of ∆ implies that this constraint also holds for all finite 
intervals [ ]0,T , for all ( )2 , =v w v∈ ∆  and > 0T  [12]. The time-
invariance of ∆ can be used to formulate a tighter constraint, as is stan-
dard in structured singular value ( )µ  analysis [9, 13]. Specifically, ∆ is 
LTI and, hence, it commutes with any stable, minimum-phase LTI sys-
tem D, i.e., ( ) ( ) ( ) ( )=D s s s D s∆ ∆ . This property is the basis for the 
use of frequency-domain "D"-scale conditions in µ analysis [9, 13]. The 
equivalent time-domain formulation is obtained by noting that if =w v∆  
then =Dw Dv∆ . Hence, the filtered signals ( ) ( ), := ,v w Dv Dw   satisfy 
the same norm bound constraints as D. To simplify notation, combine 
the scalings D and stack the filtered signals as follows: 

	
0

:= = :=
0

v v D
z where

w w D
     

Ψ Ψ     
     





	 (14)

As noted above, the filtered signals ( ) ( ), := ,v w Dv Dw   satisfy the 
same norm bound constraints as ( ),v w . This leads to the following 
time-domain inequality.

Definition 3.1
Let ∆ be an LTI system satisfying <Delta b

∞
. In addition, let D be 

a stable, minimum phase LTI system. Define Ψ as in Equation 14 and 

2 0
0 1= bM

−
 
  

. Then ∆ satisfies 

	 ( ) ( )
0

0
T Tz t M z t dt ≥∫ 	 (15)

for all ( )2 , =v w v∈ ∆  and 0T ≥ . 

Equation 15 is a specific example of a time-domain Integral Quadratic 
Constraint (IQC). It is worth noting that IQCs provide a general frame-
work, introduced in [7], for studying various uncertainties, such as 
infinite dimensional systems or hard non-linearities. There is an exist-
ing library of IQCs ( ),MΨ  for particular classes of uncertainties. The 
( ),MΨ  given in Definition 3.1 is for the particular class of LTI norm-
bounded uncertainty. The more general IQC framework can be used 
to obtain worst-case stability margins for other cases, e.g., systems 
with saturation. However, this paper will focus on norm bounded LTI 
uncertainties, in order to assess LPV disk margins.

LPV Worst-Case Gain

The (nominal) stability conditions of Section "Linear Parameter Vary-
ing Systems" can now be combined with the time domain constraint 
on the input/output behavior of the uncertainty block ∆. This can be 
used to assess the robust performance of an uncertain LPV system. 
First note that the LPV disk margin interconnection (Figure  6) is a 
special instance of the more general uncertain LPV system intercon-
nection in Figure 7. Here, the nominal (not uncertain) LPV system Tρ 
is connected to the uncertainty block. In addition, the dynamic filter 
Ψ , used to describe the IQC in Definition 3.1, is also appended to the 
diagram. The combined dynamics of Tρ and Ψ  are described by the 
following LPV system: 

	
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2

1 11 12

2 21 22

=
=
=

x A x B w B d
z C x D w D d
e C x D w D d

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

+ +
+ +
+ +



	 (16)

The state vector combines the state of G and the state of Ψ ,  
i.e., [ ]= , TT T

Gx x xΨ . The perturbation block ∆ is unknown and is not 

–

∆

w

v u

d

uK

y

eGρKρ

Figure 6 – Input Disk Margin Interconnection for LPV Systems
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considered for the purposes of analysis. Instead, w is treated as an 
external signal subject to the constraint on z given in Equation 15. 
This effectively replaces the precise relation ( )=w v∆  by the impre-
cise time domain inequality.

The robust performance of this general uncertain LPV system  
(Figure 7) can be measured by the worst-case induced 2  gain from 
input d to output e over all uncertainties ∆ satisfying the finite-time 
horizon constraint in (15). The following Theorem (from [12]) pro-
vides a matrix inequality condition to compute the upper bound on the 
worst case 2 -gain of ( ),u Tρ ∆ .

Theorem 3.2 (Extended Bounded Real Lemma [11])
Let ( ),u Tρ ∆  be well posed for any ( ),IQC M∆ ∈ Ψ . Then, the worst 
case gain of ( ),uF Tρ ∆  is upper bounded by <γ ∞ if there exists a 
continuously differentiable : xnP →   and a scalar > 0λ  such that 
the following conditions hold for all ( ),ρ ρ ∈ ×    : 

	 ( ) > 0,P ρ 	 (17)

	

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )

1 2

1

2

,

0 0

0

T

T

T

P A A P P P B P B

B P

B P I

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

ρ ρ

 + + ∂
 
 
 

−  



	

( )
( )
( )

( ) ( ) ( )
1

11 1 11 12

12

T

TT

TT

C

D M C D D

D

ρ

λ ρ ρ ρ ρ

ρ

 
 
 +    
  

	 (18)

	

( )
( )
( )

( ) ( ) ( )
2

21 2 21 222

22

1 < 0

T

T

T

C

D C D D

D

ρ

ρ ρ ρ ρ
γ

ρ

 
 
 +    
  

	

Proof. The proof is similar to Theorem 2.1. The uncertainty ∆ 
is assumed to satisfy the IQC defined by ( ),MΨ , and therefore 
the signal z satisfies (15) for any > 0T . Define a storage func-
tion ( ) ( ), = TV x x P xρ ρ  as in the proof of Theorem  2.1. Left/right  
multiplication of Equation 18 by [ ], ,T T Tx w d  and [ ], , TT T Tx w d  leads 
to the following dissipation inequality 

	 2

1 < 0T T TV d d z Mz e eλ
γ

− + + 	 (19)

Integrating (19) over the finite time horizon [ ]0,T  and using the initial 
condition ( )0 = 0x  along with the conditions > 0λ  and ( ) > 0P ρ  leads 

to the gain bound e dγ≤ . This holds for any input 2d ∈ , admis-
sible parameter trajectory ρ ∈  and uncertainty ( ),IQC M∆ ∈ Ψ . 
Therefore the worst-case gain is upper bounded by γ. 

The robustness analysis therefore consists in searching for decision 
variables, namely the matrix function ( )P ρ , gain bound γ, and the 
constant λ, that lead to the feasibility of the conditions in Theorem 3.2.  
If the linear matrix inequality (LMI) conditions are feasible, then the 
system is stable for the selected uncertainty bound b. A bisection can 
be used to find the largest value of b for which the LMI is feasible.  
This largest uncertainty bound corresponds to the stability (disk) 
margin, denoted by r, for the LPV system. For example, the intercon-
nection in Figure  6 is stable for all real gains from uK to u in the  

interval 1 1,
1 1

r r
r r

− + 
 + − 

. The other disk margin interpretations given in 

Section "Disk Margins for LTI Systems" have similar extensions to the 
LPV interconnection. The key point is that the plant and controller are 
LPV and the time-domain analysis enables the robustness with 
respect to LTI (disk-margin) uncertainty to be evaluated.

Theorem 3.2 can also be used to evaluate performance, in addition to 
the stability margin. In particular, it is important to emphasize that the 
performance can become unacceptable before the system becomes 
unstable. Thus, it is useful to evaluate the performance degradation 
for uncertainty bounds within the stability margin. In other words, a 
plot of worst-case gain vs. uncertainty bound b will approach infinity 
as b r→ . The performance degradation as the bound b increases 
provides additional useful information beyond simply knowing the 
stability margin r. It should also be mentioned that this approach can 
be used to obtain generalized delay margins for LPV systems, using 
existing time-domain IQCs for time delays. The work in [10] provides 
detailed information on IQCs for time-delayed LPV systems.

Numerical Implementation

The conditions in Theorem  3.2 involve infinite dimensional LMIs, 
i.e., the conditions must hold for all ρ ∈ . In the case of Sys-
tem  (1),depending only rationally on ρ , a guaranteed solution of 
the parameter dependent LMI conditions can be found, as proposed 
in [14]. In many practical applications, for example, the aeroelastic 
vehicle considered here, (1) depends arbitrarily on ρ . For this class 
of systems, an approximation of the parameter dependent constraints 
based on gridding is proposed in [19]. Specifically, the parameter 
space is approximated by a finite grid over ( )×   . It should be 
emphasized that the gridding approach is only an approximation for 
the parameter-dependent LMI conditions. Hence, no rigorous perfor-
mance guarantees are provided by this approach, and special care 
must be taken when drawing conclusions. A pragmatic implementa-
tion of this approach is as follows: Enforce the LMI conditions on 
a "coarse" grid consisting of a small number of points, in order to 
reduce computation time. The resulting solution can then be checked 
on a "dense" grid of many points to ensure the accuracy of the solu-
tion. The SDP can be re-solved on a less coarse grid if required.

Another issue is that the matrix function P in Theorem 3.2 is itself 
parameter dependent. This function P can be expanded in terms of a 
finite number of basis functions: 

	 ( ) ( )=
n

j j
j

P b P
ρ

ρ ρ∑ 	 (20)

∆

w v

d e

z
Ψ

Tρ

Figure 7 – Worst-Case Gain Analysis Interconnection
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where : n
jb ρ →   can be any user-defined differentiable basis 

functions. The matrices Pj appearing in this expansion describe the 
function P with a (finite) number of decision variables. In general, 
there is no specific rule on how to choose the basis function. It has 
been reported that a similar parameter dependence as that in the sys-
tem equations leads to satisfying results [2]. However, there is no sci-
entific validation of this method in the literature. The choice of basis 
function used in the following application example will be described in 
Section "Robustness Analysis".

The final issue is the description of the IQC, which involves the scal-
ing D. In µ-analysis the search over the D-scales is performed in the 
frequency domain on a grid of frequencies. This approach cannot 
be replicated for LPV analysis, since the condition in Theorem 3.2 
is formulated in the time domain. Instead, many different D-scales, 
e.g., { } 1

N
i i

D
=

 can be selected. Each Di defines a valid IQC with cor-
responding filter iΨ . An approach for selecting basis functions for 
IQCs is proposed in [17]. The LMI conditions in Theorem 3.2 can be 
augmented in order to handle these multiple dynamic filters iΨ . The 
extended system then includes the additional dynamics of all iΨ . The 
corresponding LMI condition in (18) is modified to include one term 
corresponding to each selected Di : 

	

( )
( )
( )

( ) ( ) ( )
1

11 1 11 12
1

12

T
i

N
T

i i i i i i
i T

i

C

D M C D D

D

ρ

λ ρ ρ ρ ρ

ρ
=

 
 
     
  

∑ 	 (21)

The constants λi are decision variables each of which must be 0≥  . 
The output state matrices ( ) ( )( )1 11 12, ,i i iC D Dρ ρ  corresponding to the 
output zi of filter iΨ . The analysis includes a search for the constants 
λi that lead to the feasibility of the LMI conditions in Theorem 3.2. It 
is worth noting that, in principle, Ψ  and M do not have to be LTI but 
could potentially be LPV. However, the use of LPV ( ),MΨ  has not 
been fully developed in the literature and will not be pursued here.

Application on a Flexible Aircraft

The proposed method is used to evaluate the LPV robustness margins 
of a flutter suppression controller for a flexible aircraft. The airframe 
is a small, radio-controlled aircraft denoted mini-MUTT, as shown in 
Figure 8. The design is based on Lockheed Martin's Body Freedom 
Flutter vehicle [4]. The mini-Mutt has a mass of 6.7 kg and a wing 

span of 3 meters. It was built completely in-house at the University 
of Minnesota to study the usage of active control for suppressing 
detrimental structural and aerodynamic interactions. These unde-
sired interactions lead to a phenomenon called flutter, which is an 
unstable oscillation that can potentially destroy the aircraft. Given the  
catastrophic consequences of flutter, it is paramount to have an 
insightful and accurate robustness metric available.

System Description

The modeling of the aircraft incorporates structural and rigid body 
dynamics, as well as aerodynamics. The procedure can be found in 
[15]. The final model which is used is adapted from [11] and describes 
the longitudinal dynamics for straight and level flight. The system has 
a total of six states as well as one input and three output signals.

A schematic overview of the aircraft is depicted in Figure 9, showing 
the available sensors and actuators. The aircraft has a total of 8 flaps 
on the back of the wing. The body flaps are unused in this example, 
while the inner two are the aileron and elevator, respectively. The flut-
ter suppression controller has full authority over the outboard flap 
deflection denoted by δ, such that =u δ . The plant output signals are 
the pitch rate q and the vertical acceleration at the center of gravity 
aCG and the wing tips aWT , such that [ ]= CG WTy qa a . A short period 
approximation of the full model as proposed in [16] is used. The first 
two states of the state space representation are associated with the 
rigid body dynamics and consist of the angle of attack α and pitch 
rate q. The remaining states represent the generalized displacement 
and velocity of the first flexible mode, denoted by η  and η , respec-
tively. Therefore, the approximated plant model is of 4th-order and 
consists of the four states , , ,qα η η. The dynamics strongly depend 
on the airspeed and it is therefore straightforward to represent the air-
craft model as a parameter varying model. Specifically, the airspeed 
is assumed to be a measurable exogenous signal, which can be used 
as the scheduling parameter ( )tρ . Additionally, the sensor and actua-
tor dynamics and the assumed time delay as described in [16] are 
included, leading to the final 6th-order LPV model.

The LPV controller is mainly based on the H∞ design, which is also 
proposed in [16]. In this work, the airspeed is assumed to be con-
stant, 30 m/s. To adapt the controller design to the LPV description of 
the system, the loopshaping approach can be systematically extended 
using the synthesis algorithm provided in [20]. Weighting filters can 
be used to shape the individual transfer functions of the individual 
performance channels. The modal velocity η  of the first flexible mode 
is used as a non-measurable performance output. Since the main 
objective of the flutter suppression controller is to attenuate the mode, 
this can be achieved by pushing down the peak in the associated 
transfer function using a constant weighting filter.

Figure 8 – mini MUTT

Wing Tip 
Accelerometer

Wing Tip 
Accelerometer

Center 
Accelerometer

Pitch Rate Gyro

Outboard Flap Outboard Flap

Figure 9 – Schematic Overview
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Robustness Analysis

The LPV robustness margin analysis is performed on the closed-
loop system of the aircraft and the LPV flutter suppression control-
ler as shown in Figure 10. The parameter range is assumed to be 

[ ]= 20, ,40ρ  m /s and the parameter variation rate is bounded by 
±10 m /s2. The worst-case performance is computed for increasing 
values of b by solving the LMI conditions in Theorem 3.2. The results 
are then normalized by the 2  gain of the nominal system ( )= 0b . Let 
us recall that a norm bounded uncertainty is assumed to satisfy an 
IQC of the form

	
2

1 2
0

= =
0 1
b

I M
 

Ψ  − 
	 (22)

A second filter with simple first order dynamics

	 2

1 0
1=

10
1

s

s

 
 +Ψ  
 
 + 

	 (23)

is added to the analysis. Let us recall that, in general, it is possible 
to choose any stable minimum phase LTI system as a basis for the 
filter Ψ . However, including more complicated filters into the analysis  
did not lead to a significant improvement of the results. Initially, a 

constant matrix function P is used for the LMI conditions in Theo-
rem 3.2. The analysis is then repeated, using linear and quadratic 
basis functions for the approximation of ( )P ρ , i.e., ( ) 0 1=P P Pρ ρ+  
and ( ) 2

0 1 2=P P P Pρ ρ ρ+ + . As a comparison, for each value of b 
the largest worst-case gain of the LTI systems over all individual grid 
points is computed, using the µ-Analysis framework and the Matlab 
function wcgain. Specifically, for a fixed value of b the LTI worst-
case gain is computed at each grid point. The largest gain of all grid 
points is then plotted as a function of the uncertainty norm bound b.

Evaluation

The optimization algorithm could not find any feasible solutions using 
a constant P and a linear basis functions. The analysis results using 
quadratic basis functions are shown in Figure 11. It can be seen that 
the worst-case gain using wcgain as well as the proposed method 
for LPV systems converges to the gain of the nominal plant ( )= 0b  . 
The gain slowly increases for uncertainty bounds below 0.1. Even 
further, the upper bound on the worst-case LPV gain is very close to 
the lower bound given by the largest LTI worst-case gain over all grid 
points. Using a constant matrix P as well as affine parameter depen-
dence clearly introduces too much conservatism. Additional basis 
functions for the matrix function ( )P ρ , such as a third-order poly-
nomial were tested as well, but did not lead to a significant improve-
ment of the results. Adding an additional IQC with internal dynamics 
shows only minimal improvement of the results. Both curves indi-
cate an upper bound for the robustness margin of 0.27maxb ≈ , cor-
responding to a real gain at the plant input of about 1.7 (4.6 dB). In 
comparison, the lowest LTI input-disk margin over all individual grid 
points is 4.9 dB. Let us recall that evaluating the classical LTI margins 
at each grid point has only been assumed to give a valid statement for 
the overall LPV system, so far. However, the results obtained by the 
worst-case LPV gain are very close to the LTI margin results, which 
indicates that the LTI analysis is indeed a useful first indicator of the 
LPV robustness in this application.

Conclusion

The IQCs framework can be used to extend classical robustness mar-
gins to LPV systems. The approach is independent from the plant and 
therefore no specific uncertainty modeling is required. Simultaneous 
gain and phase variations can be expressed using a norm bounded 
LTI perturbation block in connection to the nominal LPV system. The 
worst-case gain metric can be used to determine the robustness 
margins in the time domain, as well as the robust performance. The 
applicability was demonstrated on a flutter suppression controller 
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∆

δK δ
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Figure 10 – Equivalent Input Disk Margin Interconnection
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The paper deals with the development of anti-windup schemes and related numerical  
 oriented tools. The objective is then to design anti-windup compensators to 

guarantee stability and performance for some particular classes of nonlinear actuators 
presenting both magnitude and rate saturations. The lateral flying case for a civil 
aircraft undergoing aggressive maneuvering by the pilot is addressed. A complete 
methodology including theoretical conditions and associated toolbox is then proposed 
and compared to solutions based on anti-PIO filters. 

Introduction

The paper is aimed at developing anti-windup schemes and related 
numerical tools, in order to alleviate the Pilot-Induced-Oscillations 
in the lateral flying case for a civil aircraft undergoing aggressive 
maneuvering by the pilot. Indeed, anti-windup strategies represent 
an appropriate framework to mitigate the undesired saturation effects 
[24], [31]. Thus, the general principle of the anti-windup scheme can 
be depicted in Figure 1, where the (unconstrained) signal produced 
by the controller is compared to what is actually fed into the plant (the 
constrained signal). This difference is then used to adjust the control 
strategy by preserving stability and performance.

Such an anti-windup scheme is crucial for many control plants, since 
adding such a compensator to a previously computed control loop 
enables the performance of the closed-loop system to be improved, 
and could even prevent dramatic behavior, such as diverging solu-
tions, when starting from bad initial conditions. For instance, [2], [3], 
[13], [14], [11], [12], [24] discuss several examples of open-loop 
unstable or stable physical systems presenting diverging solutions 
due to the presence of saturations. In particular, this undesirable 
nonlinear behavior appears for all exponentially unstable open-loop 
control systems, as well as for some marginally stable open-loop 
systems, as established in [23], [29].

Actually, this problem is particularly crucial for the space and aeronau-
tical fields, where the Pilot-Induced-Oscillation (PIO) phenomenon is 
observed; that is, the existence of a particular external excitation (signal 
w in the notation of Figure 1) renders the closed-loop system unstable 
without anti-windup compensator [1], [15]. Thus, ad-hoc [22], [16] 
or advanced anti-windup strategies [8], [9], [18] for PIO suppression 
have been proposed in the literature and applied in practice.

For a given plant in closed loop with a pre-designed controller 
(designed without taking into account the saturation constraint) and 
a saturating input, the design of the anti-windup compensator is usu-
ally split into two steps, as explained in [26]. First, an analysis study 
is performed to estimate the effect of the isolated nonlinearity on the 
performance of the closed-loop system. Then, the second step is the 
design of an anti-windup compensator to improve the performance. 
By "performance", various notions could be considered, such as 
the 2  gain between a perturbation w and the regulated output z, 
as depicted in Figure 1. Of course, this performance estimation is 
associated with an estimation of the region where the initial condi-
tions need to be restricted, in order to guarantee the asymptotic or 
exponential stability of the origin.

Numerous methods exist for the design of anti-windup compensators 
for control systems in the presence of magnitude or rate saturation 
constraints. See, for example, [11], [30], [10], [28], [24], [31] to 
cite just a few books, surveys or special issues on this subject. Of 
course, the aim of this paper is not to give an exhaustive perspective 
about anti-windup compensator design, but rather to present some 
hints and algorithms on how to solve numerically the anti-windup 
compensator design problem for an application purpose. Actually, 
due to the classical tradeoff between performance and estimation 
of the suitable region of initial conditions, the design of anti-windup  

w

yc u z
yp

uc

–

plantsaturation 
nonlinearity

unconstrained 
controller

anti-windup 
compensator

+

w

x

y

v
v
 
 
 

Figure 1 – Anti-windup principle



Issue 13 - September 2017 - Anti-Windup Algorithms for Pilot-Induced-Oscillation Alleviation
	 AL13-07	 2

compensators is cast into a static optimization problem, written 
in terms of Linear Matrix Inequalities (LMIs). Such an optimization 
problem can be solved numerically in an efficient way using classical 
software in a Matlab environment. To illustrate the approach and algo-
rithms, the anti-windup compensator design methods are applied to a 
lateral aircraft model, in order to provide a systematic way to mitigate 
the PIO phenomenon. Although actuator loss is not exactly the subject 
of the paper, we illustrate the case where only one aileron is available, 
allowing us to consider a harsh limit on the actuator bounds to better 
exhibit the effect of saturation and anti-windup actions.

