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In High Cycle Fatigue, plasticity and damage are localized at a microscale, a scale 
smaller than the Representative Volume Element (RVE) scale of continuum mecha-

nics. An incremental two-scale damage model has been built on this basis by Lemaitre 
et al, and has been mainly applied to alternated loading with no plasticity at the RVE 
scale. A modified Eshelby-Kröner scale transition law is derived here, taking into ac-
count RVE mesoscale plasticity and also microscale plasticity and damage. The ability 
of the corresponding two-scale damage model to deal with multiaxiality in a wide range 
of load ratios (from -1 to 0.9) is then focused on. 

The crack initiation conditions for axisymmetric notched specimens loaded at different 
mean stresses are studied on the basis of several fatigue tests on TA6V specimens at 
a low temperature. Both the notch first loading pre-plastification and the biaxial stress 
state are naturally taken into account by the incremental analysis. Two multiaxial Haigh 
diagrams are finally drawn for TA6V at a low temperature. Their main features, such 
as a horizontal asymptote, are highlighted. A piecewise linear extension for a stronger 
mean stress effect is finally given within the two-scale damage framework considered.

Introduction

High fatigue is often addressed in terms of stress amplitude, i.e., with 
laws directly relating the stress amplitude to the number of cycles to 
failure or to crack initiation [2, 49, 1, 39, 28]. The mean stress effect 
is then simply represented by the introduction into the previous law, 
as a parameter, of the stress ratio R = min/Max (minimum stress 
divided by the maximum stress over a cycle). The difficulty is then 
to extend such a modeling to 3D cases and to non-cyclic loading 
conditions [60, 7, 13, 34, 14, 55, 56, 53, 52].

On the other hand, Continuum Damage Mechanics, naturally a 3D 
model, can also be used for fatigue [40, 41, 42, 8, 10, 54, 25, 31, 
48, 57, 61, 24, 18, 51, 11, 29, 23, 47]. The cyclic relationships are 
obtained first from the time integration over one cycle of the damage 
and the constitutive laws, and second from the integration over the 
entire loading [43]. The introduction of the stress ratio is then not 
natural and may become a difficult task [46, 3]. One possibility is 
to model the microdefect or microcrack closure effect (also called 
quasi-unilateral condition, [36, 9, 21]) and its coupling with damage 
growth [32, 22]. With this in mind and with the additional fact that 
High Cycle Fatigue (HCF) corresponds most often to fatigue in the 
elastic regime, an incremental two scale damage model has been 
proposed with good fatigue capabilities [44, 45, 17, 38, 26]. Such a 

model is extended in this work, in order to recover the mean stress 
effect obtained in simple but nevertheless representative structures, 
namely in axisymmetric notched specimens made of a TA6V titanium 
alloy. The tests have been performed at a low temperature by Snec-
ma, with the support of CNES, within the framework of rocket engine 
applications.

These specimens have been chosen to represent real loading condi-
tions, i.e., multiaxial conditions with stress triaxialities greater than 
that encountered under tension and with localized yielding. In order 
to characterize the model response over the entire stress ratio range 
from R = -1 to R = 0.9, TA6V notched specimens with different stress 
concentration factors KT = 1.5, 2.5 and 3.5 have been tested at dif-
ferent nominal stress – or load – ratios. Axisymmetric notched speci-
mens are found to be very useful to test the HCF behavior of a material 
submitted to bi-axial stresses at a given – and especially at a high 
– stress ratio R. It is indeed quite difficult to "explore" the upper stress 
ratio domain with classical uniaxial (smooth) specimens, since most 
of the time, for high numbers of cycles to rupture (i.e., over 106), the 
mean stress required to obtain R > 0.6 is so high that the yield stress, 
or even the ultimate stress, are rapidly reached. On the contrary, axi-
symmetric notched specimens encounter small scale yielding and 
allow local yielding to be obtained in a biaxial state of stress (the lon-
gitudinal and hoop stresses in the notch can represent 70% and 30% 
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of the stress tensor trace respectively). Once plastified, they allow 
the material fatigue response to be tested in a simple manner at high 
stress ratios R. They can be considered as representative of industrial 
cases encountered in certain engine components submitted to high 
static loads and to high frequency alternate loads.

Multiaxial Haigh diagrams are constructed in this work, using a two-
scale damage analysis of such tests.

