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R-RoMulOC is a freely distributed toolbox aimed at making easily available to the 
users various optimization-based methods for dealing with uncertain systems. 

It implements both deterministic LMI-based results, which provide guaranteed 
performance for all values of the uncertainties, and probabilistic randomization-
based approaches, which guarantee performance for all values of the uncertainties 
except for a subset with arbitrary small probability measure. The paper is devoted 
to the description of these two approaches for analysis and control design when 
applied to a satellite benchmark proposed by the CNES, the French Space Agency. 
The paper also describes the modeling of the DEMETER satellite and its integration 
into the R-RoMulOC toolbox as a challenging test example. Design of state-feedback 
controllers and closed-loop performance analysis are carried out with the randomized 
and robust methods available in the R-RoMulOC toolbox.

Introduction

The last decades have witnessed an increase of interest in the area of 
analysis and design of systems in the presence of uncertainty. This is 
due to the continuous development of novel and efficient theoretical 
and numerical tools for robustness (ability of the system to maintain 
stability and performance under large variations of the system param-
eters), see [18] for a recent overview.

In particular, two main paradigmatic approaches have gained popu-
larity. On one side, the worst-case, or deterministic, paradigm is 
aimed at guaranteeing a desired level of performance for all system 
configurations. This approach has largely benefited from the introduc-
tion of the linear matrix inequality (LMI) formalism, which led to many 
important results, enabling a large variety of uncertainty models and 
performance requirements to be tackled. Recently, the correspond-
ing numerical tools have been collected in a Matlab toolbox named 
Robust Multi Objective Control toolbox (RoMulOC) [16]. The toolbox 
provides a variety of functions for describing and manipulating uncer-
tain systems, and for building LMI optimization problems related 
to robust multiobjective control problems. We refer to [18] for and 
extensive review of deterministic and probabilistic methods in robust 
control design and analysis.

The deterministic approach can be seen as "pessimistic", in the 
sense that the guaranteed (and certified) performance is usually 
significantly worse than the actual worst case performance, due to 
unavoidable conservatism of the developed methodologies. This fact 
motivated the introduction of a probabilistic approach [23, 4], which 
consists in testing a finite number of configurations among the infi-
nitely many admissible ones. This approach is said to be "optimistic", 
in the sense that even if a level of performance is valid for all tested 
cases, it may not hold for some of the unseen instances. However, 
rigorous theoretical results, based on large-deviation inequalities, 
have been derived to bound the probability of performance violation. 
This theory has now reached a good level of maturity, and the main 
algorithms have been coded in the Randomized Algorithm Control 
Toolbox (RACT) [24], which can be freely downloaded from http://
ract.sourceforge.net/pmwiki/pmwiki.php/. This toolbox allows the 
user to define and manipulate various types of probabilistic uncer-
tainties, providing efficient sampling algorithms for the various uncer-
tainty types commonly encountered in robust control. Furthermore, 
it includes sequential and batch randomized algorithms for control 
system design.
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It is important to remark that these two paradigms are not in competi-
tion, but rather they represent complementary approaches that pro-
vide additional tools to the systems engineer for the design of control 
systems under uncertainty. Inspired by these considerations, a joint 
effort between the two teams at the core of RoMulOC and RACT has 
been recently carried out, with the aim of merging the features of the 
two toolboxes in an integrated framework. This led to the develop-
ment of R-RoMulOC. The main feature of this toolbox is to allow the 
user to input the system's description only once, using the well tested 
formalism of RoMulOC. Then, both deterministic and probabilistic 
methods can be applied to the same system, efficiently moving from 
a deterministic to a probabilistic description of the uncertainty, by 
simply changing some parameters in the code.

Like the two tools from which it originates, R-RoMulOC is freely dis-
tributed, and can be downloaded from http://projects.laas.fr/OLO-
CEP/rromuloc/. We refer the interested reader to this webpage for a 
detailed list of references to the various worst-case and probabilistic 
methods coded in R-RoMulOC. For a description of the R-RoMulOC  
toolbox, the reader is referred to [5].

In this paper, the effectiveness of the toolbox is shown by introducing 
the modeling of the DEMETER satellite [19] in the R-RoMulOC  tool-
box. Then, we show how the design of state-feedback controllers and 
the analysis of closed-loop performance can be performed with the 
randomized and robust methods available in the R-RoMulOC toolbox.

Notation
In stands for the identity matrix of dimension n. AT is the transpose 
of A. { }A  represents the symmetric matrix { } = TA A A+ . ( )Tr A  
is the trace of A. ( )A B   means A – B is positive (semi-)definite. 