This paper is organized as follows. First, the model and the problem 
under consideration are stated in Section "Model description and prob-
lem formulation". The main results are presented in Section "Main anti-
windup design conditions", where numerically tractable conditions 
are given to solve the anti-windup compensator design problem and 
some efficient algorithms are given. The numerical tools used to actu-
ally solve the problem are focused on in Section "Dedicated software 
tools for solving saturated and anti-windup problems". These tools are 
then illustrated through an application to a realistic model for a civil 
transport aircraft in Section "PIO alleviation using an anti-windup loop". 
Some concluding remarks and perspectives end the paper.

Model description and problem formulation

The full model, including the plant, actuator, controller and anti-windup 
loop, is precisely defined below.

Plant model
We assume that the output of the controller is not affected in a same 
way by the nonlinear elements. The vector mu∈ℜ  building the m 
inputs of the plant is broken down into two subvectors: the first one, 
denoted by sm

su ∈ℜ , corresponds to ms saturated inputs, whereas 
the second one, denoted by sm m

nsu −∈ℜ , corresponds to the linear 
inputs (unsaturated inputs). The plant model can be defined by: 

	 sysP :

s ns
p p p pu s pu ns pw

s ns
p p p pu s pu ns pw

s ns
z p zu s zu ns zw

x A x B u B u B w
y C x D u D u D w
z C x D u D u D w

 = + + +
 = + + +
 = + + +



	 (1)

where pn
px ∈ℜ  and qw∈ℜ  are the state and the measured output of 

the plant. qw∈ℜ  generally represents an exogenous perturbation, but 
may also be used to represent a reference signal (or both). Further-
more, lz ∈ℜ  represents the regulated output, which is used to evalu-
ate the performance of the system with respect to the perturbation w 
via some appropriate optimization criteria.

Controller model
Unlike the classical anti-windup loops, in which the output of the anti-
windup controller is injected into the dynamics of the controller and/
or the output of the controller, we consider here that the output of 
the anti-windup controller modifies only partially the dynamics of the 
controller and/or the output of the controller. Thus, the dynamical con-
troller is described as follows: 

	 sysC :
c c c c c cw ca x

s s s
cs c c c c cw ca y

ns ns ns
cns c c c c cw

x A x B u B w B v
y C x D u D w D v
y C x D u D w

= + + +
 = + + +
 = + +



	 (2)

where cn
cx ∈ℜ  and p

cu ∈ℜ  are the state and the input of the  
controller. The output of the controller is broken down into two sig-
nals: sm

csy ∈ℜ , which will be interconnected us through a saturated 
actuator, and sm m

cnsy −∈ℜ , which will be interconnected with the 
linear (unsaturated) input uns. Moreover, vx and vy are the additional 
inputs that will be connected to the anti-windup controller. Bca and Dca 
are matrices of dimensions c crn n×  and s rm m× , and make it possible 
to specify what the ncr states and mr outputs modified by the anti-
windup action are.

Actuator model
The actuator block between the output of the controller yc and the input 
of the plant u is divided into two blocks: the first one corresponding 
to the nonlinear (saturated) part and the second one corresponding to 
the linear (unsaturated) part. The nonlinear actuator part involves ndz 
nested saturations, including the case of rate and magnitude satura-
tions, as depicted in Figure 2(a). Such nonlinearities are tackled via 
the use of dead-zone, denoted by ( ).iφ , = 1,..., dzi n . 

The dynamical model of the actuator is based on Scheme 2(b) as follows: 

with	
1

0 0 0 0

= ( )
 : = ( )

=

a

cs cs a

s a

x v v
sysACT v T y T y T x

u x

φ
φ

+
 + −





	 (3)

where ( ) ( )
00 =cs u cs csy sat y yφ −  and ( ) ( )

11 = uv sat v vφ − . ( )
0

.usat  and 
( )

1
.usat  are classical saturation functions and u0 and u1 are the levels 

of saturation in magnitude and rate, respectively. The elements of the 
diagonal matrix 0

s sm mT ×∈ℜ  classically take on large enough values, in 
order to avoid affecting the linear dynamics of the closed-loop system.

Anti-windup compensator
In the DLAW (Direct Linear Anti-Windup) strategy, the anti-windup con-
troller uses as input the difference between the signals issued either from 
the input and the output of the whole actuator or from the input and the 
output of the nonlinear elements included in the actuator. Then, the anti-
windup loop under consideration in the paper considers that the inputs 
of the anti-windup controller are the dead-zones associated with each 
saturation. Hence, the anti-windup controller of order naw is written as: 

	
( ) ( )
( ) ( )

0 1
0 1

0 1
0 1

=
 : 

=

aw aw aw aw c aw

x
aw aw aw c aw

y

x A x B y B v
AW v C x D y D vv

φ

φ φ

φ φ

 + +

  + +  



	 (4)

where vx and vy are of dimensions ncr and mr , respectively.

Interconnections
The interconnections considered can be described as follows:  
•	 linear link between the output of the plant and the input of the 

controller: =c pu y ; 

ycs us

ycs usv

(a)

(b) +
–

0u±

0u±

1u±

1u±0T

0

1
1 1T s +

Figure 2 – (a) Actuator with rate and magnitude saturations. (b) Model used 
to represent such an actuator (scalar case)
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•	 the first part of the output of the controller ( ycs) is linked to the cor-
responding inputs of the plant (us) through the actuator model (3); 

•	 the second part of the output of the controller is directly con-
nected to the corresponding inputs of the plant: =ns cnsu y ; 

•	 vx and vy are built from the anti-windup compensator. 

Remark 2.1
An important fact is that the anti-windup model (4) imposes the 
assumption that the input and output signals of each saturation block 
in Figure 2 are available. To overcome this assumption, alternative 
strategies can be investigated. For example, the anti-windup may 
use the difference between the nonlinear actuator and a linear ficti-
tious one (with the same dynamics but without saturation blocks) to 
explicitly take into account the dynamics of the actuator (present in 
the rate limiter) [20]. Another option would be to build an observer to 
evaluate the internal state of the actuator [27]. 

Standard formulation
In [24], a standard formulation of the anti-windup design has been pro-
posed for various kinds of actuators. In the current case, by consider-
ing an augmented state of dimensions = p s c awn n m n n+ + +  including 
the state of the plant, the state of the actuator, the state of the control-
ler and the state of the anti-windup controller, the following standard 
model of the complete closed-loop system can be defined by: 

	

0 0 1 1 2

0 00 0 01 1 0

1 10 0 11 1 1

2 20 0 21 1 2

=  ( )  ( )  
= ( ) ( )
= ( ) ( )
= ( ) ( )

c

c c w

c w

c w

x x y v w
y x y v w
v x y v w
z x y v w

φ φ
φ φ
φ φ
φ φ

+ + +
 + + +
 + + +
 + + +

    
   
   
   

	 (5)

where the matrices of the anti-windup controller are encapsulated into 
the matrices of system (5). Details of these matrices are given in Sec-
tion "Algorithms for AWφ design".

The design procedure of the anti-windup controller consists in opti-
mizing some quantities, such as the size of the region of stability of 
the closed-loop system or the guaranteed level of performance. In 
particular, the idea when adding the anti-windup loop is to maximize 
the basin of attraction of the origin for the closed-loop system and/
or to minimize the 2  gain between w and z or to maximize the set of 
perturbation w, which can be rejected. Then, the perturbation signal 
is assumed to be bounded in energy, as follows: 

	 ( ) ( )2 1 1
2 0

=  ; 0 <w w t w t dt δ δ
∞ − −≤ ≤ ∞′∫ 	 (6)

The problem that we intend to address is summarized below.

Problem 2.2
Determine an anti-windup controller AWφ and a region  , as large as 
possible, such that
•	 Internal stability. When = 0w , the closed-loop system (5) is 

asymptotically stable for any initial conditions belonging to   
(which is a region of asymptotic stability (RAS)); 

•	 Performance. When 0w ≠ , satisfying (6), and for ( )0 = 0x , the 
2  gain between w and z is finite and equal to > 0γ . Further-

more, the trajectories of the closed-loop system (5) remain 
bounded in the set  . 

The convex optimization problems associated with Problem 2.2 are 
specified in Section "Algorithms for AWφ design".

Main anti-windup design conditions

Solution to standard anti-windup design

The following proposition provides conditions of local stability and 
2  performance for the closed-loop system (5). The result considers 

existence conditions to solve Problem 2.2. 

Proposition 3.1
If there exist a symmetric positive definite matrix n nQ ×∈ℜ , two 
matrices Z0 and 1

m nZ ×∈ℜ , two positive diagonal matrices S0 and 
1

m mS ×∈ℜ  and a positive scalar γ such that the following conditions 
are met: 

0 0 0 0 1 1 1 1 2 2

0 00 0 0 00 01 1 0 10 0 0 20

1 11 1 1 11 1 1 21

2

2
2 < 0

w

w

w

Q Q S Q Z S Q Z Q
S S S S S S

S S S S
I

Iγ

+ − − − −′ ′ ′ ′ ′ ′ 
 − − − − − −′ ′ ′ 
 − − − −′ ′
 − ′ 
 − 

       
      
     
   
   

	 (7)

	
( )

( )

0

2
0

  
0,  = 1,...,

i

i

Q Z
i m

uδ

′ 
≥ 

  
	 (8)

	
( )

( )

1

2
1

 
0, = 1,...,

i

i

Q Z
i m

uδ

′ 
≥ 

  
	 (9)

then,
1.	 when = 0w , the set ( ) { }1 1 1, = ;nE Q x x Q xδ δ− − −∈ℜ ≤′  is 

RAS for the closed-loop system (5); 
2.	 when ( )0 = 0x , satisfying (6), and for ( )0 = 0x ,

-- the trajectories of the closed-loop system remain bounded 
in the set ( )1,Q δ− ; 

-- the 2  gain is finite and one obtains: 

	 ( ) ( ) ( ) ( )
0 0

, 0
T T

z t z t dt w t w t dt Tγ′ ′≤ ∀ ≥∫ ∫ 	 (10)

The detailed way to derive the conditions and to prove them can be 
found, for example, in [24], [31].

Remark 3.2
The interest of the anti-windup structure resides in the simplicity of 
the design conditions. Indeed, the design of a static anti-windup gain 
(only matrices 0

awD  and 1
awD  are used) is the result of a fully linear 

problem. In the case of the design of a dynamical anti-windup con-
troller, for a priori given matrices Aaw and Caw , the determination of 
the input and transmission matrices is also obtained by solving a 
linear problem. In the case where =

saw p m cn n n n+ +  , the resolu-
tion of a linear problem can also be considered through an iterative  
procedure [24]. 

For analysis purposes (the anti-windup controller being given), the 
conditions of Proposition 3.1 are linear and can be directly used to 
solve adequate optimization problems. Moreover, in the design con-
text, the conditions of Proposition  3.1 are non-convex, matrices 
Aaw , Baw , Caw and Daw, hidden in matrices  , i , i , ij , , = 0,1i j .  
Conditions with linear decision variables can be obtained, more or 
less directly, by slightly modifying the original conditions, or even 
by considering iterative procedures (including D-K iteration process) 
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allowing a Lyapunov matrix and anti-windup matrices to be sought. 
These situations are detailed in the next subsection.

Remark 3.3
In the sequel, one considers a set 0 , defined by some directions in 
the plant state space pn

iv ∈ℜ , i = 1,..., q , to provide a desired shape 
of the region 1( , )E Q δ−  to be maximized when solving Problem 2.2. 
Then, considering [ ]= 0 n

i iv v ′ ∈ℜ′ , i  =  1,..., q and β a scaling  
factor such that 1( , )iv E Qβ δ−∈ , i  =  1,..., q (which corresponds 

to imposing 1
0 ( , )E Qβ δ−⊂ ), an additional condition to those of 

Proposition 3.1 must be considered in the algorithms, as follows: 

	 2

1  
> 0, = 1,...,i

i

v
i q

v Q

δ δ
β
δ

 ′ 
 
  

	 (11)

This means that β is used to maximize the region of attraction of the 
system and 0  allows the directions of interest for this region of 
attraction to be oriented. 

Algorithms for AWφ design

From (1), (2), (3) and (4), the matrices of system (5) are defined by: 

	 [ ] [ ] [ ]

0 1
0 1

0 10 1

0 0 0 1 1 1 2 2
0 1 0 1

00 0 01 0 10 1 1 11 1

2
2 20 21

= = =
0

= = = 0
= = = =

= = 0 = 0
0

v aw v aw v aw

aw aw aw

v aw v aw

v aw v aw v aw v aw

B C B B D B B D
A B B

C C C C C C C
C D C D D C D C D

B

φ φ   + + 
    

     

+

 
 
 

  

  
   

  



	 (12)

with 

	 ( ) ( ) ( )
1 1 1

1 1 1
0 0 0

1 1 1

=

ns ns s ns ns s ns ns
p pu c p pu pu c pu pu c

s ns ns s s s ns ns s s s ns ns
c p pu c p c pu ms c pu c pu c c pu c

ns ns s ns ns s ns ns
c p c pu c p c pu c pu c pu c c pu c

A B D C B B D D B C
T D C D D C T D D I D D D D T C D D C

B C B D D C B D B D D D A B D C

− − −

− − −

− − −

 + ∆ + ∆ ∆
 

+ ∆ − + ∆ + ∆ 
 + ∆ + ∆ + ∆ 




	

	

( )
( )( )

( )

1

1
2 0

1

=

ns ns ns
pw pu c pw cw

s s s ns ns ns
c pw cw c pu c pw cw

ns ns ns
cw c pw c pu c pw cw

B B D D D

B T D D D D D D D D

B B D B D D D D

−

−

−

 + ∆ +
 
 + + ∆ +
 
 + + ∆ + 

	

	 0 0 1 1 0

0 0
= = =

0 0
ms

B T B I D Tφ φ

  
  
  
     

	

	

( ) ( )
( ) ( ) ( )

1 1 1
0

1 1 1
1 0 0 0 0

1 1 1
2

=

=

=

s ns ns s ns ns s s s ns ns
c p pu c p c p pu c pu c c pu c

s ns ns s ns ns s s s ns ns
c p pu c p c p pu c pu c c pu c

ns ns s ns ns s ns ns
z zu c p zu zu c pu zu c

C D I D D C D I D D D C D D C

C T D I D D C T D I D D D T T C D D C

C C D D C D D D D D C

− − −

− − −

− − −

 + ∆ + ∆ + ∆ 
 + ∆ + ∆ − + ∆ 
 + ∆ + ∆ ∆ 

	

	

( )
( )( )

( )

1
0

1
1 0

1
2

=

=

=

s s s ns ns ns
w cw c pw c pu c pw cw

s s s ns ns ns
w cw c pw c pu c pw cw

ns ns ns
w zw zu c pw cw

D D D D D D D D D

D T D D D D D D D D

D D D D D D

−

−

−

+ + ∆ +

+ + ∆ +

+ ∆ +

	

Furthermore, matrices defining the interconnection between the anti-windup loop and the system are: 

	 0 0 1 0

0

= 0 = 0 = 0

0
r r r

cr

v ca m v ca m v ca m

ca n

B T D I C D I C T D I

B I

 
 
            
    
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The analysis problem (Algorithm 3.4) is linear and the synthesis prob-
lem of the anti-windup is nonlinear, including products between deci-
sion variables and, in particular, between the Lyapunov matrix Q and 
the anti-windup elements. A D-K iteration procedure may then be con-
sidered for the synthesis problem (Algorithm 3.6). However, the syn-
thesis optimization problem may be partially linearized and, for given 
matrices Aaw and Caw, the design of matrices i

awB  and i
awD , i = 0,1 

can be handled via a linear optimization problem (Algorithm 3.5).

Algorithm 3.4
Analysis of a given AWφ anti-windup controller

1.	 Select matrices Aaw , 
0
awB , 1

awB , 0
awD , 0

awD  and 1
awD . 

2.	 Choose directions to be optimized pn
iv ∈ℜ , i = 1,..., q and a 

known perturbation bound δ. 
3.	 Solve 

	
( )

, , , , , ,0 1 0 1

,min cost
Q S S Z Z

f
γ µ

γ µ
	

	 subject to LMI (7), (8), (9) and (11)	

where γ is the 2  gain between w and z and 2= 1/µ β . 

Algorithm 3.5
Design of an AWφ anti-windup controller with fixed dynamics

1.	 Select matrices Aaw and Caw . A static anti-windup AWφ may 
also be used by considering naw = 0. 

2.	 Choose directions to be optimized pn
iv ∈ℜ , i = 1,..., q and a 

known perturbation bound δ. 
3.	 Solve 

	
( )

0 1 0 1, , , , , , , , , ,0 1 0 1

,min cost
Q S S Z Z B B D Daw aw aw aw

f
γ µ

γ µ
	

	 subject to LMI (7), (8), (9) and (11)	

where γ is the 2  gain between w and z and 2= 1/µ β . 
4.	 Compute 0 0 1

0=aw awB B S − , 1 1 1
1=aw awB B S − , 0 0 1

0=aw awD D S −  and 
1 1 1

1=aw awD D S − . 

Algorithm 3.6
Design of an AWφ anti-windup controller – full design

1.	 Select matrices Aaw , Caw of appropriate dimensions, in order to 
build the desired anti-windup loop. 

2.	 Choose the directions to be optimized pn
iv ∈ℜ , i = 1,..., q  and 

a known perturbation bound δ . 
3.	 Pre-synthesis step – Solve 

	
( )

0 1 0 1, , , , , , , , , ,0 1 0 1

,min cost
Q S S Z Z B B D Daw aw aw aw

f
γ µ

γ µ

	 subject to LMI (7), (8), (9) and (11)	

where γ is the 2  gain between w and z and 2= 1/µ β . 
4.	 Compute 1 1 1

1=aw awB B S − , 1 1 1
1=aw awB B S − , 0 0 1

0=aw awD D S −  and 
1 1 1

1=aw awD D S − . 
5.	 If the solution obtained is satisfactory (some accuracy has to 

be fixed), or no longer improved compared to the previous 
steps, then STOP. Otherwise, go to the next iteration (the idea 
is to finish by a pre-synthesis step). 

6.	 Synthesis step – Pick the solution Q obtained at Step  3 and 
solve 

	
0 1 0 1, , , , , , , , , ,0 1 0 1

min
S S Z Z A C B B D Daw aw aw aw aw aw γ

γ
	

	 subject to LMI (7), (8), (9) and (11)	

7.	 Go to Step 3. 

Remark 3.7
The optimization cost function fcost is typically related to the perfor-
mance of the disturbance rejection (min γ) and/or to the size of the 
domain of safe behavior in which the trajectories of the system may 
be initiated. In this paper, we consider inequalities (11) and min μ, 
with 2= 1/µ β  but any other criterion of the matrix i

awB  could be 
used. 

Remark 3.8
In Algorithm 3.5 and in Step 3 of Algorithm 3.6, condition (7) is not 
directly applied. The products between i

awB  and i
awD  with the matrices 

Si are replaced by the change of variables i
awB  and i

awD  , i = 0,1, 
which allows the problem to be linearized. 

Remark 3.9
An interesting case is the static anti-windup one, for which matrices 
Aaw and Caw are null matrices of appropriate dimensions. It implies 
that i

awB , i = 0,1, are also null matrices of appropriate dimensions 
and only matrices i

awD , i = 0,1, are computed in Algorithm 3.5. 

Remark 3.10
Matrices Aaw and Caw to be used in Algorithm 3.5 may be selected 
as the solution to a full-order (naw = np + nc + ms ) anti-windup com-
pensator design where the actuator is just a saturation in magnitude 
(see, for example, the conditions provided in [24]), i.e., via a linear 
optimization problem. Eventually, an order-reduction step may also 
be considered in order to select matrices Aaw and Caw (see Exam-
ple 8.5 in [24]). Other procedures developed in [31], such as the 
Model Recovery Anti-Windup (MRAW), could be used. 

Dedicated software tools for solving saturated  
and anti-windup problems

For numerical evaluations, Semi-Definite Programming (SDP) solv-
ers are easily available in a Matlab environment, either considering 
the MathWorks® package LMI Lab included in the Robust Control 
Toolbox™ or any freely available solvers. Similarly, in addition to the 
original parser of the LMI Lab package, one may prefer YALMIP for-
mat  [17] to specify LMIs systems, convex optimization costs and 
associated solvers.

SATAW toolbox [19] has been developed to perform analysis and 
control design operations for linear systems interconnected with 
saturation elements. The toolbox manipulates a flexible descrip-
tion of the continuous-time system, controller and actuator using 
simple structure elements, as they are described in Section "Main 
anti-windup design conditions". For the saturation modeling, sec-
tor conditions are used. In this representation, the saturation term 
is replaced by a dead-zone nonlinearity. Hence, sector condi-
tions, locally or globally valid, can be used to provide stability 
and stabilization conditions. The package then includes several  
functions for:  
•	 state feedback or output feedback analysis, in the presence of 

position saturation and/or rate saturation; 
•	 state feedback or output feedback design, in the presence of 

position saturation; 
•	 static and dynamic anti-windup analysis, in the presence of  

position saturation; 
•	 static anti-windup design, in the presence of position saturation. 
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Actually, the current published version of the toolbox does not allow 
the dynamic anti-windup design problem to be formally solved in the 
presence of position and rate saturation, but gives many elements to 
extend the functions to the case addressed in this paper.