Two-scale damage model

A two-scale damage model has been built [44, 45, 17, 20, 58] 
considering that High Cycle Fatigue, either thermally or mechani-
cally activated, occurs for an elastic regime at the RVE scale, the 
mesoscale of continuum mechanics. It accounts for micro-plastici-
ty and micro-damage at the defect scale (or microscale). The model 
is phenomenological, describing micro-plasticity with classical 3D 
Von Mises plasticity equations and describing micro-damage by the 
Lemaitre damage evolution law = ( / )sD Y S p

  [43, 42] of damage 
governed by the accumulated plastic strain rate p  and enhanced by 
the strain energy density (with Y denoting the thermodynamic force 
associated with the damage variable D). Parameters S and s are 
material and temperature dependent. A scale transition law, such as 
the Eshelby-Kröner localization law, links both the mesoscopic and 
microscopic scales.

Incremental two-scale analysis

The general principles for building an initial two-scale damage model 
for complex fatigue applications are as follows (figure 1). Only iso-
thermal conditions are considered in this work (for the anisothermal 
case, refer to [21]).

 • At the mesoscale, the scale of the RVE of continuum mecha-
nics, the behavior is considered as elastic, the material yield stress  y 
usually not being reached in HCF.

Figure 1 - Micro-element embedded in an elastic Representative Volume 
Element

 • The microscale is the defect scale, with defects conceptually 
gathered as a weak inclusion embedded in previous RVE. The beha-
vior considered for the microscale is (thermo-)elasto-plasticity cou-
pled with damage, the weakness of the inclusion being represented 
by a yield stress at the microscale <y y

µσ σ  considered equal to the 
asymptotic fatigue limit of the material fσ ∞ . 

At the mesoscale, the stresses are denoted by  and the total, elastic 
and plastic strains are denoted by ,  e,  p. These are known from an 
elasto-plastic Finite Element computation. The values at the micros-
cale have an upper-script , except for the damage variable D =D at 
the microscale, which has no upper-script.

Scale transition law

In earlier developments within the two-scale damage framework of 
Lemaitre et al, plasticity and damage were assumed to occur at the 
microscale only, thus setting p  0, D =D  0 but also setting 
a zero value for the plastic strains at the mesoscale (p = 0). In the 
notched specimen fatigue case considered, the yield stress will be 
reached at some stress concentration points and plasticity will occur, 
localized, but nevertheless present at the mesoscale ( i.e., present in 
Finite Element computations of the notched specimens).

The two-scale damage model must be extended, in order to take into 
account non-zero plastic strains p, either constant or evolving (p(t)) 
at each time step of an incremental fatigue analysis. A (quite) simple 
way to proceed is to extend the Eshelby-Kröner scale transition law of 
a spherical inclusion embedded in an infinite elastic isotropic matrix 
to our case. In the initial problem [27, 35], the inclusion has the same 
elastic properties  as the matrix and is subject to free strains F; the 
matrix is subjected to a far field strain  (or stress ).

The strain in the inclusion is then the sum of the far field strain and 
of an additional strain due to the inclusion free strains and the matrix 
elasticity (case (a) in figure 2), 

= : F
µε ε ε+ S   (1)

Which is equivalent to 

= : ( ) : F
µσ σ ε+ − S I   (2)

where I is a fourth order identity tensor and where S is an isotropic 
Eshelby tensor such that

1: = =
3(1 )

να α
ν

+
−

1 1S   (3)

for a second order identity tensor 1 and 

2 4 5: ' = ' =
15 1

νβ β
ν

−
−

T TS   (4)

for any deviatoric tensor T'. By setting F equal to the micro-plastic 
strain upε , the localization law for an undamaged inclusion used so 
far [14, 45] is obtained 

= = 2 (1 )p pGµ µ µ µε ε βε σ σ β ε+ − −or   (5)

where G is the shear modulus.

Figure 2 - a) Initial Eshelby problem of an inclusion with free strain F, b) 
Considered problem with matrix plasticity and damaged inclusion, c) Problem 
making both cases a) and b) equivalent, due to an adequate choice of the 
free strain Fε

 .
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The problem considered in this work is slightly different, given that the 
elastic properties of the inclusion = (1 )D−   are affected by the 
damage D and given that the matrix withstands (mesoscopic) plastic 
strains p (case (b) of figure 2). It is possible to derive the corres-
ponding localization law from previous Eshelby analysis. Due to the 
elastic mismatch between both scales, the inclusion must be concep-
tually changed into an equivalent inclusion with the same total strains 
and stresses, but with undamaged elasticity (case (c) in figure 2, 
[30]). In order to do this, an equivalent free strain Fε

  is derived, 
in which the damage effect is embedded, so that for Fε

  classical 
expressions (1)-(2) the following is enforced

= : ( )