[ ]idiag F   is a block-diagonal matrix whose diagonal blocks 
are Fi. The symbol ⊗ refers to the Kronecker product. Given vectors 

3,v w∈ , the matrix 3 3v× ×∈  is a skew-symmetric matrix defined in 
such a way that =v w v w×× ; i.e., 
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for = [ ]T
x y zv v v v . The three-dimensional sphere 3  is parameter-

ized by quartenions 4q∈  satisfying the constraint | |= 1q . Finally, 
thestar-product describes Linear-Fractional Transformations (LFT) 
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DEMETER benchmark

DEMETER is a satellite of the CNES Myriade series. Launched in 
2004, it observed electric and magnetic signals in Earth's ionosphere 
for more than 6 years. Its characteristic is to be composed of a central 
body and four long and flexible appendices – as shown in Figure 1 – 
oriented in different directions and fixed to the rigid-body at different 
positions distinct from the center of gravity. The model of this satellite 
has been provided as a benchmark in [19]. This model with uncer-
tainties is revisited in the following. A specific function incorporated 
in R-RoMulOC allows variants of the complete benchmark to be gen-
erated. The variants are such that the user can generate models of 
various sizes, both in terms of order of the plant and in terms of the 
number of uncertainties involved.

Nonlinear model without flexible modes

Assuming full actuation for attitude control 3u∈  and modeling in the 
body-fixed frame, the nonlinear dynamics of the satellite are

 
1=     ,    =
2 0TJ J u q q

ω ω
ω ω ω

ω

×
×  −

+  − 
  , (1)

where 3ω∈  is the rotational velocity of the satellite body-fixed 
frame with respect to the inertial frame, 3 3J ×∈  is the symmetric 
positive definite matrix corresponding to its moment of inertia and 

3q∈  are the quaternion coordinates. A classical control problem 
related to this nonlinear model is to build an ideal state-feedback con-
trol law ( , )u qω  guaranteeing global stability. A more involved prob-
lem is to take into account in the design phase implementation issues 
such as saturation of reaction wheels, sensor delays and failures, the 
periodic sub-actuated character of magneto-torquers, etc. The model 
complexity depends on the considered actuators. For example, con-
sidering reaction wheel control, the model becomes 

 
1( ) = , = , =
2 0ext TJ J h T T h T q q

ω ω
ω ω ω

ω

×
×  −

+ + − +  − 


  , (2)

where 3h∈  is the vector of the angular momenta of the wheels, T 
is the vector of the torques applied to the wheels, and Text represents 
the external disturbances that the controller should reject.

Linear model with flexible modes

Let 3θ ∈  be the three-axis angular deviation of the satellite from 
some reference constant orientation. The linearized model of (1) is 

 =J uθ , (3)

which is a three-dimensional double integrator. We remark that, so far, 
we assumed that the satellite is composed only of a rigid body. Unfor-
tunately, this is not the case because of solar panels and other scien-
tific equipment onboard. At small pointing errors (the attitude control 
is required to have less than 0.1 degree precision), the flexibility of 

Figure 1 – DEMETER satellite. ©CNES November 2003, ill. D. Ducros
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appendices is not negligible and needs to be considered in the model. 
The linearized model including flexible modes is [19] 

 
1/2

21/2

0 0
=

2 0T

IJ J L
u

ZL J I
ηθ
ηη

        
+       Ω Ω       







, (4)

where 2 fnη∈  is the vector of angular deviations in torsion and bend-
ing of the flexible appendices (up to nf = 4 in the DEMETER model), 
L is a matrix modeling the cross influence of flexible modes on the 
rigid body, which depends on how the appendices are attached to the 
rigid body, [ ]2= iZ diag Iζ   is a diagonal matrix of all flexible 
mode damping factors and [ ]2= idiag IωΩ    is a diagonal 
matrix of all flexible mode natural frequencies (the low damped oscilla-
tory flexible dynamics are such that 2 1/22 = T

i i i i i i iL Jη ζ ωη ω η θ+ + − 

  ). 
The same parameters apply for the bending and torsion effects and, 
in most cases, one can assume that the appendices are identi-
cal ( = = 1, ,i fi nζ ζ ∀   and = =,1 ,i fi nω ω∀  ). In (4), the force 

1/2TL J θ that acts on the flexible modes comes from the derivative of 
the angular momentum of the rigid body, and its symmetric feedback 
reaction on the rigid body is 1/2J Lη. An analysis in the frequency 
domain shows that only the first flexible modes of the appendices 
have significant influence on the system dynamics, while all other 
flexible modes, including those of the solar panels, can be neglected.

Parametric uncertainties

In (4) the matrix L, which is only due to positioning of the appendices, is 
assumed to be perfectly known. All other parameters, i.e., J, iζ  and iω , 
cannot be precisely measured on the Earth due to gravity, and hence are 
considered to be uncertain. The damping ratio and natural frequencies 

,i iζ ω  describe the first flexible modes of the four appendices. These 
appendices are of same length and same material, and hence their flex-
ible modes are almost identical. However, there are discrepancies from 
one appendix to another, which are not known. The damping ratio and 
natural frequencies are assumed to be bounded in the intervals

 4 3[ 0.2 2  , 0.6 2  ] , [ 5 10 , 5 10  ]   = 1, ,4i i iω π π ζ − −∈ ⋅ ⋅ ∈ ⋅ ⋅ ∀  . 