Alternatively, the AWAST Tools [5], which were recently updated and 
integrated as a library (SAW Library) of the SMAC Toolbox [4], enable 
rather general anti-windup problems to be formalized and solved, fol-
lowing the practical framework proposed in [6]. 

PIO alleviation using an anti-windup loop

The design and analysis algorithms of Section "Main anti-windup design 
conditions" are now applied and compared in the realistic context of lat-
eral maneuvers of a civil transport aircraft. Specific attention is devoted 
to aggressive pilot demands in conjunction with actuator loss.

To do this, the pilot's activity is modeled as a static gain Kpil. For this 
application, a normal activity would correspond to Kpil = 1. Actu-
ally, in stressful situations, notably in case of actuator loss, a more 
aggressive pilot behavior is generally observed, resulting in much 
higher gains. Here, the gain is set to Kpil = 2.

Problem setup and objectives

A nonlinear closed-loop Simulink implementation of the anti-windup 
structure is depicted in Figure 3. The "aircraft" block is a linearized 
version (for fixed airspeed and altitude under cruise flight conditions) 
of the lateral dynamics of the system, including structural filters and 
delays, resulting in a state-space model of dimension 63. The control-
ler block includes a dynamical controller of dimension 29. Its central 
objective is to provide good damping for the Dutch roll and to enable 
a safe control of the roll rate so that the bank angle φ is then easily 

controlled by the pilot with a simple gain Kpil. The state-space models 
sysP and sysC are then readily obtained from the Simulink diagrams 
of Figure 3, with the help of the Matlab linmod function. The plant 
corresponds to the "yellow box" depicting the aircraft system while 
the global controller (including pilot actions) is obtained by extrac-
tion of the 3 blue boxes. A standard balanced reduction technique is 
finally applied to obtain reasonably sized models. The reduced orders 
obtained, respectively np = 8 and nc = 20, are compatible with the 
proposed algorithms.

The aircraft system involves 2 control inputs (m  =  2): ailerons 
and rudder deflections. Note that only the aileron deflection actua-
tor is assumed to saturate (ms  =  1) for the considered maneu-
vers. Moreover, 5 outputs ( p  =  5) are available for feedback  
(  = , , , ,py p rβ φ φ ′  

  ). The performance is evaluated via the tracking 
accuracy on the fourth bank-angle output φ (then, l = 1). The distur-
bance input of System (1) is used to express the perturbing effect of 
the saturation of the system input, that is, = s

pw puB B  (q = 1).

In the AWφ strategy, two signals (one for the magnitude limitation and 
one for the rate limitation) are used by the anti-windup device. Their 
generation is detailed in the Simulink implementation of Figure 4. 

The anti-windup controller acts on the internal dynamics of the 
nominal lateral controller of the aircraft through two scalar signals 
vp and vb, which respectively affect roll and sideslip angle dynamics  
( =   px bv v v    and vy = 0, ncr=2, mr = 0). This means that matrix 
Bca appearing in Equation (2) is of dimension nc × 2.

The chosen strategy offers some flexibility, with the possibility of a 
direct anti-windup action at the controller output. However, no sig-
nificant improvement has been observed with this additional feature, 
which has thus not been further considered in this application. This 
means that Dca appearing in Equation (2) is equal to 0.
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Figure 3 – Nonlinear closed-loop Simulink implementation of anti-windup AWφ for lateral aircraft simulations
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The main objective of this application is to design and evaluate anti-
windup compensators to improve the aircraft response to roll angle 
solicitations while limiting oscillations despite actuator loss [18]. Dur-
ing such maneuvers, a significant control activity is observed on the 
ailerons. This is why the effects of saturations are modeled and taken 
into account for these actuators in the diagram of Figure 3, while no 
saturation is introduced on the rudders. The effects of saturations 
become even more penalizing in case of a partial loss of control capa-
bility. Assume indeed that the aircraft is controlled by a pair of ailerons 
on each wing, but that only one is operational. In that case, the activity 
of the remaining actuators is doubled, as well as the risk of magnitude 
and rate saturations. Then, the magnitude and rate limits in the follow-
ing are halved. We consider u0 = Lm = 10 deg (instead of 20 under 
normal conditions) and u1 = Lr = 20 deg (instead of 40).

In the following, various cases studies are implemented and compared:  
•	 Unsaturated – A non-saturated case where saturation elements 

are removed allows an ideal behavior of the closed-loop system 
to be exhibited; 

•	 Saturated – A saturated case without compensation strategy 
is used as the nominal behavior of the closed-loop saturated 
system; 

•	 Anti-PIO filter – The standard anti-PIO filter used in the industry 
is an "open-loop" solution that does not exploit the information 
relative to the saturation of the signal (see [7]). It may be con-
sidered as the basic solution from the industry. This strategy 
consists in adding a dynamical block with pre-saturation be-
tween the pilot gain (Kpil ) and the control block. The full scheme 
is hidden in the block REFERENCE in Figure 3; 

•	 Static AWφ – A static version of our anti-windup strategy is 
designed with Algorithm 3.5. This strategy is an alternative to 
the standard anti-PIO filter, since it is very easy to implement 
(no additional dynamical system to introduce in the controller 
block); 

•	 Dynamic AWφ – A dynamic version of our anti-windup is de-
signed with Algorithm 3.5. Various cases initializing the proce-
dures with given matrices Aaw and Caw are investigated; 

•	 eAW∞  – A dynamic anti-windup built using a structured ∞  
design method [18] is also implemented to compare dynamic 
anti-windup strategies. The advantage of such a strategy is that 
it circumvents some limitations of LMI-based strategies (limi-
tation on the problem size when manipulating LMIs, conser-
vatism of sufficient conditions), but to the detriment of ease 

of construction for engineers who are not always specialists 
in advanced control theories. Note that, unlike the approach 
addressed in this paper, the signal used as input for the anti-
windup scheme is the difference between the output and the 
input of the nonlinear block (denoted by e). 

In what follows, reduced size models are used for stability analysis 
and to compute the anti-windup controllers. Full size models of the 
aircraft and controllers are used for all of the simulations.

Design of a static anti-windup AWφ 

Let us first consider the design of a static AWφ anti-windup where 
only matrices i

awD , i = 0,1 (see Equation (4)), have to be designed 
(naw = 0). The main advantage is that Condition (7) becomes linear and 
that the anti-windup block does not involve any additional dynamics. 
The optimization problem is solved by considering the bound on pertur-
bation δ = 0.1 and ( )1 = 4;:  0pv C   , corresponding to the roll angle, 
as the direction to be optimized over the set ( )1,E Q δ− . Algorithm 3.5, 
followed by Algorithm 3.4, provide the following optimal solution: 

	 Static AWφ  design: γ = 1.18110; β = 0.7808	

with the static anti-windup gains: 

	 0 1

14.7887 0.0042
= 8.6544 = 0.0392

0 0
aw awD D

− −   
   
   
      

	

which shows that the anti-windup hardly uses the rate saturation 
information. Moreover, it is interesting to perform the same analysis 
for the saturated closed-loop system without anti-windup. The feasi-
bility is also obtained and the solution is: 

	 Analysis without anti-widup: γ = 1.8560; β = 0.7796	

The solution with the static AWφ anti-windup described through γ 
and β as performance indicators does not appear to be much bet-
ter than the one without anti-windup: the anti-windup allows γ  to be 
decreased and β to be increased, but only slightly. This does not 
reflect, however, the simulations described below, which show that 
the anti-windup action significantly improves the transient behavior of 
the roll angle, avoiding a large overshoot and degraded time evolution 
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Figure 4 – Detailed view of the magnitude and rate limitation system
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with respect to the saturated case. The meaning of this is that the 
considered optimization criterion, which does not explicitly include 
the time response performance, does not exactly fit the analysis or 
design of the anti-windup loop. Nevertheless, considering criteria on 
time response performance is a difficult task and the optimization cri-
terion used here gives a reasonable trade-off between stability guar-
antee, performance and time response.

Figures 5 and 6 illustrate the time evolution of the closed-loop system 
to a roll solicitation of 40 deg at time t = 1 s followed by a step of 
–60 deg at time t = 15 s and a step of +60 deg at time t = 30 s. 
The responses are compared by considering the case with satura-
tion and no compensation (saturated), a standard anti-PIO strategy 
(anti-PIO filter) and the static AWφ anti-windup strategy. It is important 
to underline that a simple static anti-windup strategy enables better 
performance than the standard anti-PIO case to be obtained, which 
adds dynamics to the system.

Design of a dynamic anti-windup AWφ 

To go further, let us now consider the design of a dynamic anti-windup  
AWφ . The difficulty in that case is to initialize the iterative procedure 
described in Algorithm 3.6, or to select matrices Aaw and Caw used in  
Algorithm 3.5. As for the static case, the optimization problem is solved 
by considering the bound on perturbation δ = 0.1 and ( )1 4;: 0pv C =   
as the direction to be optimized over the set ( )1,Qε δ− .

Let us first consider a very simple structure to set matrices Aaw and 
Caw , namely a modal structure for Aaw allowing its dynamics to be set 
slightly faster than those of the closed-loop linear system: 

	

10 0
100 50

= = 0 10
50 100

0 0
aw awA C

− 
−   
   − −    

	

Algorithm 3.5 followed by Algorithm 3.4 provides the following opti-
mal solution: 
	

Dynamic AWφ  design 1: γ = 1.7863; β = 0.8334
	

with the anti-windup terms: 

0 1 0 1

438.2 3.5
9461.4 60.6

= = = 1009 = 5.1
7872.5 32.9

0 0
aw aw aw awB B D D

   
       
       − −          

Another option is to use matrices Aaw and Caw , which are the solu-
tion to another dynamic anti-windup scheme implemented on the 
same application. The idea is to circumvent the nonlinear problem 
of the dynamic anti-windup by pre-selecting matrices Aaw and Caw 
obtained from other approaches, when they exist, with the expec-
tation of obtaining better results than with a "random" selection as 
done above. In the current case, we consider the solution obtained 
with a structured ∞  design method [18], and previously applied on 
the same numerical evaluation [7]. In that case, Algorithm 3.5 gives 
matrices i

awB  and i
awD , = 0,1i  , (not provided here for readability rea-

sons) and the following optimal solution: 
	 Dynamical AWφ  design 2: γ = 1.7395; β = 0.9147	

80

60

40

20

0

Ba
nk

 a
ng

le
 (d

eg
)

Time (sec)

un-saturated
satured
anti-PIO
static AWφ

–20

–40

–60
0 5 10 15 20 25 30 35 40 45 50

Figure 5 – roll solicitation of +40 deg at time t = 1 s followed by a step of 
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A roll solicitation of 40 deg at time t = 1 s followed by a step of 
–60 deg at time t = 15 s and a step of +60 deg at time t = 30 s
is considered to compare the results. The time responses of the roll 
angle for the case without saturation, with the eAW∞  anti-windup 
resulting from [7] and the designed dynamic AWφ anti-windups are 
plotted in Figure 7. Similarly, the time evolutions of the control input 
δpc in these cases are depicted in Figure 8.

One can observe that the level of performance of the very well-tuned 
eAW∞  anti-windup is slightly degraded in comparison with the two 

cases of AWφ design, but it remains acceptable and close to the ideal 
response that would be obtained if no saturation was present in the 
actuator block. One can also remark that the dynamic anti-windup 
design makes it possible to speed-up the rising time (less than 6 sec-
onds) toward the set-point, with respect to the static anti-windup 

design (more than 6 seconds), even with very basic anti-windup 
dynamics ( AWφ design 1).

Complementary illustrations

The rate-saturation effectiveness is illustrated in Figures  9 and  10, 
where the signals v and ax  are plotted, respectively, for the case with 
and without anti-windup. One can check that the anti-windup action 
both reduces the number of rate-saturation events and the amplitude 
of the signal v entering the saturation element (see Equation (3)).

Moreover, the stick response of the system, i.e., the output of the 
pilot gain block, is plotted in Figure 11 to illustrate the efficiency of 
the anti-windup design. In this case, with a moderately aggressive 
pilot (Kpil  = 2), one can check that the pilot workload increases in 
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is set to 5 s to generate sufficient excitation in the aircraft modes of 
motion.

This illustrates the situation where strong excitation of the lateral air-
craft modes of motion may result in the instability of the saturation 
response. Anti-PIO and anti-windup strategies allow stability to be 
preserved. Moreover, the dynamic anti-windup strategy enables a 
good tracking of the reference to be preserved, when the standard 
anti-PIO and the static anti-windup induce degraded responses with 
overshoot even if stable.

Conclusion

An anti-windup design strategy has been proposed for systems involv-
ing both magnitude and rate saturations, and taking into consideration 
that such saturations elements only affect some of the inputs. Such a 
situation is illustrated on a lateral flying model of a civil aircraft under-
going moderately aggressive maneuvering by the pilot. For this kind 
of systems, it is well known that magnitude and rate saturations of the 
aileron deflection actuator may lead to an undesirable behavior, often 
called Pilot-Induced-Oscillation (PIO). Anti-windup compensators 
have been designed through adequate convex optimization schemes, 
and a comparison with given dynamic anti-PIO filters already devel-
oped has also been provided. The numerical evaluation has made it 
possible to show, first, that a static strategy provides better results 
than classical anti-PIO filters basically used in industry. Moreover, 
the increase in the complexity of dynamic anti-windup compensators 
(both in terms of structure and computation) is compensated by the 
fact that they make it possible to recover behaviors very close to that 
which would be obtained if the actuators were linear. In any case, 
there is room for future work, such as the design of other anti-windup 
schemes, which may include the parameter-varying approach [21] or 
reset controllers [25] 

the presence of saturation, and returns to the order of magnitude of 
the unsaturated case when anti-windup actions are present. Note also 
that when a more aggressive pilot is investigated (not shown here), 
with Kpil  = 3, the saturated system becomes instable as soon as no 
anti-windup is present, but its stability is preserved in the presence of 
static or dynamic anti-windup actions.
 
Finally, the time evolution of the fourth bank-angle output (roll angle) 
in response to a 3211 type input is shown in Figure 12 for various 
configurations (with or without anti-windup). This type of input allows 
to effectively excite the aircraft modes of motion. The time unit ∆ t 
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Acronyms

AW	 (Anti-Windup)
DLAW	 (Direct Linear Anti-Windup)
LMI	 (Linear Matrix Inequality)
MRAW	(Model Recovery Anti-Windup)
PIO	 (Pilot-Induced-Oscillation)
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Control of a flexible launcher during the atmospheric flight phase is a highly 
challenging control problem involving multiple and concurrent design 

requirements: stability (stabilization of unstable rigid dynamics, sloshing modes 
and flexible structural modes), performance (guidance tracking, structural load 
minimization) and robustness (physical parameter uncertainties and accommodation 
to multiple vehicle configurations) on a non-stationary system. This paper focuses on 
co-funded AG/CNES research activities on the development of an advanced modular 
control strategy using recent advances in structured control design. We demonstrate 
here that structured H∞ synthesis could give a gain scheduling solution to full time-
varying flexible launcher control problems during the non-stationary ascent phase, 
enabling load performance improvement between complex sets of requirements, 
and, design cost improvements through simplification of the tuning process. We also 
present a generic framework for rapid control design that is now applicable both for 
European launcher families already in activity (with existing S/W and fixed controller 
structure) and for future expendable and reusable launchers.

Introduction

Ariane Group (AG) and the CNES (French Space Agency) aim to safe-
guard the exceptional quality and reliability of Ariane 5, while devel-
oping a family of next-generation rocket launchers designed to con-
solidate Europe’s leadership in the space industry. In this frame, this 
paper focuses on co-funded AG/CNES R&D activities for developing 
launcher advanced control strategies applicable both for launchers 
already in activity (with existing S/W and fixed controller structure) 
and for future expendable and reusable launchers. Motivation for this 
research is twofold: improve performance and reduce development 
cost focusing on modularity and accommodation to multiple vehicle 
configurations.

Conventional launcher control design during the ascent phase is a 
challenging robust control problem. Key challenges to be tackled to 
ensure performance and robustness are:

•	 aerodynamic instability during atmospheric flight, which repre-
sents a high level of risk [1],

•	 presence of multiple badly damped bending and sloshing modes,
•	 disturbances from the external environment (mainly wind tur-

bulences),
•	 non-linearity of sensors and actuators (delays, noises, limited 

control authority, etc.),

•	 uncertainties and dispersions on all physical parameters that 
characterize launcher dynamics, actuators and sensors,

•	 mission dependency of all the parameters; e.g., launcher char-
acteristics such as MCI and bending modes depend on the 
payload,

•	 varying launcher characteristics throughout the flight (mass, 
thrust, aerodynamics, bending modes, etc.), as well as varying 
objectives (perturbations attenuation, consumption, accuracy, 
etc.) and constraints (loads, actuator limitations).

Therefore, to improve launcher performance, a first research direction 
is to improve model knowledge and accuracy, which is usually done 
on operational launchers using post flight analysis as per ARIANE or 
VEGA. Another research direction is to use recent developments in 
robust control methods. Indeed, during the two last decades, Europe 
has been successfully working on robust control techniques, such 
as Ariane  5 LQG and H∞ control, the VEGA robust modal control, 
adaptive control, optimization methods, or LPV control. Research and 
applications were also performed all over the world. Complemen-
tary results on adaptive control and optimization methods for flex-
ible launcher control of the Ares launch vehicle could be found in 
the literature. All of these design methods were successfully tested 



Issue 13 - September 2017 - Structured Control for Future European Launchers
	 AL13-08	 2

and presented at various AIAA, IFAC, ESA or EUCASS conferences. 
However, despite their satisfying performances, their implementation 
could be complex due to the high order of the synthesized controllers 
required to ensure the desired dynamics and performance.

It was not until recently that structured control developments opened 
new perspectives for control design: by combining robust control 
with controller structure requirements, it is now possible to directly 
synthesize a low-order controller or fixed-structure controller. This 
problem is often that of a non-convex and typically non-smooth 
(non-differentiable) optimization [2, 3]. Recent research has led to 
the development of new powerful tools, such as structured synthesis 
hinfstruct [3] and systune [4,10], available in the Matlab 
Robust Control Toolbox (RCT) [15].

The purposes of this paper are, on the one hand, to demonstrate that 
structured H∞ synthesis could solve full time-varying flexible launcher 
control problems, enabling performance and cost improvement and, 
on the other hand, to present the resulting generic framework for rapid 
launcher control design. This framework was developed on a repre-
sentative benchmark before being used both for the improvement of 
existing launcher control laws and for future launcher pre-develop-
ment phases.

This paper is organized as follows: in Section 3 we give an overview 
of the launcher control problem, then in Section 4 H∞ and structured 
H∞ theory are recalled, focusing on their respective advantages 
and drawbacks for launcher control. A generic framework for rapid 
launcher control design is presented in Section 5. Sections 6 and 7 
gather results from various applications.

Launcher control

Launcher control overview

The automatic control of a launcher is one of the four main func-
tions of the overall flight-control system, which also encompasses 
redundancy, navigation and guidance functions. Since the roll, pitch 
and yaw axes are weakly coupled, the control design is based on 
the assumption that each axis can be controlled independently of the 
other two. A-posteriori verifications of global performance and stabil-
ity are, of course, performed. An example of a 1-axis control loop for 
atmospheric flight is depicted for illustration in Figure 1.

In this figure, corresponding to the launcher benchmark, inputs for the 
controller are the angular and angular rate measurements (additional 
acceleration measurement could also be used as proposed in [5]). 
The controller outputs a commanded thrust deflection angle. As far 
as the control function is concerned, the atmospheric phase (flight 
from lift-off to the jettisoning of the solid propellant boosters) is the 
most critical one. During this phase, the control requirements are, by 
decreasing order of importance:

•	 to ensure the stability of the launcher rigid, bending and propel-
lant sloshing modes, with sufficient stability margins,

•	 to compensate for external (wind, wind gusts) and internal 
(thrust misalignment, static error of the servo-actuators, thrust 
asymmetry) disturbances, while minimizing angle-of-attack, for 
structural sizing reasons,

•	 to follow the guidance orders (attitude set points), by ensuring 
a static error and a response time compatible with guidance 
requirements,

•	 to minimize the cumulated commanded thrust deflections 
(hereafter called consumption), since the hydraulic activation 
devices use a blow-down system.

All of the uncertainties and dispersions associated with launcher and 
trajectory parameters (mass, inertia, location of the center of gravity, 
bending and sloshing modes, propulsion and aerodynamic character-
istics, etc.) must be taken into account for the tuning of the control 
law. All of these parameters also fluctuate during the flight, which 
makes the control problem essentially non-stationary (time-variant).

The control function must therefore simultaneously fulfill:

•	 Performance requirements:
the control law must ensure the required launcher flight behav-
ior, while compensating for the various disturbances.

•	 Robustness requirements:
this behavior must be preserved regardless of the internal and 
external fluctuations that may adversely affect the vehicle dur-
ing the flight.

The main issues of launcher control lies in the trade-off between these 
two sets of requirements that are essentially contradictory, since an 
ill-known system cannot be controlled in a highly efficient way.

Launcher applications

The generic framework for rapid launcher control design was devel-
oped on a representative benchmark before being applied to the 
European launcher control design. This benchmark that can now be 
used, on request, for internal and external research studies on control 
design and validation, is presented here. European launcher models 
and data are not presented here for industrial confidentiality reasons; 
however, for the development of the generic framework, their main 
added value concerns the fixed discrete time controller structure, as 
well as the number and type of actuators and sensors.

Launcher benchmark models

This benchmark deals with pitch control of a symmetric launcher during 
the atmospheric flight phase from take-off to tail-off. Launcher dynamic 
equations are linearized around reference trajectory in the body frame 

Launcher 
dynamic

Actuators 
(thrusters)

Controller

Sensors

βc
commanded angle 
of deflection

Ψc

attitude and 
angular velocity 
measurements

guidance attitude 
set point

–
+

ΨΨ

Figure 1 – Flight control loop (one axis)
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(Figure 2), leading to a state space representation in continuous time 
defined by Equation (1). Launcher benchmark dynamics contain:

•	 rigid mode dynamics defined by a bi-dimensional linear per-
turbation model already described in detail in the literature [6],

•	 bending modes represented by a second-order model with low 
damping,

•	 an actuator model described by a second-order transfer function,
•	 sensor delays (IMU and gyrometer) that are directly included 

during discretization of continuous time launcher models.
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All rigid and bending mode coefficients of Equation (1) are time-
varying along a given trajectory; they are also subject to uncertainties 
leading to more than 20 uncertain parameters. Finally, three payload 
configurations are considered (1000  kg, 2000  kg and 6000  kg).), 
with their associated impact on rigid and flexible mode characteris-
tics. For each payload, a Model DataBase (MDB) covering the worst 
uncertain cases is included in the benchmark.

Launcher control objectives and validation means

Stability requirements

Stability margins shall be computed using the Nichols or Bode dia-
grams in discrete time. The stability margin requirements shall be 
respected for the entire set of pre-defined worst cases located on the 
bounds of the uncertainty domain, as described in the user manual, 
for all instants and for all payload configurations.

The control function shall guarantee the following stability margins 
(with equipment characteristics) on the SISO system.

Performance requirements

All of the time domain requirements shall be respected for the time 
varying launcher, in the nominal case, for the whole set of payload 
configuration and for 4 different wind profiles. This validation shall be 
done using the Simulink models delivered with the benchmark.

Disturbance rejection
Disturbance rejection need is mainly linked to atmospheric wind dis-
turbance impact on angle of attack, and to the measurement noise 
impact on cumulated deflection.

•	 The control function shall maintain the induced aerodynamic 
angle of attack compatible with general load specification 
Qα < 150 kPadeg.
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Figure 2. Launcher reference frames

Stability margins
LF open-loop gain margin 1 dB
HF open-loop gain margin 3 dB

Phase margin -
Delay margin 50 ms

Bending mode delay margin 50 ms
Bending mode gain margin Overshoot < -6 dB

Table 1 – Stability margin requirements Performance requirements
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•	 Thruster misalignment impact on load shall not exceed 10% of 
the specification.

•	 Cumulated deflection shall remain lower than 200° during the 
100s of the flight phase.

Guidance tracking constraints
In the steady state, under nominal conditions, the control function 
shall be able to control the attitude with the following accuracy:

•	 attitude ≤ 2° (compromise with Qα minimization),
•	 attitude rate ≤ 1°/s during thrust steady state and 0.5°/s at the 

end of tail off.

Technical constraints
The controller shall be implemented in discrete time with a sampling 
frequency of 20 Hz. 

Actuator constraints: 
•	 maximal deflection angle ≤ 6°, 
•	 maximal deflection rate ≤ 15°/s.

Reference H∞ controller

In this benchmark, we have defined a non-structured gain scheduled 
H∞ control law that will serve as a reference. This reference controller 
was fully validated and respects all stability and performance objec-
tives; even if a small margin is left for optimization.

H∞ and structured H∞ synthesis – theory and analysis

In this section, we give an overview of (non-structured) H∞ theory 
and structured H∞ theory focusing on their respective advantages 
and drawbacks for launcher control application. 

H∞ synthesis

H∞ synthesis was developed in the eighties [7]. It is based on the use 
of the H∞ norm, which measures the maximum amplification that a 
system can apply to any input signal. For SISO systems, this norm is 
equivalent to the peak gain value. H∞ synthesis is a frequency domain 
robust control method applicable for MIMO, LTI, causal and proper 
systems, that guarantees nominal stability, nominal performance and 
robust stability. H∞ synthesis uses the standard form of Figure 3.

Where P (s) is the system model augmented by objective-linked weight-
ing functions, C (s) is the controller; u is the command vector, y is the 

measurement vector, 1 2[ , ,..., ]T
Nw w w w=  is the disturbance vector 

and 1 2[ , ,..., ]T
Mz z z z=  is the error vector that will be minimized.

H∞ synthesis sub-optimal problem is to find a controller C (or K) that 
internally stabilizes the augmented system P and such that:

	
z
w

γ<
∞

	 (2)

Many solutions exist for this synthesis, which can be transformed 
into a convex problem by means of additional variables, through 
γ -iteration in continuous time [7] or in discrete time [8], or, LMI 
approaches [9]

Numerous examples using H∞ controllers are described in the litera-
ture and those controllers are currently used in industry. With regard 
to launcher control, H∞ synthesis was successfully developed and 
implemented on Ariane 5 following a test flight in 2001. During this 
development, performance gain and development cost reduction 
were demonstrated through H∞ synthesis roll-off effect and frequency 
domain compromise between objectives; however, some drawbacks 
were identified:

•	 The H∞ controller order is equal to the augmented system order; 
therefore, it directly increases with the level of representative-
ness of the model and with the number of objectives. Thus, for 
the Ariane 5 application, design choices were limited to avoid 
controller post-reduction.

•	 Minimizing the whole transfer matrix including non-diago-
nal terms could induce conservatism and tuning difficulties 
when considering multiple objectives, which was the case for 
Ariane 5 control.

Non-smooth optimization and structured H∞ synthesis

Structured H∞ synthesis uses non-smooth optimization techniques 
to locally solve H∞ synthesis problems under additional structural 
constraints on the controller. Structured H∞ uses the standard form 
described in Figure 4. This form is similar to the non-structured H∞ 
form, except that the transfer functions are decoupled.
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Figure 3 – H∞ standard form
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Structured H∞ synthesis consists in finding an internally stabilizing 
controller such that:
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Where K is the structured controller and the vector x contains all tun-
able elements of K.

The problem described above is usually that of a non-convex and non-
differentiable optimization. It was not until recently that algorithms and 
solvers for this type of problem began to appear [2, 3]. To date, as 
far as we know, there are two MATLAB® packages that are capable 
of addressing this problem via non-smooth optimization: the HIFOO 
packages [2] and the RCT packages hinfstruct [3] and systune 
[4,10]. In this paper, we will expand work processed with hinfstruct 
in [11]  and tackle the launcher control problem with systune [4].

Structured H∞ Advantages and Drawbacks for launcher control

For launcher applications, fixed-order controllers using non-smooth 
H∞ algorithms solve most of the drawbacks of H∞ synthesis. Indeed, 
its main advantages are:

•	 use of a reduced-order fixed-structure control law,
•	 direct quantification of stability and performance requirements 

in simple weighting functions, thanks to multi-model approach-
es and frequency domain limitations, with loop shaping and/or 
sensitivity function criteria,

•	 use of Soft/Hard constraints, enabling the automatic minimiza-
tion of structural loads and consumption.

The disadvantages of fixed-order H∞ synthesis methods for launcher 
applications are fading with recent developments and applications.

•	 One remaining drawback for non-stationary launcher control 
design is that, today, to our knowledge, no LPV design for a 
fixed-structure controller is sufficiently mature. An alternative 
is the use of gain surfaces, developed and applied in [12], 
or, applied in [13]; however, this approach could lead both to 
an increasing number of controller parameters and to some 
conservatism linked to gain surface selection. Additional de-
velopments in this field would be of great interest. However, 
in practice, we will show in this paper that, with an adequate 
initialization process and additional constraints on the control-
ler pole and zero characteristics, the gain scheduling approach 
traditionally used for non-structured H∞ launcher control is also 
well suited for structured control design.

•	 Local optimization: non-smooth optimization algorithms are 
only local algorithms and there is no guarantee of convergence 
towards a global optimum. Non-repeatability can be an issue 
for industrial implementations of gain scheduling control. This 
drawback was softened by considering additional constraints 
for gain scheduling control design. This last point is the only 
one that still requires attention from an industrial point of view.

Control design framework

The generic framework for control design was developed on the 
launcher benchmark; it contains both specific functions depending 
on launcher application, with dedicated interfaces with launcher data, 
modeling and validation tools, and generic functions for controller 
design unrelated to launcher applications. Its architecture is described 
in Figure 5, and the main functions are detailed in this section.

(3)
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AND TOOLS

USER 
SPECIFIC 

I/F

GENERIC 
FUNCTIONS

Model 
generation

Model selection 
for design

Weight 
frequency range

Weight 
shape

Generic controller 
structure

Generic 
criteria

Generic analysis tool

Structured design

Specification

Frequency and time 
domain validation

Specific controller 
structure

Models 
database

Controller

Figure 5 – Control Design Framework
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Model generation and selection 

A complete launcher Model DataBase (MDB) is generated covering 
rigid and flexible mode dynamics, nominal and uncertain cases, in 
continuous time and/or discrete time representations. Then, for each 
requirement, a single model or multiple models are selected for control 
design, e.g., worst uncertain case for the Low Frequency (LF) stability 
margin requirement, worst uncertain case for High Frequency  (HF) 
stability margin requirement, etc.). These models also serve for fre-
quency range definition of weighting functions, as described in the 
objective transcription.

Controller structure

The controller structure can be specific, or the user can select the 
default structure defined in [11] for the launcher benchmark. In this 
case, a MISO structured controller is selected that makes use of both 
the attitude and angular rate measurements to compute the com-
manded thruster deflection. Controller structure is separated into a so-
called "rigid mode controller" for low-frequency rigid-dynamics control 
and a "bending mode filter" for high-frequency command filtering.

The generic controller structure contains:
•	 for rigid mode control, a reduced order controller with con-

straints on the pole and zero characteristics to avoid interpola-
tion issues,

•	 for bending mode filtering, a reduced order filter, for which the 
range of variation of the poles and zeros is limited to enable gain 
scheduling and to avoid filtering overshoots.

Objective transcription

Problem definition and tuning of robust flexible launcher control 
design are greatly simplified thanks to the use of structured design: 
each objective is associated with a generic criterion (transfer function 
independent from the launcher model) and with mission data (mod-
els, frequency range or numerical objective value).

Structured H∞ design generic criteria 

All of the control stability, robustness and performance objectives were 
translated into generic criteria within the systune [4, 10] function 
framework. In this approach, both traditional H∞ techniques and loop 
shaping were used, combined with multi-model design and frequency-
limited requirements. The traditional approach [14] uses a closed loop 
sensitivity function S, KS, KG or T described in Figure 6, while loop 
shaping uses an open-loop transfer function K or KG. Generic criteria 
used for launcher control design are gathered in Table 1. 

Mission data

For each of these generic criteria, a user I/F enables the selection of 
the following: 

•	 worst case models in launcher MDB,
•	 the frequency range, determined by model analysis; e.g., the 

bending mode control objective is applicable for the bending 
mode frequency range over the launcher configurations,

•	 once the frequency range has been selected, launcher control 
requirements (or mission specification) are directly used for 
weighting function shape definition.

For each objective, Table 2 gathers the constrained sensitivity func-
tion used in the classical robust control approach and models that 
could be used for design.

Objective Models 
(MDB)

Sensitivity function or 
transfer function

LF Margin Worst Case 1 S

HF Margin Worst Case 2 S

Bending mode passive 
stabilization 
(gain control)

N uncertain models / 
Mission-dependent KG

Bending mode active 
stabilization 
(phase control)

N uncertain models /
Mission-dependent T

Consumption and 
filtering authority NA K

Table 2 – Structured H∞ criterion, models and sensitivity functions

Controller synthesis

Depending on the sampling frequency, it could be advisable to per-
form the launcher control design in discrete time. Therefore, the use of 
both continuous and discrete time versions of the systune [4, 10] 
function was validated during the development of this framework.

Gain scheduling was applied using the following process:

•	 Structured control design for one reference flight point (instant 
of maximum dynamic pressure).

•	 We use an automatic load minimization criterion with guaran-
tee of compliance of all other requirements (directly for stability 
margins and frequency domain requirement / indirectly for time 
domain requirements); therefore, reducing the cost of iterative 
design.

•	 Ascent front synthesis with reasonable time interval from the 
reference flight point until the end of the flight, with initialization 
using the controller from the previous instant.

•	 Descent front synthesis with reasonable time interval from the 
reference flight point down to the beginning of the flight, with 
initialization using the controller from the next instant.

Then, the set of structured controllers are linearly interpolated along 
the flight. 

KS

S

Z1

+

+

+
+

v

K
Gθc θm θβ

bβ

Pert.

Value of interest

Tunable controller

Perf

WS WKS WT Wv

Z1' –T'
Z2

Figure 6 – Closed loop sensitivity functions
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We have included slight evolutions in the weighting functions and 
requirements along the trajectory, in order to take into account the 
objective variation during the flight.

Analysis

A set of generic analysis functions are associated with control design 
tools for fast validation on control design models. Complete validation 
is then performed on full MDB with industrial validation tools.

Feasibility demonstration – benchmark application 

In this section, structured H∞ control design feasibility is demon-
strated on the launcher benchmark. A summary of structured H∞ 
results obtained for the entire flight phase and for the three payload 
cases is presented and compared with the reference non-structured 
H∞ controller. These results were extended to other applications 
in Section 7, thereby validating the genericity of the control design 
framework on different launcher configurations. These results also 
illustrate the advantages of structured design for rapid controllability 
and control design.

One can see, in the simulation results of Figure 7 that the gain sched-
uling process, using gain scheduled weighting functions, is quite effi-
cient, without presenting interpolation issues.

All stability requirements, both for rigid dynamics and bending 
modes, are respected (Figure 8), as well as all performance require-
ments (Figure 9). In this last figure, performance of the reference non-
structured controller is also plotted, highlighting loads and consump-
tion improvements. Indeed, the gain-scheduled structured controller 
design leads to a reduction in the loads of about 5 to 15%, depending 
on wind disturbance, and a consumption reduction of about 60% with 
respect to the reference controller.
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European launcher applications

In this section, we present some results of this generic framework, 
obtained from a multipurpose application for different launcher config-
urations; these results illustrate its strengths for rapid control design.

On the one hand, simplification in the control design process that was 
shown during the development of the launcher benchmark was confirmed 
on different European launcher configurations. Low and high frequency 
control design requirements are simultaneously tackled on worst cases 
extracted from each launcher MDB without design iterations. Resulting 

performances are always better, or at least equivalent to those obtained 
with traditional approaches. Figure 10 illustrates the time-varying compro-
mise between low and high frequency objectives on the Bode plot of the 
controller for an IMU measurement. Figure 11 clearly shows the respect 
of stability margin requirements for all of the instants and models used for 
the design. Figure 12 demonstrates the respect of load requirements for a 
complete real wind database measured at the Kourou launchpad.

On the other hand, these tools are perfectly suited to perform numer-
ous trade-offs and concept choices for future launchers through pre-
liminary performance analysis in an automated way without manual 
retuning. They were used for:

•	 automatic trade-off between sensor selection and location, with 
performance assessment, thereby improving the process pro-
posed in [5],

•	 trade-off between robustness and performance requirements. 
An example of the impact of stability margin relaxation on angle 
of attack performance is shown in Figure 13,

•	 trade-off between phase or gain control of the first bending 
mode. An example of the impact of gain or phase control of the 
first bending mode on the angle attack performance is shown 
in Figure 14,

•	 trade-off between mission dependence and robustness.
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Conclusion

In this study, we have taken advantage of all of the enhancements 
of structured control design (fixed controller structure, multi-model, 
band-limited objectives, Soft/Hard constraints, etc.) to develop a 
generic framework for rapid control design. This framework was 
developed on a representative benchmark (with complete freedom 
on controller structure) before being proposed for the improvement of 
existing control laws and for future launcher pre-development phases. 

In these examples, we have shown that load performance was 
improved with respect to pre-existing non-structured controllers.  
Simplifications in the design process were highlighted, providing flight 
control development cost reduction perspectives. These results pave 
the way for the industrial application of a structured H∞ framework for 
fast retuning of existing controllers and development of new controller 
structures for future launchers 

Nomenclature

AG	 (Ariane Group)
α	 (Angle of attack)

cβ∆ 	 (Commanded deflection around nominal deflection)

Rβ∆ 	 (Realized deflection around nominal deflection)
CNES 	 (Centre National d’Etudes Spatiales)
D	 (Drag in body axis)
F	 (Aerodynamic Center)
G	 (Center of Gravity)
HF	 (High Frequency)
hpGYi 	 (ith bending mode slope at gyrometer location)
hpIMUi 	 (ith bending mode slope at IMU location)
htui 	 (ith bending mode deformation at nozzle rotation point)
I	 (Launcher pitch inertia)
I/F	 (Interface)
IMU	 (Inertial Measurement Unit)
i 	 (ith bending mode damping)
	 (Damping of actuator model)
L	 (Lift in body axis)
LF	 (Low Frequency)
LMI 	 (Linear Matrix Inequality)
LQG 	 (Linear Quadratic Gaussian)
LPV 	 (Linear Parameter Varying)
LTI 	 (Linear Time Invariant)
LF 	 (Distance between CoG and Centre of Pressure)
ltu 	 (Position of nozzle rotation point with respect to the launcher CoG)
m 	 (Launcher total mass)
Mbi	 (ith mode nozzle rotation point slope contribution)
MCI 	 (Mass Balance and Inertia Data)
MDB 	 (Model DataBase)
MIMO 	 (Multi-Input Multi-Output)
MISO 	 (Multi-Input Single-Ouptut)
Pc 	 (Commanded thrust)
qi	 (ith bending mode generalized coordinates)
Rc	 (Barycentric reference frame)
Rl	 (Body reference frame)
Rt	 (Terrestrial reference frame)
∆θ	 (Launcher pitch angle deviation with respect to commanded angle)
SISO	 (Single-Input Single-Output)
Sref	 (Reference area)
T	 (Thrust in body axis)
VR	 (Relative velocity)
∆W	 (Wind perturbation)
ωi	 (ith bending mode pulsation)
ωβ	 (Pulsation of actuator model)

z∆  	 (Launcher lateral velocity)
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In order to assess the robustness of dynamical systems, an approach is to demarcate 
 the uncertain parameter space as safe set and unsafe set. Unsafe set represents the 

region within which the system lacks the required level of performance, or even loses 
its stability. However, determining the minimum distance metric for the unsafe set 
from the nominal operating point, the so-called parametric safety margin, for a higher 
dimensional dynamical system is not trivial and is often computationally demanding. 
In this paper, the parametric safety margin for a closed loop industrial standard launch 
vehicle simulator during its thrust vector control phase is computed. Imposing certain 
basic topological restrictions for the multi-dimensional uncertain parameter space, 
the computation of the parametric safety margin can be posed as a constrained non-
convex global optimization problem, and is thus extremely challenging in the case 
of high-fidelity aerospace simulators. Various performance requirements become 
the constraints in the optimization problem. An approach exploiting the use of non-
intrusive polynomial surrogate modeling is proposed for the efficient computation of 
the parametric safety margin for the industrial standard launch vehicle simulator. 

Introduction

In order to ensure the safety of a space mission, the controller needs 
to ensure robust stability and performance in the presence of various 
uncertainties and disturbances[1]. Uncertainties emanating from 
the mission parameters, such as aero-thermodynamic parameters, 
physical configuration parameters such as mass, inertia, actuator 
and sensor uncertain parameters, and flexible mode parameters, are 
to be considered. During the design cycle [2], the performance of the 
controller is assessed using a range of methods, such as analytical 
techniques that could be employed on lower order models, simula-
tion-based techniques that are applicable to more detailed, complex 
and high-fidelity models [3], hardware in loop analysis, where actual 
subsystems replace some of the mathematical models [4] and the 
flight tests [5]. Analytical techniques, such as gain/phase margins 
[6] and the nonlinear continuation/bifurcation analysis against single 
parameter variations [7] can be considered as the traditional ana-
lytical tools for worst-case analysis in the early phase of the design 
cycle. Multivariable methodologies, such as µ-analysis and v-gap 
metric analysis (Chapters 17 and 18, of Ref. [1]) became modern 
candidates for carrying out worst-case analysis based on a robust 
control theory, representing a given closed-loop system in a Lin-
ear Fractional Transformation (LFT)-based representation ([8] and 
Chapter 3, 4 and 5 of Ref. [9]). These techniques and their variants 

deal with multiple sources of uncertainty; however, the complexity 
in determining the exact µ value is claimed to be an NP-hard prob-
lem [10] and an excellent bound comparison using several variants 
of the algorithm on various benchmark problems can be found in 
[11]. Useful extensions of these approaches, which can handle cer-
tain types of nonlinear dynamics, have also recently been developed, 
such as Integral Quadratic Constraints (IQC)( [12, 13] and Chapter 
10 of Ref. [9]) and Sum Of Squares (SOS) programming [14].