The inertia J has the following nominal value on the ground 

 
11 12 13

12 22 23

13 23 33

31.38 1.11 0.26
= = 1.11 21.19 0.78 .

0.26 0.78 35.70

o o o

o o o o

o o o

J J J
J J J J

J J J

− −   
   − −   
   − −   

. 

Uncertainties in J are assumed to be at most of 30% for the diago-
nal entries and ±3 for the off-diagonal entries. That is, for example, 

11 11 11[ 0.7  , 1.3  ] = [ 21.97 , 40.80 ]o oJ J J∈  and 12 12 12[ 3 , 3 ] = [ 4.11 , 1.89 ]o oJ J J∈ − + −
12 12 12[ 3 , 3 ] = [ 4.11 , 1.89 ]o oJ J J∈ − + − .

LFT modeling of uncertain matrices

We first derive the LFT model of the 2[2 ]ZΩ Ω  matrix. Note that 
the uncertain matrices Ω and Z are defined as a nominal matrix with 
normalized discrepancies around the nominal value. Hence, one can 
write Ω as 
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where 1
2= (0.6 2 0.2 2 ) = 0.4 2aω π π π⋅ + ⋅ ⋅  is the mean between the 

two extreme values, 1
2= (0.6 2 0.2 2 ) = 0.2 2bω π π π⋅ − ⋅ ⋅  is the maxi-

mal deviation and | | 1, = 1, ,4
i

iωδ ≤   are norm bounded uncertain-
ties. The uncertain matrix Z can be derived in a similar way 
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,

 

with 3 4 31
2= (5 10 5 10 ) = 2.75 10aζ

− − −⋅ + ⋅ ⋅  being the mean between 
the two extreme values, 3 4 31

2= (5 10 5 10 ) = 2.25 10bζ
− − −⋅ − ⋅ ⋅  being 

the maximal deviation and | | 1, = 1, ,4
i

iζδ ≤   being the norm 
bounded uncertainties. Using properties of the star-product we have 

 [ ]
0 0 0

0
2 = 0 0 0

0
2 2

Z

b b a a

I
Z I

I I I I

δ
δ

ζ ω ζ ωΩ

 
  

Ω   
   

 

 , 

and

 

[ ]2

2

2 = 2

0 2 2
0 0 0 0 0 0

= 0 0 0 0 0 0
0 0 2 2

b b a a

Z

b a b a b a a a

Z Z

I I I I
I

I
I I I I I

ζ ω ζ ω
δ

δ
δ ω ω ζ ω ω ω ζ ω

Ω

Ω

 Ω Ω Ω Ω 
 

   
   
   
    

  

 .
 

We remark that the LFT defined in this way is minimal. An alternative 
is to build separately the LFTs for 2ZΩ and 2Ω  matrices and then to 
concatenate the two. This alternative gives an LFT with δΩ repeated 3 
times, which is clearly non-minimal.

We next focus on the LFT modeling of the matrix depending on the 
uncertain matrix J. The difficulty can be observed arising from mod-
eling the square-root of J. In [19], it is implicitly assumed that off-
diagonal terms in J 1/2 are sufficiently small to be neglected in the 
computation of J 1/2. That is, defining 

 

[ ]

12 13

1 1 2 1 23

2 11 22 33

0
=   :  = 0 0

0 0 0

 =

T

J J
J J J J J J

J diag J J J

 
 + +  
  

,

,

 

it is assumed that 1/2 1/2
2J J . Then, in order to further simplify 

the model, the paper [19] makes the second assumption that 
the square root can be replaced by a first order approximation 

2 2

1/2 1/2 1
2 2 2 22( )a b J a b JJ J J Jδ δ+ + . The relative error of this last 

approximation is less than 2%, which is indeed reasonable. Based on 
this approximation, the minimal LFT model is such that 

2Jδ  is repeated 
twice. As we will show next, there is no reason for performing the first 
order approximation, and this can be avoided without increasing the 
size of the LFT.

Two ways for improving the square root LFT modeling are explored 
next. The first still assumes that 1/2 1/2

2J J  but avoids the first-order 
approximation of the square root. To this end, we define the following 
LFT model of the square root of inertia diagonal components 
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where 1/2 1/21
2 2 22

ˆ = ((1.3 ) (0.7 ) )a a aJ J J+  is the mean between the two 
extreme values, 1/2 1/21

2 2 22
ˆ = ((1.3 ) (0.7 ) )b a aJ J J−  is the maximal devi-

ation, 
2 11 22 33

ˆ ˆ ˆ ˆ= [ ]J J J Jdiagδ δ δ δ  and ˆ| | 1Jii
δ ≤  are the norm bounded 

uncertainties. Using properties of the star-product, one obtains 
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Notice that – as in [19] – the uncertainties 
2Ĵδ  are repeated only 

twice; hence, the LFT size is not increased by precise modeling of 
the square root.