The key advantages, as well as the conservatism and the limitations 
from the perspective of the requirements of the underlying uncertain 
model for many of these analytical methods, can be found in the 
conclusions of Chapter 3, 4, 5 and 10 of Ref [9]. Sampling and 
simulation-based analysis techniques, such as Monte Carlo and 
optimization methods, have specific advantages when dealing with 
nonlinear and complex models. Determining the worst case pertur-
bations that lead to large excursions of the desired design metrics 
can be formulated as maximization problems and can be solved 
using various optimization algorithms [3, 1, 15, 16, 17, 9]. Despite 
the common generic mathematical formulation of the maximization 
problem, the quality of the worst-case solution and the computa-
tional complexity depend on the underlying methods selected for the 
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analysis. However, relatively fewer limitations are imposed on the 
requirements of the closed-loop mathematical models. That said, 
the computational time required for each simulation can possibly 
impose restrictions, if excessive. In that case, one would be forced 
to limit their analysis based on the available computational budget, 
or depend on other surrogate modeling techniques.

Parametric safety margin metric estimation provides another method 
(based on a simulation and optimization-based analysis concept) to 
assess the robustness of the controller [18]. This metric is defined 
in the parameter space as the distance between the nominal param-
eter value and the parameter value that corresponds to the first viola-
tion instance of a performance criterion. The implementation of this 
method on an aerospace benchmark with a complex nonlinear model 
is computationally challenging. When dealing with highly complex 
nonlinear models, a single function evaluation might take several 
seconds, which when used in an optimizer can take several hours 
until a global optimum is reached. The computation requirement for 
the parametric safety margin may benefit from the use of surrogate 
models instead of the actual full-order model. The use of surrogate 
models to evaluate the parametric safety margin will give the con-
trol system designer an estimate of the robustness of the designed 
controller within a matter of minutes. The designer can then evaluate 
the full-order model only in the zone of interest to check the valid-
ity of the parametric safety margin. Although in the literature there 
are plethora of methods available to build surrogate models,[19, 20, 
21, 22, 23], to name a few. This paper focuses on the use of the 
polynomial chaos methodology, since it utilizes a limited number of 
input configurations to derive a surrogate model. In order to avoid 
large computation times to evaluate the complex nonlinear model, a 
surrogate model is developed using just a minimal number of evalu-
ations of the original model, without compromising on accuracy as 
per the polynomial chaos methodology. Such a surrogate model pro-
vides an approximation to the simulator for any input configurations, 
and hence may be used to replace the original simulator for the fast 
computation of responses. The contribution of this paper is in the 
application of three different schemes, such as the parametric safety 
margin method, surrogate modeling using polynomial chaos, and 
optimization-based worst case analysis, which are integrated with the 
analysis of a flexible launcher model.

This paper is organized as follows: at first, the problem definition is 
provided. The description of the launcher model along with its func-
tional performance criteria is given in Section "Closed-Loop System 
Description". A brief description of the theory of parametric safety 
margin estimation and the surrogate polynomial model is provided 
in Section "Analysis Methods". Section "Main Results" presents the 
results of the parametric safety margin with launcher, as well as poly-
nomial models. Finally, a worst-case analysis is performed, in order 
to ascertain the maximum deviations of the performance criteria.

Problem Definition

A closed-loop dynamical system representation of a flexible launcher 
is provided, and the control law design is carried out to meet a set 
of mission performance objectives in a robust manner. The given 
model is treated as a "black-box" with access limited to certain input 
and output parameters, as is often the case with many other indus-
trial models that are used for the purpose of validating and verify-
ing the controllers. Given a bounded, multi-dimensional uncertain 

space, m∆ ⊂ , the questions that we are trying to answer are the 
following:

•	 Determine an operational parametric safety margin; i.e., the set 
within which all different mission performance objectives as-
sociated with the closed-loop design are satisfied.

•	 Determine the combination of uncertain parameters associated 
with a maximum possible violation of a mission performance 
objective, * mδ ∈∆ ⊂ , which is identified as the worst-case 
perturbation.

•	 Address computational complexities due to the time consuming 
simulations, while determining the parametric safety margin, by 
replacing the actual closed-loop dynamics model with its repre-
sentative meta/surrogate model.

A constrained optimization problem is employed, in order to deter-
mine the parametric safety margin. The closed-loop functional per-
formance requirements are written as a set of inequality constraints 

( , , ) < 0Wδ
∞

s , where 
∞

  is the class of control law used and W 
is the wind gust disturbance profile and ( )dim δδ ∈∆ ⊂  . The closed-
loop design is said to be robust and acceptable if all of the constraints 

( , , ) < 0Wδ
∞

s  are satisfied in the presence of various combina-
tions of uncertain parameter perturbations.

The uncertain parameter space (∆ - space) can be classified as 
a safe or unsafe region, depending on whether the constraints 

( , , ) < 0Wδ
∞

s  are satisfied or not, respectively. The unsafe region, 
denoted as ( )( )u dim δ⊂ s , is given by 
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( )u s  is the union of all unsafe regions defined by the individual con-
straints. The boundary of the set is on ( , , ) = 0Wδ

∞
s . The comple-

mentary set ( )u′ s  becomes the safe set. At least one constraint 
must be violated in the unsafe region, while in the safe region all of 
the performance constraints are satisfied.

The method involves the definition of a reference set in the parameter 
space, with the nominal parameter vector 0δ  as the geometric cen-
ter. This reference set is then subjected to homothetic dilations (i.e., 
expansion and contraction) until the first instance of violation of the 
constraints < 0s  occurs. In other words, we are interested in evaluat-
ing the largest safe set, ( )u′ s , around the nominal parameter value. 
The size of this set is directly related to the operational uncertainty 
margin. Further details on the evaluation of the operational uncertainty 
margin can be found in Section "Analysis Methods".

The evaluation of the operational uncertainty margin becomes com-
putationally very expensive when applying it to an industry standard 
problem. Given that performance criteria are treated as constraints, 
a closed-loop dynamical system is simulated and performance 
criteria are evaluated in the constraint function of the optimization 
scheme. Since the dynamical system is evaluated in the constraint 
function, the process of evaluating the operational uncertainty margin 
becomes computationally expensive. Identifying the exact operational 
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uncertainty margin, which may be a non-convex multidimensional 
surface, or even disconnected regions, with an attractive and fea-
sible computational effort is challenging. Hence, an approximate 
operational margin that could be conservative, yet determined with a 
reduced computational effort, is preferred.

Computational effort could be considerably reduced if the constraint 
function were  in polynomial form. Hence, a polynomial model is pre-
ferred instead of a closed-loop dynamical model. However, depending 
on the accuracy of the polynomial model, the safety margin could be 
optimistic or conservative. A conservative margin will always be safe, 
but optimistic safety margins may contain regions of the parametric 
space where constraints are violated. In order to be absolutely sure that 
the uncertainty margin truly contains no constraint violation, we perform 
a worst-case analysis on the reduced region defined by the margin. If no 
worst cases are found inside this region, then the margin is valid.

Closed-Loop System Description

Launcher Model and Control

A single-axis, parameter-varying model [24], derived by linearization 
of complete non-linear dynamic equations of motion for a flexible 
launcher under various equilibrium flight conditions, is considered as 
the benchmark for this study. A H∞ controller is provided for the pitch 
control of the launcher during the atmospheric flight phase, from take-
off to tail-off [24]. Rigid and bending mode dynamics together with 
an actuator, bending mode filter and H∞ controller are modeled and 
implemented in MATLAB R2008b Simulink. The rigid-body dynamics 
during the atmospheric flight phase are described by the following 
three state representations:
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In which parameters such as aerodynamic efficiency 6 ( )A t , aerodynamic 
coefficient 1( )A t , aero thruster efficiency 1( )K t  and 2 ( )K t , and 3 ( )tα  
are time-varying along the trajectory and are defined as follows [24]:

	 ( )1 = refC S
A N

QSP PA C C
m m α
+

− + − 	

	 6 = ref N FQS C L
A

I
α 	

	 1 2 3=     =     =
( )

C tu C
F

P l P IK K L
I m m t V

α− 	

In (1), ( , , )ol Zθ θ   are states of the rigid mode dynamics and corre-
spond to the launcher pitch rate (deg/sec), pitch angle (deg) and drift 
velocity (m/s) in the body frame, respectively. β and W represent the 
control input deflections and the wind perturbation, respectively. In 
the definitions of the aerodynamic and thruster efficiency parameters 

( )iA t  and ( )iK t : , , , ,C SV P P Q , , , , ,ref A N F tuS C C L l Iα  and m repre-
sent the absolute velocity, commanded thrust level, thrust level along 
the longitudinal axis, dynamic pressure, reference area, axial force 
coefficient, normal aerodynamic force coefficient with respect to the 

angle of attack, distance between the center of gravity and center of 
pressure on longitudinal axis, position of nozzle rotation with respect 
to the center of gravity, total inertia and total mass, respectively.

A second-order model with a small damping value represents the flex-
ible bending mode dynamics associated with the flexible launcher, 
and is modeled as an additive perturbation on the rigid-body model. 
The flexible mode dynamics are represented as follows [24]:

( )( )22 =
i i i ii i i i i i C tu C T ptu tu tu tu tu ptu Cq q q P h I h M L h L hξ ω ω β β+ + − + − − 

  	 (2)

where iq , iξ , iω , 
ituh , TI , 

iptuh , tuM , tuL  and Cβ  represent the thi  
bending mode state, thi  bending mode damping, thi  bending mode 
pulsation, thi  bending mode deformation at the nozzle rotation point, 
total pitch inertia, thi  bending mode slide of deformation at the noz-
zle rotation point, nozzle mass, position of nozzle CoG respective to 
the nozzle rotation point and the commanded deflections around the 
nominal value to follow the reference trajectory. A total of five bending 
modes are considered in this benchmark. The actuator model for the 
pitch control is characterized by a second-order system having com-
manded deflection as a single input, and the realized deflection and its 
two derivatives as the three outputs.

	 2 22 =R R R Cβ β β ββ ξ ω β ω β ω β+ +  	 (3)

where, βξ  and βω  represent the damping of the actuator model and 
the actuator model pulsation. The final effective deflection angle β 
corresponds to the sum of the realized control input deflection ( Rβ ) 
and the misalignment deflection ( FZβ ), and is given as: 

	 = R FZβ β β+ 	 (4)

The pitch angle is derived from the attitude measurement by the Iner-
tial Measurement Unit (IMU) and the pitch rate is derived from the 
angular rate measurement by the gyrometer. IMUihp  is the thi  bending 
mode slide of deformation at the IMU location and GYihp  is the thi  
bending mode slide of deformation at the gyrometer location. Noises 
are added to these measurements. Angular noise and angular rate 
noises are treated as Gaussian with 0.02° and 0.15°/s standard devi-
ation, respectively. 

	
=

=

m IMUi i
i

m GYi i
i

hp q noises

hp q noises

θ θ

θ θ

− +

− +

∑

∑ 



	 (5)

A discrete time-robust gain-scheduled controller is used with the 
benchmark model (see the block interconnection in Figure 1), which 
consists of an H∞ rigid-mode controller and a filter, which is kept in 
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Mode
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Commanded 
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Commanded 
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Controller Structure
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Controller
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Figure 1 – Block description of the flexible launcher vehicle
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series with the controller, for robust attenuation of the bending modes. 
The angular position and rate are the inputs of the controller and the 
filtered commanded deflection is the output. Further details on the 
model can be found in [24, 25].

Disturbances

The external disturbance corresponds to the wind gradient and the 
wind gust. The wind gust is a sudden increase/decrease in wind speed. 
This wind disturbance is assumed to be applied at the center of gravity 
of the flexible launcher vehicle. In this study, the wind perturbation is 
modeled by synthetic wind from a wind envelope, wind shear (wind 
speed change divided by the altitude interval) and wind gust according 
to a NASA specification in [26]. Synthetic wind is commonly used by 
aerospace organizations for vehicle design computations. Wind enve-
lope and wind shear both come from wind measurements collected at 
the area of interest over a long period, and wind gust is an arbitrary 
characterization of the small scale motion. The NASA database given 
in [26] is followed. The synthetic wind is determined by an altitude, 
which corresponds to the maximum wind gradient. It is also the alti-
tude at which the wind takes the value of the envelope. In this tool, the 
input is a flight instant and altitude is computed from the trajectory 
data using this instant. We have considered a deterministic wind pro-
file occurring at five flight instances, 30, 35, 40, 45 and 50 seconds, 
as shown in Figure 2. Wind disturbance occurring early on in the flight 
interval can make the vehicle unstable and, hence, focus is on five 
instances between 30 to 50 seconds. Other wind instances were also 
considered during the analysis, but not reported here because they did 
not have any significant impact on the launch vehicle.

Uncertainties

For the given launcher controller/payload configuration, twenty eight 
uncertainties are considered in this study, which constitute eight 
rigid-mode parameters and five bending-mode parameters ( thi  bend-
ing-mode pulsation, deformation at the nozzle position, slide defor-
mation at the nozzle location, slide deformation at the IMU location 
and slide deformation at the gyrometer location), with four bending 
modes each, are considered. The entire list of uncertainties is given 
in Table 1. The uncertainty domain consists of two aspects: a pos-
sible nominal domain, which is not well-known prior to the flight, 
but can be known and reduced after the qualifications of the flights 

(reducible uncertainty) and, secondly, a dispersion domain in which 
the parameter value can change from one mission to another. In the 
framework of worst-case analysis, bounds on uncertain parameters 
are utilized by optimization tools to generate the worst case. These 
bounds should be able to incorporate both the uncertainties and the 
dispersions associated with the parameters. Such types of bounds 
were defined by ASTRIUM and the CNES for launcher application, as 
presented in [27], and are used in this study.

Specifications

The controller structure ( H∞
 ), consisting of the H∞ controller and 

the bending-mode filter, must satisfy various functional performance 
requirements during the atmospheric phase control. The main func-
tional requirements are the compensation for external wind and wind 
gust perturbations, and compensation for the internal perturbations, 
which include the thrust misalignment, the static error of the servo-
actuators and thrust asymmetry. The compensation scheme must 
maintain minimum aerodynamic loads (Qα , which is the angle of 
attack times the dynamic pressure), for structural sizing reasons. The 
main temporal performance specifications that are to be validated and 
the margins to be assessed, in the presence of multiple uncertain 
parameter perturbations and dispersions, are listed in Table 2.
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Figure 2 – Wind Profile

Parameters Uncertainty Dispersion 

Ri
gi

d

Inertia (MI) ±10% ±3%
Thrust (MP) ±3% ±1%

Aerodynamic coefficient(MCz) ±20% ±10%
Centre of pressure (MXf ) ±1.79 m ±0.2 m
Dynamic pressure (MQ) ±20% ±4%
Centre of gravity (MXg) ±0.3 m ±0.05 m

Mass (MM) 5% –
Deflection Misalignment (∆β) 1° –

Be
nd

in
g 

m
od

e

Pulsation (Mpuls) ±20% –
Deformation at the nozzle location 

(Mhtu) ±30% –

Slide deformation at the nozzle location 
(Mhptu) ±30% –

Slide deformation at IMU location  
(MhpIMU) ±30% –

Slide deformation at the Gyrometer location 
(MhpIMU) ±30% –

Table 1 – Variability of rigid and bending-mode uncertain parameters

Specification Description Requirement Cost function

s1(.): �Maximum value of the aerodynam-
ic angle of attack ( ( ))Q tα  compat-
ible with general load specification 
simulated over a finite time period

< 500 kPadeg ( )
0

max
ft t t

Q tα∈  
 

s2(.): �Maximum final value of the attitude 
( ( ))ftθ  ≤ 2° ( )max ftθ

s3(.): �Maximum final value of the attitude 
rate ( ( ))ftθ  ≤ 0.8°/s ( )max ftθ

s4(.): �Maximum value of the deflection 
angle ( ( ))tβ  simulated over a 
finite time period 

< 6° ( )
0

max
ft t t

tβ
∈  

s5(.): �Cumulative deflection over a finite 
time period < 200°

0

max
ft

C
t

β∆∑

Table 2 – Functional performance requirements
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Analysis Methods

Parametric Safety Margin Assessment

The parameter space, ( )dim δ∆ ⊂   can be divided into safe and unsafe 
regions, where the safe region corresponds to a region where all of 
the functional performance criteria are satisfied and the unsafe region 
corresponds to a region where at least one of the functional perfor-
mance criteria is violated.

In this study, the chosen reference set, := [ , ]min maxδ δ δ⊂ ∆ ∈ , is 
assumed to be a hyper rectangle with each component of the uncer-
tain parameter vector, ( )dim δδ ∈ , defined over a bounded interval. 
Assume symmetry around the geometric center, which corresponds 
to the nominal parameter value ( 0δ ). Let m be the vector of half-
lengths of the sides of the hyper-rectangle. The hyper-rectangle 

0( , )δ m  is defined as 

	 ( ) ( ){ }0 0 0, := | [ , ],1i i i i i i dimδ δ δ δ δ δ∈ − + ≤ ≤ m m m 	 (6)

0( , )δ m  is called the reference set, which is chosen by select-
ing the values of the vector of half-lengths m. This reference set, 

0( , )δ m , is depicted by a dashed blue line in Figures 3(a) and 3(b). 
A homothetic scaling of the reference set by a scaling factor λ is 

0 0 0 0( , ) := { ( ) | ( , )}δ λ δ λ δ δ δ δ+ − ∈ m m . Suppose that λ is 
positive; the resultant set is expanded with respect to the reference 
set, in Eq. 6 and if λ is negative, the resultant set is contracted with 
respect to the reference set in Eq. 6. The ratio of expansion or contrac-
tion is called the similitude ratio, λ∈. The similitude ratio is a posi-
tive scaling factor. The similitude ratio condition 1λ >  corresponds 
to the expansion, and the similitude ratio in the range of 0 < < 1λ  
corresponds to the contraction of the reference set, 0( , )δ m . By 
successive dilations of the reference set, i.e., expansions and con-
tractions, the objective is to determine the largest safe set, ( )u′ s , 
around the nominal parameter value. The largest set is depicted by 
the red line in Figures 3(a) and 3(b) and is represented as 

0( , )δ λ m , 
where λ  is called the critical similitude ratio. The critical similitude 
ratio is a non-dimensional positive scaling value denoted as  λ . It is 
the similitude ratio of the dilation, and is interpreted as the operational 
parametric safety margin, ρ, for satisfaction of all of the functional 
performance requirements in the parameter space. The correspond-
ing uncertain parameter combination is termed as a critical parameter 
vector. Hence, although conservative, this would be viewed as the 

onset of a violation of at least one performance criterion in the cer-
tain parameter space. There could be certain directions in which an 
expansion might still be possible, depending on the complex topology 
of the safe uncertainty set.

The sets 0( , )δ m  and the scaled set 

0( , )δ λ m  are proportional. 
In Figure 2, the reference set, 0( , )δ m  has expanded to 

0( , )δ λ m , 
which implies that the unsafe region u  is outside the reference set. 
Whereas in Figure 2, the reference set 0( , )δ m  has contracted to 



0( , )δ λ m , implying that the unsafe region is inside the reference 
set. Naturally, good robustness is associated with the expansion of 
the reference set, whereas the contraction implies poor robustness, 
since even a small perturbation around the nominal parameter value 
would result in violation of performance criteria. This is a measure 
of robustness of the controller, 

∞
 , implying how large an uncertain 

parameter set can be to be identified as safe with respect to the nomi-
nal point. The constraint ( , , )Wδ

∞
s  might have a nonlinear depen-

dency on the parameters, and hence the computation of the critical 
parameter value becomes a non-convex global optimization problem. 
Furthermore, for the purpose of checking the satisfaction of the con-
straints, a simulation of the closed-loop model and the evaluation of 
each performance constraint is required.

The critical parameter value corresponding to the dilation of the refer-
ence set 0( , )δ m  in the case of the thi  constraint can be computed 
by solving

	  ( ){ }0= | , , 0i
iargmin W

δ
δ δ δ δ∞

∞
− ≥m

s 	 (7)

where 0
0 := i

i i

arg sup
δ δ

δ δ ∞  −  −  
  

m m
, is the m-scaled norm. Con-

sidering all of the performances, the overall critical parameter value is 

= kδ δ  , where { }0
1

= i
j

j dim
k argmin

δ
δ δ

∞

≤ ≤
−

m
, which is associated with the 

critical requirement. The resultant set 

0( , )δ λ m  is proportional to 
0( , )δ m , where 0=λ δ δ

∞
− 

m
, in a non-dimensionalized setting.

The operational parametric safety margin is =ρ λ m . The robust-
ness is ensured when ρ ≥ m  for a given controller design. In such 
situation, all of the performance constraints ( , , ) 0H Wδ

∞
≤s   are 
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Figure 3 – Dilation of Uncertainty Set
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satisfied in the region 0= ( , )δ δ∆  m . Eq. 7 is reformulated as a con-
strained optimization problem, as follows:

	
( )

0min

Subject to : , , 0i H W

δ δ

δ
∞

∞−

≥
m

s 
	 (8)

where (.)is  are the functional performance constraints listed in 
Table 2.

Surrogate assisted analysis

The evaluation of a parametric safety margin metric is computationally 
very expensive. Often, simulation-based optimization techniques,[18, 
28, 29], can be computationally expensive and thus very time con-
suming. Further, the complexity of models can contribute to the time 
complexity. Here, we investigate the potential of surrogate polynomial 
models instead of the original launcher model, in order to save in 
terms of computational time overhead.

Polynomial models have been used in various applications, including 
solid mechanics [30, 31], stochastic finite elements [32] and sto-
chastic fluid dynamics [33, 34]. In [35], power series expansion and 
polynomial chaos expansion are used to quantify the uncertainty in 
the output of nonlinear systems, and to illustrate it on a batch crys-
tallization process. In [36], Polynomial Chaos is used to analyze the 
stability and control of a dynamical system with probabilistic uncer-
tainty on the system parameters. Singh, [37], used the generalized 
polynomial chaos (gPC) method to design robust input shapers for 
precise control of mechanical systems. In aerospace applications, 
Fisher, [38], provided a framework based on gPC to analyze a linear 
flight-control design for an F-16 aircraft model.

The basic concept is to approximate the response of the model using 
a polynomial function of uncertain parameters. The polynomial func-
tion is constructed using an orthogonal polynomial basis ( ( )q δΦ ). 
The underlying idea is as follows: the random variables, i.e., various 
uncertain parameters to be perturbed, are represented as orthogonal 
functions of a stochastic variable with deterministic coefficients:

	
=0

= ( )q q
q

F a δ
∞

Φ∑ 	 (9)

As shown in [39], a truncated version of the expansion ( = 0,1, ,q M ) 
is possible, where the order M depends on the number of uncertain 
parameters and the order of the polynomial sought.

	
=0

= ( )
M

q q
q

F a δΦ∑ 	 (10)

where 
( )!= 1
( ! !)

v o

v o

q qM
q q
+

− , vq  is the number of independent sources 

of uncertainty and oq  is the maximum order of the polynomial. Here, 
the coefficients qa  for = 0, ,q M  have to be determined.

In [40], Wiener introduced homogeneous chaos for the Gaussian pro-
cess, which utilized the span of the Hermite polynomial functionals 
to quantify uncertain parameters. This was later expanded to incor-
porate a non-Gaussian random process with polynomials from the 
Wiener-Askey scheme [39]. The connections between the choice of 
distribution and random variable, the Wiener-Askey polynomial and 

the support set are listed in Table 3. For example, for a continuous 
uniform distributed random variable, a Legendre polynomial basis 
with corresponding support set [ , ]a b  is selected.

 Random variable δ Wiener-Askey Scheme Support Set

Continuous

Gaussian Hermite ( , )−∞ ∞  

Gamma Laguerre [0, )∞

Uniform Legendre [ , ]a b  

Beta Jacobi [ , ]a b  

Table 3 – Wiener-Askey polynomials with corresponding distribution

The Galerkin projection method is generally used to evaluate the coef-
ficients ( qa ) in Eq. 10 [39, 38, 30]. This projection method involves 
solving multiple definite integrals, which could be computationally 
expensive and time-consuming in the presence of a large number of 
uncertain parameters. A non-intrusive method, called the probabilis-
tic collocation method [41], is used to evaluate the coefficients ( qΦ ) 
of the surrogate polynomial model. The model is treated as a "black 
box" type with access limited to a few uncertain input parameters and 
the output response. The method involves evaluation of the original 
model at specific selected points in the uncertain parameter space, 
identified as collocation points. The required number of collocation 
points also depends on the order of the polynomial and the number 
of uncertainties. The collocation points are chosen in such a way 
that the dynamical behavior of the original model should be captured 
as closely as possible. In order to do this, the collocation points are 
generated by evaluating the roots of the next higher-order polynomial 
in the orthogonal polynomial basis qΦ . The pseudo-code for deriving 
the surrogate model is given as Algorithm 1 in [42].

Polynomial model of the Launcher

A polynomial model is derived by treating the flexible launcher model 
in a closed loop with the H∞ controller as a black box, and consider-
ing the uncertain parameters as inputs and the cost function value as 
the output. In order to incorporate the effect of the noise acting on the 
outputs, the original Simulink model in MATLAB uses a random num-
ber generator. A seed value of the random number generator ensures 
repeatability of the results. In order to truly randomize the noise act-
ing on the outputs and also to incorporate the effect of noise in the 
surrogate model, we consider an additional uncertainty, which gives 
the seed values used by the random number generators in MATLAB 
to generate random noise signals in the original launcher model. This 
increases the total number of uncertainties considered to 29. The 
cost function is the performance specification against which the con-
troller is validated. The entire list of cost functions is given in Table 2. 
Second-order polynomial models are generated for each of the cost 
functions. For a second-order model, the number of coefficients 
of the polynomial model is 465 ( refer to Eq. 10). For each of the 
cost functions, 465 collocation points are generated and the flexible 
launcher model is evaluated at these points. These collocation points 
are common to all of the cost functions and, hence, all polynomials 
can be modeled by evaluating the original model just 465 times. A set 
of linear equations can be formed by substituting these collocation 
points and their corresponding output responses in Eq. 10. The coef-
ficients of the polynomial are obtained by solving these set equations. 
comparison between the polynomial model and the original model is 
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shown in Figure 4. The comparison is shown for two performance 
criteria (along each column) at five different wind perturbations (along 
each row), which indicates a very good approximation.

Evolutionary-Based optimization: Hybrid Differential Evolution

The Differential Evolution (DE) method was first introduced by Storn 
and Price in [43] and is based on evolutionary principles. This method, 
like GA, starts with a random initial population. A new search point 
is generated by adding the weighted vector difference between two 
randomly selected individuals from the population with a third ran-
domly chosen individual. The vector difference determines the search 
direction and a weighting factor decides the step size in that particular 
search direction. HDE employs a local optimization when no improve-
ment is found from DE in successive iterations. Hybrid Differential 
Evolution (HDE) is used for optimization-based analysis in this paper. 
The results obtained by DE have been observed to be better than 
those of other evolutionary algorithms, both in terms of accuracy and 
computational overhead [44]. Please refer to [16, 17, 45] and the 
references therein for the HDE algorithm and its implementation.

Main Results

This section presents the results used to determine the efficacy of the 
controller. As a first step, a safety margin is evaluated and a compari-
son is made between the original launcher model and the polynomial 
model. The second step is to perform a worst-case analysis inside 
the safe region defined by the safety margin metric evaluated using 
the polynomial model. No constraint violations were found, thus indi-
cating that the region defined by the metric is truly safe. Furthermore, 
a worst-case analysis is performed over the entire parameter space to 
gain insight into the level of performance deviations that could occur.

Results: Safety margin assessment

The safety margins for the given set of control laws H∞
  at five differ-

ent wind perturbations occurring at 30, 35, 40, 45 and 50 seconds 
are determined by solving the constrained optimization in Eq.  8. A 
population-based optimization technique, specifically a Hybrid Differ-
ential Evolution (HDE) method, has been used to solve for the critical 
parameter values and the safety margins over the δ −  space sat-
isfying the performance requirements listed in Table 2. The critical 
similitude ratio (λ ) and the safety margin (ρ ) are evaluated for differ-
ent wind perturbation cases, using a flexible launcher and polynomial 
model, and are given in Table 4. A high computation time, i.e., more 
than 5 hours, is required to evaluate the parametric safety margin for 
each wind instance when the flexible launcher model is utilized.

  Wind perturbations 

30 sec 35 sec 40 sec 45 sec 50 sec 

Launcher 
Model 

λ 1.05 0.71 0.66 0.68 0.88 

ρ ≥ 2.65 2.78 1.88 1.75 1.8 2.32 

CPU Time (sec) 20914.33 16524.17 16948.07 18085.58 18381.9 

Polynomial 
Model 

λ 1.05 0.756 0.685 0.718 0.899 

ρ ≥ 2.65 2.78 2 1.81 1.9 2.38 

CPU Time (sec) 181.27 442.16 211.41 366.65 204.07 

Table 4 – Critical similitude ratio (λ) and safety margin (ρ ) results for the 
launcher & the polynomial models

In order to reduce the computational time, surrogate polynomial 
models are utilized as constraints. It can be seen from Table 4 that 
the computational time is significantly reduced, by a factor of 100, 
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when the surrogate models are utilized. Due to the inherent error in 
the approximation, the critical parameter value found using the poly-
nomial model is not the same as that found using the original launcher 
model.

It is found that  < 1λ  for the wind perturbations occurring at 35, 40, 
45 and 50 seconds. This indicates a reduced level of robustness, 
whereas for the wind perturbation occurring at 30 s, the value of λ is 
slightly greater than 1, indicating good robustness. For wind perturba-
tions occurring at 40 and 45 seconds, the critical similitude ratio (λ) 
is 0.66 and 0.68 (for the launcher model), respectively, indicating that 
the reference set has contracted to a small safe region around the 
nominal parameter value.

Worst-case analysis inside the safe region

The worst-case analysis is carried out at five different wind perturba-
tions occurring at 30, 35, 40, 45 and 50 seconds. The hybrid differ-
ential evolution is employed with a fixed termination criteria of 1200 
simulations, a population size of 50, a mutation scale factor of 0.8 
and a crossover factor of 0.8. The local optimization, sequential qua-
dratic optimization "fmincon", is used for the hybridization purpose, 
and the maximum local iteration number is set to 30.

A worst-case analysis is performed on the original launcher model, 
in order to gain further insight about the levels of each performance 
deviation that could occur within the safe region defined by the para-
metric safety margin. In each case, the perturbations are limited within 
the set defined by the values of the parametric safety margin given in 
Table 4 respectively. Optimization-based worst-case analysis is per-
formed for the cost functions listed in Table 2. The parameter space 
is restricted to be within the reference set defined by 

0( , )δ λ m , 
where m was kept fixed at 0.5 and λ  at the value from Table 4. The 
results of the worst-case analysis are shown in Table 5. None of the 
performance criteria were exceeded as expected and the maximum 
excursions for the performance requirements within the safe region 
are obtained. It is clear that the deflection angle performance require-
ment approached its limits and it is the first constraint violation in all 
of the cases.

Worst-case analysis over the entire parameter space

The numerical results for six different cost functions at five different 
wind perturbations are given in Table 6 - Table 7. In Table 6, consider 
the cost function representing the performance on the aerodynamic 
load | ( ( )) |Q tα  and wind occurring at 45 seconds. Among the 1200 
candidate uncertain parameter vectors in the search space, the maxi-
mum cost function value associated with the worst case is 561.91 
and has a mean of 436.11, with a standard deviation of 79.57. Mean 
and standard deviation statistics give us an idea of the variability of 
the cost function values in the search space. A high value of the stan-
dard deviation indicates that the cost function values are spread out 
over a large range in the search space, whereas a low value indicates 
that the cost function values lie too close to the mean. This shows 
the exploration property of the optimization algorithm, which is its 
ability to access uncertain parameter vectors spread out in the search 
space. In order to find the global solution, the optimization algorithm 
should be able to explore the search space as thoroughly as possible. 
In this case, the standard deviation is high and indicates that the algo-
rithm was able to access uncertain parameter vectors spread out over 
the search space. Also, among the candidate points, 383 cases out 

Cost 
Function Worst case values

30s 35s 40s 45s 50s

( )
0[ ]

max
ft t t

Q tα∈

max 388.11 393.44 423.09 467.65 476.51
mean 340.85 355.41 385.65 425.83 423.46
std 42.84 37.24 39.71 44.25 47.84

failures 0 0 0 0 0

( )
0[ ]

max
ft t t

tβ
∈

 max 5.78 5.85 5.94 5.91 5.993
mean 4.10 4.62 4.84 4.76 4.45
std 0.85 0.71 0.67 0.68 0.83

failures 0 0 0 0 0

( )
0[ ]

max
ft t t

tθ
∈

 max 4.51 4.24 4.21 4.53 4.13
mean 3.51 3.46 3.56 3.51 3.04
std 0.58 0.44 0.45 0.52 0.5

failures 0 0 0 0 0

( )max tftθ  max 0.199 0.152 0.144 0.145 0.138
mean 0.038 0.033 0.032 0.035 0.034
std 0.026 0.026 0.024 0.030 0.025

failures 0 0 0 0 0

( )max tftθ  max 0.477 0.465 0.456 0.568 0.385
mean 0.124 0.119 0.118 0.134 0.121
std 0.095 0.095 0.090 0.101 0.101

failures 0 0 0 0 0

Cumulated 
deflection 

max 136.15 138.19 135.54 137.95 135.44
mean 125.43 125.92 125.76 124.95 124.57
std 12.1 12.31 12.00 11.81 11.42

failures 0 0 0 0 0

Table 5 – Worst-case results inside the safe region

Cost 
Function 

Worst-case values 

 30s 35s 40s 45s 50s

( )
0[ ]

max
ft t t

Q tα∈
 

HDE 

max 432.23 460.61 509.65 561.91 543.23
mean 336.68 369.56 406.95 436.11 430.48
std 62.53 66.12 75.46 79.57 77.49

failures 0 0 37 383 370

MC

max 424.74 449.14 493.08 549.26 532.14
mean 319.58 340.42 376.16 411.67 402.38
std 41.6 46.62 50.13 53.76 54.26

failures 0 0 0 60 40

( )
0[ ]

max
ft t t

tβ
∈

HDE 

max 6.5 6.5 6.5 6.5 6.5
mean 4.29 4.72 4.27 4.86 4.43
std 1.32 1.38 1.44 1.35 1.38

failures 187 516 582 517 366

MC

max 6.47 6.5 6.5 6.5 6.5
mean 3.79 4.26 4.36 4.4 3.88
std 0.95 1.05 1.08 1.12 1.01

failures 13 67 93 111 29

( )
0[ ]

max
ft t t

tθ
∈

HDE 

max 5.85 Unstable Unstable Unstable 6.91
mean 3.51 3.41
std 0.87 1.12

failures 0 0

MC

max 4.65 7.03 8.8 8.2 5.54
mean 3.14 3.24 3.35 3.34 2.73
std 0.59 0.7 0.76 0.95 0.63

failures 0 0 0 0 0

Table 6 – Worst case results for entire parameter range
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of 1200 violated the performance requirement on ( ( ))Q tα  ≤ 500 kPa 
during the execution of the HDE optimization algorithm. It was noticed 
that the rigid uncertain parameters were the main cause for the worst-
case performance in all of the cases, and the flexible modes were well 
suppressed by the bending-mode filters. Worst-case directions are 
oriented towards the parameters, which are simultaneously the most 
influent ones (dynamic pressure MQ, aerodynamic coefficient Cz, 
center of pressure Xf, center of gravity Xg) and the more dispersed 
ones (deflection misalignment).

Unstable cases are found for attitude when the wind perturbation cor-
responds to 35, 40, and 45 seconds. Sustained actuator saturation 
is observed in these cases. Monte Carlo analysis is also performed 
and the results are also tabulated in Table 6 - Table 7. These results 
are provided to compare with those found by optimization-based 
analysis. Due to the computational complexity involved with the origi-
nal launcher model, 1000 Monte Carlo campaigns were performed 
for each cost function. It was observed that the optimization-based 
method is able to find more worst-cases and even better ones than 
those found by the Monte Carlo method, which can be attributed to 
the intelligence embedded in the search process of the optimization 
scheme. The Monte Carlo method is unable to capture any unstable 
cases corresponding to the performance criteria of attitude, attitude 
rate and cumulated deflection. Also, apart from Qα  and ( )tβ , no fail-
ures, i.e., performance criteria violations, were recorded.

Conclusion and future work

Parametric safety margin assessment provides means to quantify 
robustness in the parameter space. The methodology involves trans-
lating the performance criteria into constraints, which are used in an 
optimization problem. This optimization problem is formulated in such 
a way that dilations of the reference set are performed in order to find 
the largest hyper-rectangle in the parameter space around the nomi-
nal parameter value where all of the performance criteria/constraints 
are satisfied. This procedure involves a large number of simulations 
of the launch vehicle and the problem becomes computationally very 
expensive.

In order to reduce the computational burden, surrogate polynomial 
models were developed using the polynomial chaos theory. These 
models provided a relatively inexpensive way of calculating the opera-
tional parametric safety margin metric. Although polynomial models 
are computationally very cheap to utilize, they may be less accurate 

when compared with the original launcher model. The accuracy 
depends on the order of the polynomial. As the order is increased, 
the accuracy increases while significantly increasing the computa-
tion time to derive the polynomial models. Even so, this paper shows 
that the second order polynomial models could be used to generate 
results with a fair degree of accuracy.

Future work is aimed at investigating the method of Bernstein expan-
sion on polynomial models to determine the parametric safety mar-
gin. The method of Bernstein expansion could further reduce the 
evaluation time of the safety margin by eliminating the use of the 
optimization procedure [46]; however, a stumbling block that needs 
to be overcome are the issues emanating from the dimensionality of 
the uncertainty space 

Cost 
Function Worst case values 

30s 35s 40s 45s 50s

( )max tftθ

HDE

max 0.15 0.16 Unstable Unstable 0.139
mean 0.038 0.035 0.04
std 0.027 0.029 0.03

failures 0 0 0

MC

max 0.22 0.18 0.19 0.184 0.177
mean 0.04 0.04 0.04 0.04 0.04
std 0.03 0.03 0.03 0.03 0.03

failures 0 0 0 0 0

( )max tftθ

HDE

max 0.595 0.498 Unstable Unstable 0.493
mean 0.117 0.138 0.112
std 0.09 0.101 0.088

failures 0 0 0

MC

max 0.556 0.54 0.53 0.58 0.536
mean 0.13 0.13 0.13 0.13 0.122
std 0.1 0.09 0.1 0.1 0.09

failures 0 0 0 0 0

Cumulated 
Deflection

HDE

max 136.44 153.7 Unstable Unstable 141.64
mean 125.87 127.28 125.43
std 14.05 13.55 12.85

failures 0 0 0

MC

max 136.52 142.51 151.14 142.18 135.63
mean 126.81 127.3 127 127 126.36
std 3.07 3.5 3.5 3.43 3.07

failures 0 0 0 0 0

Table 7 – Worst-case results for the entire parameter range
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From a sparse set of large-scale Linear Time Invariant (LTI) dynamical models, 
a methodology to generate a low-order parameter-dependent and uncertain 

model, with guaranteed bounds on the approximation error is firstly obtained using 
advanced approximation and interpolation techniques. Secondly, the stability of the 
aforementioned model, represented as a Linear Fractional Representation (LFR) and 
subject to actuator saturation and dynamical uncertainties, is addressed through the 
use of an irrational multiplier-based Integral Quadratic Constraint (IQC) approach. The 
effectiveness of the approach is assessed on a complex set of aeroservoelastic aircraft 
models used in an industrial framework for control design and validation purposes.

Introduction

Many techniques have been developed to model, control and assess 
the stability and performance of dynamical systems. When complex 
systems are considered, dedicated numerical software applications 
are usually used to accurately reproduce their dynamical behavior. 
The obtained models then result in large-scale ones equipped with 
a prohibitively high number of variables. Although complex models 
have a high degree of likeness with reality1, in practice, due to finite 
machine precision and computational burden, they are problematic to 
manipulate. This is the case in many engineering fields, such as aero-
space (e.g., aircraft [22], satellites, launchers, fluid flow mechanics), 
civilian structures, electronics (e.g., [11]), where control engineers 
have to cope with many practical problems, including lightly damped 
modes, nonlinear actuator(s), etc. Moreover, parametric uncertainties 
usually affect such models, accounting for variabilities and uncertain-
ties. In most cases, the parametric dependency is not a priori known 
and local linear models, representing the system at frozen configura-
tions, are often considered.

Let us consider a model ( )θG  of a physical dynamical system, which 
smoothly depends on a parameter pθ ∈ . This model is assumed to 
be only known through its linearized models Gi at some parametric 
points iθ  ( 1, , si n=  ). Let Gi be asymptotically stable large-scale 
Linear Time Invariant (LTI) dynamical models given by the state-space 
realizations:

	 ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
1 2

( ) ( ) ( )
1 11 12
( ) ( ) ( )
2

lin.

21 22

:

i i i
i i

i i i
i i i

i i i
i

x t A x t B w t B u t
z t C x t D w t D u t
y t C x t D w t D u t

θ
 = + +
 = + +
 = + +

=



G G 	 (1)

1	 Of course, given that every model can always be questioned or amended, the 
approach is valid only according to the considered dynamical models, and addi-
tional precautions should be considered when it is applied to the real system.

where ( ) in
ix t ∈ , ( ) wnw t ∈ , ( )u t ∈, ( ) znz t ∈  and ( ) yny t ∈  

are the states, exogenous input, single control input, performance 
output and measurement signals, respectively. Moreover, let be given 
a robust th

kn  order LTI controller = ( , , , )K K K KA B C DK  with transfer 
1( ) = ( )

kK n K K KK s C sI A B D−− + , looped between ( )y t  and ( )u t , 
that ensures some robustness and performance specification(s) for 
all of the sn  models. Such a controller could, for instance, be obtained 
with robust optimization tools, such as [3]. For an example of synthe-
sis, see [21] and the references therein.