Next, consider the cross inertia dependent matrix 
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Using properties of the star-product we finally arrive at 
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The second approach for improving the LFT modeling of the square-
root 1/2J  first requires the relevance of modeling the coefficients of 
J in intervals to be questioned. The matrix J is symmetric positive 
definite, which can be defined as 1/2 2

ˆ= ( )o JJ J + ∆  with an uncertain 
symmetric matrix Ĵ∆  constrained by a convex quadratic constraint 

 ˆ ˆ ˆ ˆ 0 ,J J J JX Y Y Z Z I+ ∆ + ∆ + ∆ ∆   , 

where all X, Y and Z matrices are chosen as symmetric, to match the 
symmetric nature of 

Ĵ∆ . The set is also written as 

 ˆ ˆ( ) ( )o o o oJ JZ Z X∆ −∆ ∆ −∆ ∆ ∆ − , 

where 1=o YZ −∆ −  is the center of the set. Recall that 1/2 2
ˆ= ( )o JJ J + ∆  

is (as formulated in [19]) a matrix whose 6 independent coefficients 

are in intervals. The matrix J can therefore be defined as the convex 
linear combination of 26 vertices – denoted as [ ] 6, = 1, ,2vJ v   – and 
constructed taking all of the extreme combinations of the interval 
uncertainties. A natural way of defining X, Y, Z matrices is to 
impose on the set the requirement of containing the convex com-
bination of the square-roots of extremal values, that is, the matrices 

[ ] [ ]1/2 1/2
ˆ =v v

oJ J J∆ −

 [ ] [ ] 6
ˆ ˆ( ) ( )   = 1, ,2v v

o o o oJ JZ Z X v∆ −∆ ∆ −∆ ∆ ∆ − ∀  . (5)

A natural choice for the center of the set is to take the mean value of 
all vertices

 

62
[ ]
ˆ6

=1

1=
2

v
o J

v
∆ ∆∑ . (6)

Of course, one aims at defining the smallest set containing the matri-
ces [ ]

ˆ
v

J∆ . It is rather easy to see that the size of the set is highly depen-
dent on the matrix o oZ X∆ ∆ − . The smaller it is, the smaller the set 
of Ĵ∆  matrices will be. It is suggested to minimize this matrix with 
respect to its Frobenius norm, which amounts to taking 

 * *

, ,(5)
( , ) = arg ( )min o o

Z I
X Z Tr Z X∆ ∆ −


, 

and * * 1= oY Z −−∆ . Having performed this LMI optimization, the iner-
tia of the satellite is now defined as 

 [ ]
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1/2 2
ˆ ˆ * *= ( )   ,   =  :  0T

o J J

IX Y
J J I

Y Z
     + ∆ ∆ ∈ ∆ ∆ ∆    ∆    

 . 

LFT modeling with respect to this newly defined uncertainty is rather 
simple, following the same lines as the first method, and gives 
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 . 

The LFT built in this way has two remarkable features: i) to the best of 
our knowledge, it is the first time that the modeling involves an uncer-
tain matrix that is constrained to be symmetric, ii) this matrix is 

repeated twice ˆ
ˆ 2

ˆ

0
=

0
J

J
J

I
∆ 

∆ ⊗ ∆ 
. To build LMI type results for 

such uncertainties one needs to build some DG -scaling like result 
[11]. That is, to characterize, via linear matrix equalities and inequali-
ties, the matrices ĴΘ  that satisfy 
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 .

 

A choice of such matrices DG is a natural generalization of the well-
known DG -scalings that work for scalar repeated uncertainties 
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The proof of this fact is trivial: in the formula below, the G dependent 
terms cancel one another thanks to the fact that ∆ is symmetric and 
remains only 

 [ ] [ ]
* *

2 * *
2

=
I IX Y

I I D I
I Y Z

     
∆⊗ Θ ⊗ ∆      ∆⊗ ∆     

, 

which is negative semi-definite because it is the result of a Kronecker 
product of a positive definite matrix and a negative semi-definite 
matrix.

LFT modeling of the uncertain system

Based on the described modeling of uncertain matrices discussed in 
the previous section and with some rather trivial additional manipula-
tions – independent from the choice of model for the inertia J – the 
system dynamics can be converted to the following descriptor state-
space form 

 =d c d c
E A

b a b a

E E A A
X X Bu

E E A A
      
∆ ∆ +      

      
  , (7)

where ( )=
TT T T TX θ η θ η

  is the state of the satellite including its 
flexible modes; [ ]=A Zdiag δ δ δΩ Ω∆ ; 

1 1 2 2
ˆ ˆ= [ ]E J J J Jdiag δ δ δ δ∆  

or ˆ 2=E J I∆ ∆ ⊗  depending on the choice of model for the inertia; E 
and A matrices are built accordingly. Taking the inverse of the left-hand 
side of (7) this formula allows a usual state-space model to be built,
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which is the same as the following linear system  
1 1 1 1