The problem of assessing the stability of such a high-dimensional con-
trolled system over the continuum of parametric variations, when the 
single control input ( )u t  is subject to saturations, is addressed here. To 
this aim, as clarified in the rest of the paper and pursuant to Figure 1 and 

(i) Model approximation and mismatch error bound
High 
fidelity 
model

Set of large-scale 
LTI models (Gi) and 

LTI controller (K)

Stability proof of uncertain 
model ( )( ),u P s ∆  looped 
with K, subject to control 

input saturation

Set of reduced-scale 
LTI models and mismatch 

bound (W (s))

Reduced-scale LFR 
model ( )( ),u P s ∆

(ii) Models interpolation with bounded error 
and LFR construction

(iii) µ-analysis and control input saturated 
stability assessment (IQC)

Figure 1 – Global process of the proposed approach (Algorithm 1)
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Algorithm 1, a three-step methodology is proposed: (i) approximate the 
sn  dynamical models and bound the mismatch error, (ii) perform (inex-

act) interpolation of the reduced-order models with interpolation error 
bounds and, finally, (iii) assess the stability of the closed-loop model 
over both parametric variations and control input saturation limitations2.

2	 Note that, in practice, people usually reduce and perform the analysis in a trial 
and error way, which is of course tedious and time-consuming.

In comparison to [22] and [26] contributions, the proposed approach 
is accompanied with both approximation (Step (i)) and interpolation 
(Step (ii)) errors. Hence, the µ (structured singular value) and Integral 
Quadratic Constraint (IQC) analysis (Step (iii)) respectively provide 
sufficient stability conditions for the entire set of closed-loop models, 
without and with saturation. This represents the main contribution of 
this paper. It is also worth mentioning that the irrational multiplier-
based approach developed in Step (iii) is an extension of [6]. It is 
shown that no solution is obtained by means of a rational multiplier 
and only a frequency domain approach can be used here to assess 
the closed-loop stability.

The paper is organized following the schematic view of Figure 1. First, 
the main result, i.e., the procedure to assess the stability of a set of 
large-scale models looped with a control law subject to saturations, 
is described. Then we illustrate the proposed procedure on a complex 
large-scale aeroservoelastic business jet aircraft model for various 
flight configurations, looped with an anti-vibration controller. To end, 
Conclusions are given.

Notations
Given three operators ( )P ⋅ , ( )M ⋅  and ( )∆ ⋅  of compatible dimen-
sions, the lower and upper Linear Fractional Transformations 
(LFTs) are respectively defined (for appropriate partitions of P 
and M ) by ( , ) =l P ∆ 1

11 12 22 21( )P P I P P−+ ∆ −  and ( , ) =u M ∆
1

22 21 11 12( )M M I M M−+ ∆ − . The star product  of P and M is 
defined by:

	
( ) ( )

( ) ( )

1
11 12 11 22 12

1
21 22 11 21 22

,

,
l

u

P M P I M P M
P M

M I P M P M P

−

−

 −
 =
 − 





	 (8)

Given a matrix p mM C ×∈ , , ( , )j kM M j k=  (with 1 j p≤ ≤  and 
1 k m≤ ≤ ) denotes the scalar coefficient in the thj  row and thk  column 
of M, M * denotes the conjugate transpose of M and ( )Mσ , its largest 
singular value. The frequency-limited norm, denoted by H2-norm, is 
defined as the restriction of the H2-norm over the interval = [0, ]ωΩ  
with ω +∈ , where +  denotes the set of positive real numbers. 
Given an asymptotically stable LTI model realization H with transfer 
function ( )H s , 

1
2

2,

21:= ( ( ) )
F

H H j dπ ν ν
Ω Ω∫H  [19, 27].

Main result: Stability guarantee of a set of large-scale 
models subjec t to input saturations

With reference to Figure 1, the proposed contribution, in three steps, 
are summarized in Algorithm  1. More specifically, an optimal fre-
quency-limited approximation algorithm is first applied, followed by 
the creation of a frequency-dependent mismatch bound (Step  (i), 
Section  "Multi-LTI model approximation and error bound"), then the 
interpolation and transformation into a Linear Fractional Represen-
tation (LFR) structure is achieved (Step (ii), Section "Bounded-error 
reduced-order LFR model generation"), and finally, the stability of 
the overall uncertain, parameter-dependent model is firstly assessed 
thanks to a µ analysis, and then, when subject to control input satu-
ration, through a novel IQC technique (Step (iii), Section "Stability 
assessment").

Algorithm 1 – Global procedure

Data: ( 1, , )i si n= G  describing a system at various frozen param-
eter combination values p

iθ ∈  and a robust LTI controller K. 
Result: Stability assessment.
begin Step (i ) (Section " Multi-LTI model approximation and error bound")

•	 Compute ˆ ( ) ( 1, , )i sG s i n=   such that

	
( ) 2 ,,

ˆ : arg mini iH H r
G G H

∞
Ω∈ =

= −
rank HH

	 (2)

•	 Determine a low-order weighting function ( )W s  s.t. 
= 1 si n∀  , 

iR ∞∃∆ ∈H , 1
iR ∞

∆ ≤ H  and:

	 ( ) ( ) ( ) ( )ˆ
ii i RF s F s W s s= + ∆ 	 (3)

with ( ) = ( ) ( )i iF s K s G s  and ˆˆ ( ) = ( ) ( )i iF s K s G s .

return A set of reduced-order approximations ˆ ( )iF s .
begin Step (ii ) (Section "Bounded-error reduced-order LFR model generation")

•	 Compute a parameter-dependent LFR approximation ˆ( )P s  as-
sociated with the normalized and lowest-size block-diagonal 
parametric structure ( )θΘ  such that, for each parametric 
configuration ( )i iθΘ = Θ  there exists a real-valued norm-
bounded structured uncertainty P∆  capturing the interpolation 
errors, such that:

	 ( ) ( ) ( )( )ˆ ˆ , ,i u i PF s P s= Θ ∆ diag 	 (4)

•	 Combine (3) and (4), construct ( )P s  including all errors, 
where = ( , , ( ))i P R sΘ ∆ ∆diag∆ , such that,

	 ( ) ( )( ),i uF s P s=  ∆  with 1
H∞

≤∆ 	 (5)

return A low-order uncertain LFR model ( ( ), )u P s ∆  covering the 
initial set 1{ ( )}

si i nF s = .
begin Step (iii ) (Section "Stability assessment")

•	 Close the open-loop LFR model ( )P s  without input satura-
tion, build the standard form ( )M s − ∆  and check the robust 
stability by means of a µ test:

	 ( )( )0, 1M jω µ ω∀ ≥ ≤∆ 	 (6)

•	 Close the open-loop LFR model ( )P s  with input saturation to ob-
tain an augmented nonlinear standard form ( ) ( , )M s ϕ−diag ∆  
and check the robust stability by means of an IQC-based 
analysis test.

	 ( ) ( ) ( )* * * 0M j I j M j Iω ω ω ω∀ ∈ ∏ <       	 (7)

return A stability proof of the input-saturated closed-loop large-scale 
models.
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Multi-LTI model approximation and error bound

Generally speaking, the main objective of the approximation step is to 
capture, with a stable low order model, the initial large-scale model 
most relevant dynamics. Various approaches exist for the approxima-
tion of large-scale LTI models (see [2] for a general overview of model 
reduction and refer to Box 1 for an overview of the tool used here to 
perform the model approximation step) and one of them consists in 
formalizing the model approximation problem as an optimization one. 
The problem then consists in finding a reduced-order model that mini-
mizes a given norm of the approximation error.

In the literature, the H2-norm has often been considered and several 
methods are now available to address the corresponding optimal H2 
model approximation problem (see e.g., [8, 10]). However, in many 

cases, considering a limited frequency interval only is more relevant 
since (i) the system dynamics might not be perfectly known over the 
whole frequency domain, meaning that the model is inaccurate in 
some frequency intervals. Discarding these areas enables the approxi-
mation accuracy to be increased, where the initial model is accurate. 
Besides (ii), controllers are usually designed to act over a limited fre-
quency interval (due to actuator bandwidth or to prevent them from 
disturbing non-modeled dynamics), which means that a precise knowl-
edge of the dynamics over the entire frequency domain is not neces-
sarily useful. From the authors’ point of view, the optimal approximation 
over a bounded frequency interval enables these practical consider-
ations to be translated elegantly and is therefore preferred here. It is 
addressed through the use of the frequency-limited H2 -norm in Section 
"Optimal frequency-limited H2  model approximation". However, it is 
worth noticing that the overall methodology summarized in Algorithm 1 

model reduction toolbox

Box 1 - The MORE toolbox

The more toolbox gathers a set of tools aimed at alleviating the numeri-
cal burden induced by the complexity of dynamical models (e.g. for 
simulation, control, optimization, etc.).

More specifically, it contains several model approximation techniques 
designed to cope with several large-scale problems as depicted below.

More formally, the problems that can be adressed are the following:
•	 Reduction from state-space: considering a LTI dynamical model H 

represented by a large-scale differential equation,

	
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

 = +
 = +



	 (B1-1)

where ( )x t ∈, ( ) unu t ∈  and ( ) yny t ∈  are the state, command 
inputs and outputs of the model, respectively. The objective is to 
find a smaller model Ĥ  represented by

	
( ) ( ) ( )
( ) ( ) ( )

ˆ ˆˆ ˆ
ˆ ˆˆ ˆ

x t Ax t Bu t

y t Cx t Du t

 = +


= +



	 (B1-2)

with ˆ ( ) ( )rx t r n∈   and ˆ ( ) yny t ∈  such that the input-output behaviors of H and Ĥ  are close.

In the toolbox, this closeness is generally considered through optimality considerations based on the H2-norm of the approximation 
error or its restriction to a bounded frequency interval (as used in this paper).

•	 Reduction from data: the initial model is only known through a set of frequency data ( ){ } 1, ,
,i i i n

s H s
= 

 with is ∈. The objective is 
then to find a low-complexity model such as Ĥ  in equation (B1-2) that matches the frequency data.

•	 Reduction of infinite dimensional models: the initial model is known through its irrational transfer function ( ) y un nH s ×∈  obtained 
for instance from a partial differential equation (PDE), from a delayed differential equation, etc. Again, the objective is to build a low-
complexity model Ĥ  as in (B1-2) such that the input-output behavior of H is well reproduced (for instance in the H2 sense).

For further information, interested readers should refer to the site of the toolbox : www.onera.fr/more.

Data DAE/ODE

State ( ) nx t ∈ , n large 
or infinite

Reduced state ( )ˆ rx t ∈  
with r n

(+) Simulation
(+) Analysis
(+) Control
(+) Optimization

Infinite order equations 
(require meshing)

Reduced 
DAE/ODE

PDE

( ) ( ) ( )
( ) ( ) ( )

1

1

i

i

u f u f u f
y f y f y f

=   
=   





( ) ( ) ( )
( ) ( ) ( )

Ex t Ax t Bu t
y t Cx t Du t

= +
= +



( ) sH s e τ−=

( ),u x t
t
∂

=
∂



Figure B1-1 – Overview of the MORE toolbox
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does not depend on the approximation strategy, since the approxima-
tion error is bounded in Section "Bound on the approximation error".

Optimal frequency-limited model approximation

Using the 2,ΩH  -norm, one can formulate the approximation over a 
bounded frequency interval as an optimization problem. More spe-
cifically, given an asymptotically stable nth order large-scale model 
G and a frequency interval Ω, the optimal 2,ΩH  model approximation 
problem consists in finding a reduced-order model Ĝ of order r n  
that minimizes the 2,ΩH -norm of the approximation error ˆ−G G, i.e., 

	
2,

, ( )=

ˆ = arg min
H H H r

G G H
Ω

∞∈
−

rank
H 	 (9)

Here, Problem (9) is addressed using the method called Descent 
Algorithm for Residue and Pole Optimization (DARPO), proposed in 
[27]. It relies on the pole-residue formulation of the 2,ΩH  -norm [28] 
and finds the poles and associated residues of the reduced-order 
model that satisfy the first-order optimality conditions associated with 
Problem (9). Note that, since this problem is not convex, the reduced-
order model obtained this way is only a local minimum.

With reference to Algorithm 1 (Step (i)), the approximation algorithm 
is applied to each large-scale model iG , = 1, , si n  resulting in ns 
small-scale models ˆ

iG  minimizing the 2,ΩH -norm of the approxima-
tion error with iG , as stated in (2).

Note that both the approximation order r and the frequency-interval 
Ω are tuning parameters that depend on the considered application. 
However, as mentioned before, the frequency interval Ω can be cho-
sen as the interval that contains the most relevant dynamics of the 
physical systems. Observing the decay of the eigenvalues of the prod-
uct of the frequency-limited gramians Ω Ω   (see e.g., [9, Chap. 4]), 
which can be viewed as the Hankel singular values in the frequency-
limited case, can give an idea of the adequate approximation order r.

The stability analysis must take into account the error induced by the 
approximation step. For that purpose, a low-complexity model upper 
bounding the worst approximation error is built in the next section.

Bound on the approximation error

Let us denote by ( ) = ( ) ( )i iF s K s G s  and ˆˆ ( ) = ( ) ( )i iF s K s G s  the 
open-loops from the inputs of the large and small scale models to 
the output of the controller3 K. Let us denote the order of ˆ ( )iF s  as 

= Kn r n+ . The objective of this section is to model the approximation 
error ˆ( ) = ( ) ( )i i is F s F sΣ −  ( 1, , si n=  ) as a low-order additive out-
put uncertainty. More specifically, a low-order filter ( )W s  is sought, 
such that = 1, , si n∀  , 

iR ∞∃∆ ∈H  with 1
iR ∞

∆ ≤ H  and ( ) =iF s
ˆ ( ) ( ) ( )

ii RF s W s s+ ∆ .

Then, the stability of the set of uncertain models ˆ{ ( ) ( ) ( ),i RF s W s s+ ∆  
1}R ∞

∆ ≤H   implies the stability of the finite set of models 
=1, ,{ ( )}

si i nF s


. Note that any invertible filter ( )W s , such that, 

	 1

=1, ,
1max

s
i

i n
W

∞

− Σ ≤


 H 	 (10)

can be used, since one can always exhibit 1( ) = ( ) ( )
iR is W s s−∆ Σ  

such that ˆ( ) = ( ) ( ) ( )
ii i RF s F s W s s+ ∆ .

3	 The controller is included here to be consistent with the interpolation step of Section 
"Bounded-error reduced-order LFR model generation".

The design of ( )W s  then consists in a trade-off between complex-
ity and conservatism. Indeed, one must find a ( )W s  that is both an 
accurate modeling of the worst approximation error and whose com-
plexity (order) is reasonable. For instance, =1, ,= max si n i HW

∞
Σ



   
obviously satisfies (3). However, it does not offer an accurate model 
of the approximation error and might, therefore, be too conservative 
for stability analysis. A direct approach to design ( )W s  satisfying (10) 
would consist in using non-smooth H∞ optimization tools [3] to solve 
the following problem

	 1

min

. . 1, ,i s

W

s t W i n
∞

∞

− Σ ≤ = 

H

H

	 (11)

However, depending on the application, the errors iΣ  might be too 
large for such an approach to be tractable. In those cases, a heuristic 
approach may then be preferable.

Bounded-error reduced-order LFR model generation

Consider the parametrically-dependent set =1
ˆ{ ( )}

si i nF s


 of reduced-
order models obtained above; the objective is now to derive a lim-
ited-size LFR, such that µ and IQC-based analysis tools can then be 
applied. In the general case, involving several parameters ( pθ ∈ ), 
the ns equations (4) must be solved for a parametric structure, e.g., 

11= ( , , )
i i pi n p ndiag I I

θ θ
θ θΘ  , whose size 

=1
=

k

p

k
n nθΘ ∑  should be 

kept as small as possible. Efficient solutions, based on multivariate 
sparse polynomial or rational interpolation techniques, are detailed in 
[14, 5, 22].

In the case of a scalar parameter (θ ∈), a specific technique can be 
developed to compute low-order LFR models whose ∆-block will both 
include the parametric variations (Θ) and a normalized real-valued 
uncertain operator (∆P). The latter is introduced to "cover" the interpo-
lation errors, as illustrated by Equation (4). The proposed technique, 
based on a polynomial state-space data interpolation approach, can 
be broken down into three steps, which are briefly presented next.

Step 1: model rewriting in a rescaled companion form

Reduced-size LFR models are easier to obtain when all varying data 
appear in a limited number of rows (or columns) of each state-space 
representation. A companion form is thus a good choice, but unfortu-
nately leads to ill-conditioned matrices as the system order increases. 
As is also proposed in [7], a rescaled companion form will then be 
used. Using the notation 1ˆ ( ) = ( )i i n i i iF s C sI A B D−− +  the system is 
rewritten as: 

	

1

1
( ) ( ) ( ) ( )

1 2
( ) ( ) ( ) ( )

1 2

0 0 0

0 0 0=i i
n

i i i i i i
n

i i i i
n

A B
C D

a a a b
c c c d

λ

λ −

 
 
           
 
 

   







	 (5)

where the scaling variables 1 1{ }k k nλ = −

, with the help of standard 
numerical balancing techniques, are tuned to optimize the average 
condition number of each matrix iA . Note that the standard compan-
ion form is recovered for = 1kλ .
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Remark 1
In the context of LFR modeling, the above description is of high inter-
est since the varying state-space data all appear in the last two rows. 
Assuming that every coefficient is approximated by a pth order poly-
nomial, the size of = nI

θ
θΘ  will then be limited to = 2n pΘ .

Polynomial interpolation with guaranteed error bounds

Let us denote by iY  the last two lines in Equation (12):

	
( ) ( ) ( ) ( )

2 ( 1)1 2
( ) ( ) ( ) ( )

1 2

=
i i i i

nn
i i i i i

n

a a a b
Y

c c c d
× + 

∈ 
 







	 (13)

and focus on the polynomial approximation of the finite set =1{ }
si i nY



 
with guaranteed and minimized error bounds. Given p, the order of 
the polynomial, the problem is reduced to the determination of an 
error matrix 2 ( 1)nE × +

+∈  and a set of matrices =0{ }q q pX


, such that 
the non-negative entries of E are minimized under the following linear 
constraints (with j = 1,2 and = 1 1k n + ):

	 0 ,
=1 ,

, = 1
p

q
i q i j k s

q j k

X X Y E i nθ
 

+ − ≤ 
 

∑  	 (14)

The above optimization problem is easily solved by any standard 
linear programming solver. However, the order p of the polynomial 
should be carefully chosen. Low orders will indeed result in rough 
approximations yielding conservative models with large entries in E. 
Conversely, high order polynomials will improve the accuracy at the 
interpolation points. Moreover, critical oscillations are likely to appear 
between the interpolation points when the difference sn p−  gets too 
small. This issue and possible remedies are further discussed in the 
applicative part.

LFR modeling

Proposition 1
From Inequalities (14), E-dependent "shaping" matrices U (E ) and 
V (E ) of appropriate dimensions and a bounded, real-valued, block-
diagonal uncertain operator P∆ :

	 ( )1 1
, ,

P r PrP p n p nI Iδ δδ δ∆ = diag 	 (15)

can be easily defined, such that the function: 

	 0
=1

( , ) = ( ). . ( )
p

q
P q P

q
X X U E V Eθ θ∆ + + ∆∑Y 	 (16)

satisfies the following statement:

	 1, , , / 1
ks P pi n δ∀ = ∃∆ ≤  and ( ),i P iYθ ∆ =Y 	 (17)

Proof
The above proposition is trivially satisfied with the following (non-
minimal) choice: 

	 ( )1 2 2

(2 2) (2 2)= , ,
n

n n
P p pδ δ

+

+ × +∆ ∈ diag 	

	
2 (2 2)1 1 0 0

=
0 0 1 1

nU × + 
∈ 

 

 



  	

	 and ( ) ( )1,1 1, 1 2,1 2, 1= , , , , ,n nV E E E E E+ + diag 	

Remarking that ( , )Pθ ∆Y  polynomially depends on θ and affinely 
depends on P∆ , standard algorithms (see [15] for further details) can 
be applied to compute the interconnection matrix  , such that: 

	 ( ) ( ) ( )( )2, = , , = , ,P u P u p PIθ θ∆ Θ ∆ ∆Y     diag 	 (18)

Next, standard LFR object manipulations implemented in the LFR tool-
box [15] yield the required open-loop LFR models depicted in (4) 
and (5). Once again, standard manipulations are used to "construct" 
the closed-loop ( )M s − ∆  standard forms that will include or not the 
saturation-type nonlinearity and will be used to check the stability.

Stability assessment

At this point, a low-order uncertain LFR model ( ( ), )u P s ∆  cover-
ing the initial set =1{ ( )}

si i nF s


 is available. The objective of this sec-
tion is to prove the stability of the closed-loop LFR model ( )P s , both 
with and without input saturation. As summarized in Algorithm 1, the 
proposed analysis method consists of two steps. No saturation is 
considered in the first, which can be viewed as a LFR model valida-
tion test. In a second step, an input saturation is introduced and the 
IQC-based analysis is considered.

Stability analysis without saturation using µ tools

Without saturation, the uncertain closed-loop model under con-
sideration assumes an LTI standard form ( )M s − ∆ , where 

( , , ( ))P R s= Θ ∆ ∆diag∆  is a normalized LTI structured uncertainty 
block. As a result, the stability of the continuum (covering the initial 
set of full-order plants) of closed-loop models obtained for any 
admissible uncertainty inside the unit ball is guaranteed if and only if: 

	 ( )( )0, 1M jω µ ω∀ ≥ ≤∆ 	 (19)

where ( )Mµ∆ , for any complex-valued matrix M, denotes the struc-
tured singular value with respect to ∆ and provides the inverse of 
the size of the critical uncertainty beyond which stability is no longer 
guaranteed (see [17] for further details). Testing (19) raises two dif-
ficulties. The computation of µ is an NP-hard optimization problem, 
which, in addition, must be solved for an infinite set of frequencies. 
However, as is emphasized in [23], recent implementations (used in 
this paper) of this µ test in [4, 24] provide quite efficient tools even 
for high-order plants with numerous and repeated uncertainties (see 
also [13]).

Remark 2
The proposed µ test is clearly a necessary stability condition. If there 
exists 0ω ≥  such that ( ( )) > 1M jµ ω∆

 , then the accuracy of the 
model should be improved in order to minimize the effects of P∆  and 

( )R s∆ .

Stability analysis with saturation using IQC

IQC-based analysis techniques enable a wide range of problems to 
be studied, namely the robust stability and performance properties of 
the interconnection ( )M s − ∆  of an LTI operator ( )M s  with a struc-
tured model uncertainty ∆ containing nonlinearities, LTI and/or linear 
time-varying (LTV) parameters, neglected dynamics, delays, specific 
nonlinearities such as friction, hysteresis, etc. (see, e.g., [20]).
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Here, standard IQC descriptions are used for both LTI uncertainties, 
∆ and sector nonlinearities, denoted by ϕ. The originality of our 
approach resides in the specific algorithm that has been developed 
to reduce the computational burden. Indeed, standard IQC-oriented 
analysis methods consist in solving KYP (Kalman-Yakubovitch-
Popov)-based LMI conditions [16]. Theses standard approaches are 
however intractable for high-order models, since the number of sca-
lar optimization variables quadratically increases with the closed-loop 
order [6]. Moreover, this approach is not compatible with the use of 
irrational multipliers4.

IQC generalities
An IQC describes a relation between the input and output signals of 
an operator. Since these two formulations are completely equivalent, 
these constraints can be defined either in the time or the frequency 
domain. Nevertheless, frequency domain constraints are often pre-
ferred, since they lead to simpler stability conditions. The definition of 
an IQC is given in the frequency domain:

Definition 1
Two signals, respectively of dimension m and p, square integrable 
on [0, )∞ , i.e. : 2 [0, )mv L∈ ∞ , 2 [0, )pw L∈ ∞ , satisfy the IQC defined by 

( ) ( ): m p m pj C + × +Π → , and Hermitian-valued function, iff: 

	
( )
( ) ( ) ( )

( )

*

0
v j v j

j d
w j w j

ω ω
ω ω

ω ω
∞

−∞

   
Π ≥   

   
∫

 

 

	 (20)

where ( )v jω  and ( )w jω  respectively correspond to Fourier trans-
forms of v and w, such as =w v∆ .

The problem consists in analyzing the closed-loop that corresponds 
to the interconnection by a positive feedback of ( )M s  with ∆, where 
∆ can be nonlinear and non-stationary. Let us suppose that input and 
output signals of ∆ satisfy the IQC defined by Π. The following result 
gives the stability criterion [16].

Theorem 1
Let us suppose that ( )M s  is stable and that ∆ is a causal and 
bounded operator, if

•	 interconnection M τ− ∆  is well posed for any [0,1]τ ∈ ,
•	 τ ∆  satisfies the IQCs defined by Π , [0,1]τ∀ ∈ , 
•	 there exists > 0ε  such as: 

	
( ) ( ) ( )

( )

*

Z j

M j M j
j I

I I
ω

ω ω
ω ω ε

   
∀ ∈ Π ≤ −   

   


 	 (21)

then, the closed-loop system is stable.

Let us consider a stable ( )M s , forming the constant block of the LFR 
and an augmented block ( ),ϕ← diag∆ ∆ 5, where ϕ  represents one 
sector slope-restricted nonlinearity (0,1). The global multiplier Π cor-
responding to ∆ is built as follows (see [12, 16, 18] for additional 
details):

4	 This constraint renders it necessary to fix the poles of the multipliers a priori 
(via a time-consuming trial-and-error process), without any guarantee on the 
optimality of the selected poles.

5	 Note that ∆ is the same uncertain block as in Section "Bounded-error reduced-
order LFR model generation" (containing the neglected model reduction dynamics 

( )R s s∆ , parametric variations Θ and interpolation errors ∆P ), augmented with 
ϕ, the saturation nonlinearity.

( ) ( )

( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

2

2 2

*

0 0 0
0 ( ) 0

0 2 2 0
0 0

, ,

, ,0
RP

P

x j
X j Y jj x j x

Y Xj j

X X X xj j j

Y Y Yj j j

ωλ ω γ
ω ωω ωλ ω γ ω γ
ω ω

ω ω ω

ω ω ω

Θ ∆

Θ

 + +
 

Π =  − + − − − 
=

=

diag

diag

	
(22)

where *( ) = ( ) 0 n nX j X j Cω ω Θ Θ×
Θ Θ ≥ ∈ , *( ) = ( ) 0P PX j X jω ω ≥ ∈

(2 2) (2 2)n nC + × + , *( ) = ( ) n nY j Y j Cω ω ×Θ Θ
Θ Θ− ∈ , *( ) = ( )P PY j Y jω ω− ∈

(2 2) (2 2)n nC + × + , 0x ≥ , 0
R

x∆ ≥ , 0γ ≥  and λ∈ . Closed-loop stability 
is ensured if a solution of the following LMI can be found, ω +∀ ∈ :

	
( ) ( ) ( )( ) ( )*

, , , , 0
M Mj j

x X Yj j
I I
ω ω

λ γ ω ω
   

Π <   
   

	 (23)

Proposed innovative method
In this paper, the optimization problem is solved directly from fre-
quency domain inequalities through a grid-based approach. A similar 
approach is used in [1], but without guarantee of the solution validity 
over the entire frequency domain. Here, in order to guarantee that the 
solution is valid over the entire frequency domain, a specific tech-
nique based on [25, 4] is adapted to our problem [6]. In addition, 
another advantage is to limit the number of LMI constraints, since 
only active constraints are added in the LMI optimization problem. 
Here, the main result is presented.

Let = ( , , , )A B C DΞ Ξ Ξ ΞΞ  be the realization of ( )sΞ  (of order m), with 
1( ) = ( ( )) ( ( ))j I Z j I Z jω ω ω −Ξ − +  (( )I Z+  is invertible) where 

*( ) = ( )Z j Z jω ω  is the stability criterion (21), and 0( ( )) =j ω δωΞ +
0( ( ), )l mS Iω δω , with 0 δω ω∀ ≥ − , i.e., 0( )S ω  is interconnected 

to δω as a lower LFT, where δω is a real parameter. 0( )S ω  is writ-
ten as

	 ( )0
0

1=

CD
j I I

S
B I IjA

j

ω
ω

Ξ
Ξ

Ξ
Ξ

 
          − −  −  
 

 	 (24)

Proposition 2
If 0( ( )) < 1σ ωΞ  then 0( ( ( ), )) < 1l mS Iσ ω δω  holds true for 

0 [ , ]ω δω ω ω+ ∈ , where ω  and ω  are computed as 1
0=

nη
ω ω +  and 

1
0=

pη
ω ω + , where nη  and pη  are the maximal magnitude real nega-
tive and positive eigenvalues of T, respectively, defined as 

	 22 21 121
* * *
22 12 21

0 0 0
=

0 0 0
S S S

T X
S S S

−     
−     

     
	 (25)

where,

	 11 12 11
0 *

21 22 11

( ) = =
S S I S

S X
S S S I

ω
   
   
   

and 	 (26)

Remark 3
When ( ( )) = 1σ Ξ +∞ , = = 0pω η+∞⇔ , a null eigenvalue is 
obtained, which means that ( ( ))σ ωΞ  crosses the 0  dB axis for 

=ω +∞ . However, the intersection of the stability criterion with the 
0 dB axis has no physical meaning.
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Remark 4
The bilinear transformation 1( ) = ( ( ))( ( ))j I Z j I Z jω ω ω −Ξ − +  with 
( )I Z+  invertible allows a positivity condition to be transformed into 
a weak gain condition:

	 *( ) 1 0Z Zσ Ξ ≤ ⇔ + ≥ 	 (27)

In the iterative approach, proposed in Algorithm 2, the validation 
step is performed a priori and during the LMI optimization problem 
resolution. The choice of the initial grid has no influence on the 
feasibility problem. It is possible to choose a singleton at the first 
iteration. However, in order to limit the number of iterations, and 
consequently the calculation time, without any a priori knowledge, it 
is recommended to take some frequencies roughly spread through-
out the frequency domain. It is possible, when first solutions are 
obtained, to tune this initial frequency grid to decrease the number 
of iterations.

This approach allows the frequency domain irrational multipliers 
( )X jω  to be piecewise continuous. More specifically, between each 
iΩ , these multipliers are discontinuous, consequently no state-space 

representation for these multipliers can exist. Involving a state-space 
representation in order to parameterize multipliers would necessarily 
lead to constraining the solution and increasing the conservatism. Of 
course, it is also possible to use rational multipliers with a frequency 
domain resolution, by using the factorized form of ( )X s  presented 
previously [6]. The auxiliary matrix P is still avoided, but without the 
advantage of using irrational multipliers.

Application to an aeroelastic aircraft system

The methodology described in Section "Main result: Stability guaran-
tee of a set of large-scale models subject to input saturations" and 
summarized in Algorithm 2 is now applied to check the stability of a 
set of ns = 3 large-scale models ( in ≈ 600) representing the local 
behavior of an industrial aircraft for different Mach numbers, looped 
with K, an anti-vibration controller (nK = 6) [22].

Step 1: LTI approximation and error bound (II-B)

Approximation
The ns = 3 large-scale models Gi of order in ≈ 600, are approxi-
mated by ˆ

iG  of order r = 16 over [0, ]rωΩ = . The frequency interval 
Ω is chosen to keep the low frequency behavior of the large-scale 
models, since it is known to be accurate, whereas the dynamics 
above rω  are less accurately known and are therefore discarded. 
The approximation order r is then chosen experimentally to achieve 
a low approximation error over Ω. The relative approximation errors, 
i.e., 

2, 2,

ˆ=|| || / || ||i i i ie G G G
Ω Ω

− H H , i = 1, 2, 3, are respectively equal 
to 2.86 %, 2.39 % and 2.49 %. Figure 2 illustrates these low errors 
through the largest singular value of G1 and of 1Ĝ .

Figure 2 illustrates that the dynamics occurring at higher frequencies 
than rω  (gray zone) are indeed discarded during the approximation 
step. By doing so, one can obtain very accurate reduced-order mod-
els over [0, ]rωΩ = , as shown by the relative errors, which are all 
below 3 %.

The high-frequency dynamics require a complex model to be accu-
rately captured, while the low-frequency ones, which contain the 
rigid behavior and the first flexible modes of the aircraft, can be cap-
tured more easily. This point is particularly obvious when compar-
ing the relative errors obtained here to that obtained by optimal H2 
approximation of the same aircraft model in [22]. In the latter case, 
with an approximation order r = 16, the H2 approximation error is 
above 30 %.

Frequency (rad/s)
10 –2 10 –1 10 210 1 10 410 0 10 3

–10

–20

–30

–40

–50

–60

–70

m
ax

σ
 (d

B)

Large scale model 1G
Reduced-order model 1Ĝ

Figure 2 – The largest singular value of G1 and of the 16th order reduced-
order model 1Ĝ  obtained with DARPO, with = [0, ]rωΩ . The gray area 
represents the discarded frequencies (i.e., above rω )

Algorithm 2 – Iterative IQC resolution

Data: ( )M jω  the stable fixed block of the LFR, multiplier ( )iωΠ  and 
iω +∈ , = 1, fi n .

Result: A stability proof of the LFR model, including nonlinear sector 
saturations.
while stability not checked do

For = 1, fi n , check the stability criterion

	
( ) ( ) ( )*

0i i
i

M j M j
I I
ω ω

ω
   

Π <   
   

	 (28)

if (28) has solutions then
•	 Set ( )i iωΠ ←Π  be the solution obtained at iω .
•	 Set 0 iwω ←  and apply Proposition 2. 
•	 For each solution iΠ , a frequency-domain = [ , ]ii iω ωΩ  is 

obtained. =1,...,=
fvalid ii nΩ Ω



.
if = [0 )validΩ +∞  then

The solution composed by the set of iΠ  is validated on the 
whole frequency domain.
Stability is proved, stop.

else
•	 Determine the complementary set [0, )=novalid valid+∞Ω ΩC .
•	 �Select one or several frequencies in novalidΩ  and update 

the grid.
else

Stability cannot be proved, stop.
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An alternative illustration of the relevance of the frequency-limited 
approach in comparison to the standard H2 approach is presented in 
Figure 4. The time responses of the approximation errors between the 
first input-output transfers of H1 and 1Ĝ  and an optimal H2 reduced-
order model of order 16 for a sinusoidal input of frequency below and 
above rω  are shown. One can see that the frequency-limited approach 
leads to a significantly lower error when the input signal acts below rω  
(left plot in Figure 4), while the H2 approach is more efficient outside 
of the frequency interval (right plot).

Approximation error modeling
The order of the approximation errors ˆ( ) = ( ) ( ) =i i is F s F sΣ −

ˆ( ( ) ( ))i iK G s G s−  prevents optimization tools from being used to 
design the filter ( )W s  efficiently. That is why it is built here in a heuristic 
manner. More specifically, ( )W s  is designed as a product of simple first-
order filters =1( ) = iW

i

s zn
i s pW s k −

−Π , where the poles pi , zeros zi and gain k 
are adjusted for ( )W s  to be as close as possible to the approxima-
tion errors, while still ensuring that 1

=1, ,max 1
si n iW

∞

− Σ ≤


 H . The filter 
( )W s  obtained here has an order nw = 25 and is plotted in Figure 3. One 

can observe that its singular value upper bounds the worst approxima-
tion error. In particular, with this filter, 1

=1, ,max = 0.99 < 1
si n iW

∞

− Σ


 H  
is obtained. 

Step 2: Interpolation and LFR modeling (II-C)

At this stage, a Mach-dependent family =1 3
ˆ{ ( )}i iF s



 of 22nd order LTI 
models is available, together with a common weighting function ( )W s  
shaping the worst-case approximation errors induced by the reduc-
tion process.

Polynomial approximation with guaranteed bounds
The interpolation technique summarized by the linear constraints (14) is 
initially applied with p = 2 and ns = 3. The scalar parameter θ is nor-
malized in such a way that θ = –1 corresponds to the lowest Mach 
number of interest, while θ = 1 corresponds to the highest value. Since 
ns – p = 1, this first trial yields an exact approximation at each of the 
three interpolation points, but a poor behavior is observed elsewhere. 
Reducing the order p to 1 would yield a rough and unacceptable 
approximation. The only remaining option then consists in adding ficti-
tious models for intermediate Mach numbers. This is achieved here by 
generating additional coefficients in (12), with a standard linear interpo-
lation technique. Two models are then generated for Mach 0.825 and 
0.875, and a new interpolation is thus realized with ns = 5 for each of 
the 46 coefficients contained in the matrices iY  of (6). A result of this 
interpolation is plotted in Figure 5 for one of the most varying coeffi-
cient, namely 2,19 ( )θY . The solid blue line corresponds to the nominal 
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Mismatch error with a H2-oriented method
Mismatch error with a Frequency-limited H2-oriented method

9 10874 63 521

10 –3

10 –4 

10 –5

10 –6

10 –7

10 –8

	

Mismatch error with a H2-oriented method

9 10874 63 521

10 –2

10 –3 

10 –4

10 –5

10 –6
Mismatch error with a Frequency-limited H2-oriented method

At f = 20 Hz

Figure 4 – Time responses of the approximation errors between the large-scale model G1 and the frequency-limited reduced-order model 1Ĝ  (solid red) and an 
H2 optimal reduced-order model of order 16 (dashed blue) for a sinusoidal input of frequency below rω  (left) and above rω  (right)
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Figure 5 – Illustration of a 2nd order polynomial interpolation result with 
minimized guaranteed error bound for the coefficient c19 = Y2,19

Frequency (rad/s)
100 105

0

–50

–100

–150

Si
ng

ul
ar

 v
al

ue
s 

(d
B)

( )W s
( ) ( )ˆ

i iF s F s−

Figure 3 – Singular values of ( )W s  and ˆ( ) ( )i iF s F s−  ( = 1, , si n )
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plot, while the dashed red lines represent lower and upper bounds, 
including the five interpolation points. Note that the three coefficients 
from the initial set of models are all located on the same bound (the 
upper-bound for this coefficient). Quite interestingly, this property holds 
true for the 46 ( 2 ( 1) 2 ( 1)Kr n n= × + + = × + ) coefficients, which per-
mits the size of P∆  to be reduced drastically in (15). Here, one obtains 

2=P P Iδ∆  and (16) boils down to:

	 2
0 1 2( , ) = ( , ). ( )P P PX X X diag V Eθ θ θ δ δ∆ + + +Y 	 (29)

LFR modeling
As has already been clarified in Section "Main result: Stability guar-
antee of a set of large-scale models subject to input saturations", 

( , )Pθ ∆Y  is readily rewritten in a LFR format with the help of exist-
ing software [15]. Next, exposed in Equation (2), a global 47th-order 
(= W Kr n n+ + ) dynamic LFR model encompassing the whole initial 
set of full-order open-loop plants is obtained. The structure of its 7 x 7 
∆-block is written as:

	 ( )( )4 2, ,P RI I sθ δ= ∆diag∆ 	 (30)

and has a minimal size that remains largely compatible with the spe-
cific µ  and IQC based analysis tools to be applied next.

Step 3: Stability analysis (II-D)

Preliminary tests via µ analysis
As mentioned in Subsection "Stability assessment", the validity of the 
global LFR model is preliminarily checked without saturation. An uncer-
tain LTI closed-loop model is then built and the µ analysis test (19) is 
performed. Since the complexity of our algorithm is not directly affected 
by the number of states, but mainly depends on the size and structure of 
∆, the results are obtained in a few seconds on any standard computer. 
A guaranteed upper-bound of µ as a function of frequency is displayed 
in Figure 6. The yellow stars corresponding to lower-bounds reveal a 
rather low conservatism of our test, which can be summarized by: 

	 ( )( )
0

= 0.43 1sup M j
ω

µ ω
≥

∆ 	 (31)

The continuum of closed-loop models, for any admissible uncer-
tainty, then clearly remains stable, which concludes the preliminary 
validation phase.

Stability assessment via IQC-based analysis
An input saturation – converted to a deadzone operator ϕ, is 
now inserted in the uncertain closed-loop whose ∆-block is 
then augmented: ( ),ϕ←∆ ∆diag . The initial frequency grid is 

= {1,5,10,20,100}iω  rad/s with = 1,...,5i . To limit the number 
of decision variables and then the computation time, ( )X jωΘ  and 

( )Y jωΘ  are chosen to be diagonal, which leads to 17 scalar deci-
sion variables for each frequency, even though it is possible to use 
the general form if no solution was obtained. In addition, 3 deci-
sion variables , ,x λ γ  come from the multiplier, which corresponds 
to the static nonlinearity ϕ. A solution has been obtained in 8 itera-
tions and 104 frequencies. The total number of decision variables is 
17 × 104 + 3 = 1771. The following remarks can be made:

•	 The solution ( )X jω  is a positive, complex, constant and piece-
wise continuous 6 × 6 matrix. For example, at iteration 8, for 

3ω  = 10 rad/s, the solution 3 ( )jωΠ  is valid over the frequen-
cy domain 3 = [9.72,32.82]Ω  rad/s. Finally, after 8 iterations 

=1,...,104= = [0 )valid iiΩ Ω +∞


, consequently the solution is 
validated on the whole frequency domain.

•	 An a priori trial and error approach to determine the parameter-
ization for multipliers is not required here. Furthermore, with 
rational multipliers, if no solution is obtained with a specific pa-
rameterization, it is still impossible to conclude on the feasibility 
problem, since a different or more complex parameterization 
may have enabled a solution to be found. Both points highlight 
the methodological superiority of irrational multipliers, which 
can only be considered from a frequency domain point of view. 

•	 Finally, the stability of the uncertain and nonlinear closed-loop 
is proved on the large-scale dynamical model.
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Figure 6 – Visualization of µ upper and lower bounds for the evaluation of robust stability margins: stability proved for 10.43 = 2.32−
∞∆ ≤ 
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Conclusion and perspectives

In this paper, a methodology enabling the stability of a set of con-
trolled SIMO large-scale LTI dynamical models subject to input satu-
ration to be assessed has been presented. Firstly, the large-scale 
models are reduced, interpolated and the associated errors are 
bounded. This leads to a small-scale LFR, which represents both 
the parametric variation of the initial set of models and the errors 
induced during the reduction and interpolation steps. The stability 
analysis is then achieved with an innovative algorithmic approach 
based on IQC techniques. Unlike standard methods that require a 
possibly conservative parameterization of the multiplier, here, no 

parameterization is required. This decrease in the conservatism 
enables the approach to be drastically improved. The methodology 
is successfully validated on an industrial set of controlled large-
scale aircraft models subject to saturation limitations. The extension 
of the methodology to MIMO models is conditioned by the use of 
an interpolation technique with guaranteed error bounds. The devel-
opment of such a technique is still under investigation. Similarly, 
determining whether the methodology can easily be extended to a 
broader class of models (e.g., descriptor models) requires further 
studies 
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