1 1 1 1

0 0

a a a b a b a

c a a d c a b c a b c a

c d

X E A X E E E A w E Bu

E E A E E E E E E A E E B
z X w u

A A

− − − −
∆
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  = + + 
      − − − −
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,

in a feedback loop with the uncertainty = E

A

w diag z∆ ∆

∆ 
 ∆ 

. Such a 

system with feedback uncertainties can be easily defined in the 
R-RoMulOC toolbox. A dedicated function has been developed that 
yields this model. The output is of the following type 

 =
u

u

y y yu

X AX B w B u
z C X D w D u w z
y C X D w D u

∆ ∆

∆ ∆ ∆∆ ∆ ∆ ∆ ∆

∆ ∆

 = + +
 = + + ∆
 = + +



. 

Reduced size variations of the uncertain model

In order to test methods with respect to the dimensions of the prob-
lem to be solved (both in terms of order of the systems and in terms 
of size of the uncertainty block) several variants have been coded. 
The variations are threefold:
•	 Select only one or two of the three axes. This of course reduces 

the number of states describing the satellite attitude. More-
over, in the case when only one axis is considered, the torsion 
and bending effects of the flexible modes can be combined. It 
produces models with twice less flexible mode states and twice 
smaller matrices A∆ .

•	 Select only some of the appendices. One can (virtually of 
course) remove any of the appendices. It produces models with 
reduced number of flexible modes and smaller matrices A∆ . 

•	 Impose that all appendices have the same frequency and 
damping characteristics, =iω ω  and =iζ ζ . In such case, the 
number of flexible modes can be reduced to only three modes 
(one per axis) that are the projections of all bending and torsion 
modes on the attitude axes.

The simplest and rather realistic models amount to assuming (a) 
zero cross influence between satellite axes and (c) that all appendi-
ces have exactly identical characteristics. Such assumptions reduce 
the study to three fourth-order models, one per angular axis. Each of 
these models ( = 1,2,3i ) are described by two scalar equations 

 
2

=

2 = 0
ii i ii i i i

ii i i i i i

J J l u

J l

θ η

θ η ζωη ω η

 +


+ + +







 

, (8)

and illustrated in Figure 2 (where = ii iJ lα ). Corresponding LFT 
models have a 5 × 5 uncertain matrix where scalar uncertainties on 
Jii appear twice, scalar uncertainties on ω  appear twice and scalar 
uncertainties on ζ  appear once.

State-feedback design model

The control design problem is to build a control that ensures the fol-
lowing performances:
•	 As small as possible pointing error. To this end, the control 

should contain an integrator to improve the low frequency dis-
turbing torque rejection.

•	 Avoid saturation of the reaction wheel actuators. These actua-
tors have the following nonlinear model 

 ( ) ( )1=  W T cu sH s sat sat u
s

 
 
 

, 

where uc stands for the torque control input computed by the control-
ler and u is the actual torque applied by the reaction wheel. satT is a 
saturation on the torque to be applied, which is of 5 × 10–3 Nm. It is, 
in general, not critical and can be neglected. The term 1

s  is an inte-
grator that yields the reaction wheel angular momentum. This angular 

u
1/J s

–α α

ω

ω2ζ

1/s

1/s 1/s

+

+

θ θ θ

η ηη  ηηη  ηηη 

Figure 2 – Block diagram of a one axis model with one flexible mode



Issue 13 - September 2017 - Randomized and Robust Methods for Uncertain Systems
 AL13-04 6

momentum is saturated (satW), with a saturation level of 0.12 Nms. 
This saturation is critical: when it occurs, the system is no longer 
actuated and is open-loop unstable. Finally, ( )sH s  is a transfer func-
tion describing the dynamics of the reaction wheel.
•	 Other specifications, such as noise rejection, robustness to 

time-delays in the control, etc., as discussed in [19].

In order to take into account the two specifications (i) and (ii), we 
add to the model an integrator of the output and a pseudo integrator 

1
0.001( ) = sI s +  of the input. We remark that an integrator in the input 

– instead of a pseudo integrator – would result in instability since the 
states of the integrator are not controllable in the formulation. These 
are represented with dotted lines in Figure 3. The dotted lines indicate 
that these blocks are added by the designer, and are hence part of the 
control law.

For that augmented model we seek a robust state-feedback control, 
as illustrated in Figure 3. The dotted lines represent the state-feedback 
with eight gains. Pk , Ik , Dk  are the feedback gains with respect to 
the angular error θ, its integral, and its derivative, respectively. Pfk  
and Dfk  are the gains on the angular position of the flexible mode η  
and on its derivative, respectively. Wk  is the gain on the state of the 
pseudo-integrator that models the reaction wheel speed. 1 2

HK ×∈  is 
the gain on the states of the reaction wheels. The aim of the control 
is to minimize the peak of z2 (the reaction wheel speed), especially 
when the satellite starts from a large non-zero angle and angular rate 
initial conditions that are represented as input signals w2. We assume 
a maximal ±0.08 deg/s angular rate initial deviation and ±15 deg 
angular initial deviation. Simultaneously, the control should minimize 
the effect of unknown input perturbations on the system precision; 
that is to minimize the transfer for w1 to z1.

The design of such a state-feedback controller is possible using 
the R-RoMulOC toolbox [5, 16]. In particular, a function named 

demeterPerformance is developed to generate models required for 
controller design. The following lines of codes define three models 
being:
•	 The augmented model with integrator on the output, reaction 

wheel model and pseudo-integrator of the input.
•	 Model with 1 1/w z  performance input output.
•	 Model with 2 2/w z  performance input output. 

usysIW=demeterPerformance(ConsideredAxis,Considered 
Appendices,... model_type,uncertainty_type, rwheels,0);

usysIW1=demeterPerformance(ConsideredAxis,Considered 
Appendices,... model_type,uncertainty_type, rwheels,1);

usysIW2=demeterPerformance(ConsideredAxis,Considered 
Appendices,... model_type,uncertainty_type, rwheels,2);

Next, we briefly explain various arguments of the demeterPerformance 
function.

The parameters ConsideredAxis and ConsideredAppendices define 
the number of axes and appendices used in the model respectively. 
If model_type=2, all flexible modes have the same frequency and 
damping characteristic with the same uncertain parameters but, if 
model_type=1, uncertain parameters are allowed to be independent 
for different appendices. If uncertainty_type=1, all uncertainties are 
norm-bounded scalars; if uncertainty_type=2, all uncertainties are 
scalars in intervals; and if uncertainty_type=3, uncertainties on iner-
tia are norm-bounded deterministic; others are uniformly distributed in 
intervals. If rwheels=1, the reaction wheels are included in the model 
and if rwheels=0, the model does not include reaction wheel dynamics.

Let aN  be the number of considered axes and fN  be the number of 
appendices. The satellite dynamics involve 2* 4*a fN N+  states, to 

–α α

ω

ω2ζ

1/Js 1/s

1/s 1/s

1/s

z2

z1

w1

w2

u

kw kD kp

kPfkDf

kII (s)

H (s)

KH

+

+

+

+

–

–

θ θ θ

η ηη  ηηη 
ηηη 

Figure 3 – Block diagram of a state-feedback design model.
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which one adds actuator models and aN  integrators of the control law. 
If model_type=1 (all appendices have different characteristics) the 
satellite dynamics involve ( 1) / 2 2*a a fN N N+ +  scalar uncertain-
ties. If model_type=2 (all appendices have identical characteristics) 
the satellite dynamics involve ( 1) / 2 2a aN N + +  scalar uncertainties. 
A special case is when = 1aN  and all appendices are considered 
identical. In such a case, the satellite dynamics involve only 4 states 
and 3 uncertainties, see (8).

In R-RoMulOC there are two approaches to design the robust state 
feedback controller. The first approach is based on deterministic 
multiobjective methods, in which the performance specifications are 
enforced to hold for the entire set of uncertainties. The second para-
digm is probabilistic and randomized methods, in which the design 
specifications (including stability) are enforced to hold up to a prob-
ability level. In the next two subsections, we study the two mentioned 
approaches in state feedback design.

Controller design

Deterministic approach

In R-RoMulOC the deterministic state-feedback design LMI problem 
is defined as

quiz=ctrpb('state-feedback','unique')...
+1*hinfty(usysIW1)...
+100*i2p(usysIW2)...
+dstability(usysIW,region('plane',-1e-4))...
+dstability(usysIW,region('plane',-10,pi));

The LMI problem built in this way is based on quadratic stability type 
results with Lyapunov shaping paradigm [21], that is, a unique Lyapu-
nov matrix is used for assessing all four specified performances and 
for all values of uncertainties. The four specifications are: the H∞ 
performance with respect to the input/outputs 1 1/w z ; the impulse-
to-peak performance with respect to the input/outputs 2 2/w z  (which 
is equivalent to looking at peak response to the initial conditions); 
the pole location performance such that all closed-loop poles should 
have a real part smaller than –1 × 10–4 and greater than –10 (which 
influences the rapidity of the time response). The LMI problem is 
solved in R-RoMulOC using the following commands that return the 
state-feedback gain

Ksf_det=solvesdp(quiz,sdpsettings('verbose',1,'solver', 
'mosek'));

Probabilistic Design 

There are two paradigms in probabilistic techniques for controller 
design. The first approach is non-sequential, in which a sampled 
version of the original problem is solved in one shot. The scenario 
approach [2, 3] is a non-sequential approach for solving uncer-
tain convex problems. The main idea in this approach is to refor-
mulate a semi-infinite convex optimization problem as a sampled 
convex optimization problem subject to a finite number of random 
constraints extracted from the uncertainty set. The second class of 
probabilistic design algorithms are sequential methods, in which, at 
each iteration, a candidate solution is constructed – based on the 
gradient [20], ellipsoid [14], cutting plane [9] or sampling based 

technique [7] – and its robustness is verified through a sequential 
probabilistic validation algorithm [1]. In R-RoMulOC, the scenario 
approach and sequential algorithms based on the gradient update 
rule [20] and the sequential approach presented in [7] are used 
to solve the uncertain state-feedback design problem. A control-
ler addressing the same performance requirements as in the deter-
ministic case can be formulated and solved using the sequential 
algorithm [6, 7]

quiz = ctrpb('state-feedback','rand')...
+1*hinfty(usysIW1)...
+100*i2p(usysIW2)...
+dstability(usysIW,region('plane',-1e-4))...
+dstability(usysIW,region('plane',-10,pi));

opts=randsettings('epsilon',0.1,'delta',1e-9,...
'method','sequential','sdpopts',...
sdpsettings('verbose',0,'solver','mosek'));
Ksf_prob=solvesdp(quiz,opts);

The parameters epsilon and delta defined in the randsettings func-
tion are the required accuracy and confidence levels of the solution. In 
words, the probability that the solution does not satisfy constraints is 
smaller than epsilon and this statement holds with a probability of at 
least 1-delta. We refer to [4, 23] for the exact definition of accuracy 
and confidence levels. We remark that one can solve the same prob-
lem using the scenario approach [2, 3] by changing 'sequential' to 
'scenario' in the code.

Closed-loop analysis of the state-feedback law

An important feature of R-RoMulOC is to provide, within a unified 
framework, a variety of available tools for analyzing the robust per-
formance of uncertain closed-loop systems. In particular, a user can 
check whether several performance criteria, such as for instance the 
H2 and H∞ norms, impulse-to-peak response, pole location, etc., 
hold either robustly or with a guaranteed level of probability. Similar to 
design techniques, analysis can be performed either in a determinis-
tic setting or through randomized algorithms resulting in a probabilis-
tic estimate of robust performance. 

Deterministic analysis

The deterministic analysis methods implemented in R-RoMulOC are 
based on Lyapunov-type certificates. In particular, it can be based 
on either a parameter-dependent Lyapunov function [10, 13, 15] or a 
common Lyapunov function [21]. An upper bound of the closed-loop 
H∞ norm for the transfer 1 1/z w  can be computed using parameter-
dependent Lyapunov matrices, as follows

usysIW1cl=sfeedback(usysIW1,Ksf_det);
quiz = ctrpb('analysis', 'PDLF')+hinfty(usysIW1cl);
solvesdp(quiz,sdpopts);

Probabilistic analysis

The probabilistic analysis is based on a Monte Carlo algorithm, in 
which a number of random samples are extracted from the uncer-
tainty set and the performance index is measured only for the 
extracted samples. There are two probabilistic analysis algorithms: 
1) Worst-case performance estimation, in which an estimate of the 
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worst-case performance is defined as the worst-case performance 
among all extracted samples. The sample size in this case is defined 
by a log-over-log bound [22]. 2) Randomized performance verifica-
tion, where the objective is to estimate the probability of a given level 
of performance being satisfied, for instance, estimating the probabil-
ity of instability or the probability that the H∞ norm of the system is 
below a given level. The number of samples in this case is defined by 
the Chernoff bound [8]. The next command computes the wost-case 
H∞ norm of the closed-loop system usysIW1cl using a randomized 
worst-case performance estimation algorithm.

quiz = ctrpb('analysis', 'rand')+hinfty(usysIW1cl);
opts=randsettings('epsilon',1e-1,'delta',1e-6);
solvesdp(quiz,opts);

Numerical tests

In this section, we compare probabilistic and deterministic approaches 
in terms of performance and complexity. To this end, we generate a 
number of DEMETER models – based on the discussion of Subsec-
tion "Reduced size variations of the uncertain model", by changing the 
parameters ConsideredAxis, ConsideredAppendices, model_type, 
uncertainty_type and rwheels – and design various deterministic 
and probabilistic controllers. Next, the performance of the designed 
controllers is measured using the deterministic and probabilistic anal-
ysis methods of Section "Closed-loop analysis of the state-feedback 
law", in order to quantify the level of conservatism associated with 
different design approaches. The result of these numerical tests is 
reported in Table 1, where we consider different numbers of axes and 

appendices, and different model and uncertainty types, and design 
probabilistic and deterministic controllers for the generated models. 
The probabilistic controller is designed using the scenario approach, 
and the probabilistic accuracy epsilon and confidence delta levels 
are set to 0.1 and 10–9, respectively. In most cases – as expected – 
the probabilistic controller achieves less conservative performance 
levels in handling various uncertainties. In terms of computational 
complexity, the deterministic approach is less computationally 
demanding for the case in which all uncertainties are considered to 
be norm bounded. However, if we require uncertainties to be defined 
in intervals (and hence in polytopes), the computational complexity 
associated with the deterministic approach increases significantly. 
For such uncertainties, R-RoMulOC applies a vertex-separator result, 
as proposed in [12]. Unlike highly sparse DG-scaling type separa-
tors with few constraints built in the case of norm-bounded uncer-
tainties, the vertex-separator is known to be less conservative but 
with an increased number of decision variables (full matrices) and an 
increased number of constraints (one for each vertex, and the number 
of vertices is 2N where N is the number of uncertain parameters). We 
remark that in some problem instances of Table 1 the optimization 
problem – for controller design – is infeasible; there does not exists 
a "robust" state-feedback controller satisfying all required specifica-
tions and the optimization problem becomes infeasible, even for large 
probabilistic accuracy epsilon and confidence delta levels.

To further validate our design, a posteriori analysis using Monte-Carlo 
simulation was carried out for the controller designed in the second 
row of Table 1. To do so, we extracted 100 random samples from the 
uncertainty set, closed the loop for each of them and measured the 
impulse response – from 2w  to 2z  – of each sampled closed-loop 
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Design Analysis 

 

       Det Prob Complexity(s) 
Design 
Method 

Impulse 
to Peak 

Infinity
Norm

Impulse
to Peak

Infinity 
Norm 

Impulse
to Peak

Infinity
Norm

1 1 1 1 1 Prob 22.3 2.9 0.36 1.5 0.13 1.01 160
1 1 1 1 Det 22.3 4.7 0.41 1.5 0.16 1.16 1

1 1,2 1 1 1 Prob Inf Inf NA NA NA NA NA
1,2 1 1 1 Det Inf Inf NA NA NA NA NA

1 1,2,3,4 2 1 1 Prob 22.5 3 0.42 1.3 0.14 0.84 520
1,2,3,4 2 1 1 Det 22.5 3 0.43 1.3 0.13 0.99 1.3

1,2 1,2,3,4 2 1 1 Prob Inf Inf NA NA NA NA NA
1,2 1,2,3,4 2 1 1 Det Inf Inf NA NA NA NA NA
1,2 1,2 2 1 1 Prob 22.4 2.8 0.67 Inf 0.2 0.06 2215
1,2 1,2 2 1 1 Det 22.7 5 Inf Inf 0.16 0.5 142
1,2 1,2 2 2 1 Prob 22.46 2.69 0.7 1.38 0.19 0.08 1750
1,2 1,2 2 2 1 Det 22.6 4.24 0.75 1.03 0.19 0.14 46

1,2,3 1,2 2 2 1 Prob 22.5 3.3 Inf Inf 0.23 0.66 16387
1,2,3 1,2 2 2 1 Det 22.7 8.1 Inf Inf 0.2 1.34 14111

Table  1 – Simulation results for various probabilistic and deterministic controllers designed using R-RoMulOC for the DEMETER model. "Inf" indicates the cases 
where the optimization problem is infeasible; "NA" also refers to Not Applicable.
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system. Figure 4 shows the result of this simulation. Figure 5 also 
demonstrates the time trajectories of the angular rate θ and angular 
deviation θ  of the satellite for the same sampled closed-loop systems. 
One can see that θ starts from the initial condition 0.08π / 180 = 
1.4 × 10–3 rad/s and θ  starts from 15π / 180 = 0.262 rad. This 
is considered as the worst-case initial configuration. It is such that 
the pointing error θ  tends to increase at the start due to the positive 
angular rate.

An interesting feature of randomized methods is that the computational 
complexity does not depend on the number of uncertain parameters. 
This feature is known as "breaking the curse of dimensionality". There-
fore, increasing the number of uncertain parameters does not influence 
the complexity of solving a state-feedback problem using randomized 
methods. On the other hand, the stability and performance achieved 
using the controller designed by this approach is not guaranteed to hold 
for the entire set of uncertainties. That is, there might exist a subset of 
the uncertain set – although with very small probability measure – for 
which the guaranteed performance level is not attained.

It is noted that the designed controllers referred to in this paper are 
of the state-feedback type, requiring all of the states to be available 
for feedback. This requirement is not realistic in practice. In fact, in 
practice, sensors report ,θ θ  and θ∫ . Observers are needed for flex-
ible modes ,η η. Therefore, an observer can be designed using the 
approach presented in [17], in order to estimate the states of the 
system and then use the state-feedback controller formulated in this 
paper to control the DEMETER satellite.

Conclusions

This paper shows how the features of the recently released Matlab toolbox 
R-RoMulOC can be exploited to perform both deterministic and probabi-
listic analysis, and the design of systems in the presence of uncertainty. 
The potentialities of R-RoMulOC are illustrated on the DEMETER satellite 
benchmark. The performed numerical simulations are fully reproducible, 
since both the DEMETER model and the R-RoMulOC toolbox are freely 
downloadable at http://projects.laas.fr/OLOCEP/rromuloc/ 

2

0

–2

0.2

0.1

0

–0.1

0

0

20

20

40

40

Time (seconds)

Time (seconds)

60

60

80

80

100

100

θ
θ

× 10–3
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