= : ( )

= :

= : ( ) :

p

p

F

F

µ µ µ

µ

µ

σ ε ε

σ ε ε

ε ε ε

σ σ ε

 −


−


+


+ −





S

 S I





  (6)

This therefore defines Fε
 , 

1
= ( ) : : ( ) : : :p p

F
µε ε ε ε

−   − − − + −   
     S       (7)

The equivalent strain Fε
  replaces F in equation (1) so that, after 

some mathematical arrangements and bearing in mind the fact that 
a plastic strain tensor is a deviatoric tensor, the modified Eshelby-
Kröner scale transition law coupled with damage is obtained: 

( )1 ( )= (1 )t1 3(1 )
p pD DrD D

µ µα βε ε ε β ε ε
β α

 −
+ + − − − − 

1   (8)

where  and  are the previous Eshelby parameters. For an unda-
maged inclusion (D = 0) in an elasto-plastic matrix, the previous law 
is simplified, as expected, to ( )= p pµ µε ε β ε ε+ − .

Plasticity and damage at the microscale

The history of the stresses (t), strains (t) and plastic strains p(t) 
at the RVE mesoscale is assumed to be known from an elasto-plastic 
(incremental) finite element calculation. The scale transition is made 
using equation (8), which must be solved altogether with microscale 
constitutive equations (still incremental).

A law of elasto-plasticity coupled with damage is considered at 
the microscale. The elasticity law is then written as (recall that the 
-upper-script stands for "variable at the microscale"): 

1= =t 1
e rE E D

µ
µ µ µ µν ν σε σ σ σ+

−
−

1     (9)

In the yield criterion, the hardening X is kinematic, linear, and the 
yield stress is the asymptotic fatigue limit of the material, denoted 
by fσ ∞ , 

= ( )eq ff µ µ µσ σ ∞− −X   (10)

where (.)eq is the Von Mises norm and where = / (1 )Dµ µσ σ −  is 
the effective stress and < 0f µ →  elasticity. This ensures that mi-
cro-plasticity, and therefore damage and failure, occurs for stresses 
ranging between the fatigue limit fσ ∞  and the RVE yield stress y.

The set of constitutive equations at the microscale is thus: 

=
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  (11)

with the plastic modulus Cy, the damage strength S, the damage 
exponent s and the critical damage Dc as material parameters. The 
damage growth is smaller in compression than in tension, due to 
the consideration of the micro-defect closure parameter h within the 
strain energy release rate Y, 

2 2

2 2

2 2

1 : :=
2 (1 ) (1 )

t t
2 (1 ) (1 )

Y h
E D hD

r rh
E D hD

µ µ µ µ
µ
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σ σν

+ + − −

+ −

 + 〈 〉 〈 〉 〈 〉 〈 〉
+ 

− −  
 〈 〉 〈 〉

− + 
− −  

  (12)

since 0 < h < 1 and usually for metals h  0.2 [43], and where 
. +〈 〉 , . −〈 〉  stand for the positive and negative parts of a scalar 

and  . +〈 〉 , . −〈 〉  for the positive and negative parts of a tensor (in 
terms of principal values). Note that equation (12) is simplified to 

( )22= ( ) / 2 1tensY E Dµ µσ −  for tension at the microscale and in 

( )22= ( ) / 2 1compY h E hDµ µσ −  for compression at the microscale, 

so that the damage rate in compression = ( / )s
comp compD Y S pµ µ


  
is much lower, for a small h, than the damage rate in tension 

= ( / )s
tens tensD Y S pµ µ


 .

In previous constitutive equations, 1/22= ( : ) d
3

p pp tµ µ µε ε∫    is the

accumulated plastic strain at the micro-scale and no damage thres-
hold is considered (for loading dependent thresholds, refer to [45, 
46]). The plastic multiplier = (1 )p Dµλ −

  is determined from the 
consistency condition = 0f µ  and = 0f µ

 .

The internal variables pµε , pµ  and =D Dµ  are often considered 
to be equal to zero at t = 0. A pre-hardening or pre-damage cor-
respond to non-vanishing initial values 0pε , 0p , 0D  for the time 
integration of the differential equations (11): pre-hardening is natu-
rally accounted for in a rate form modeling [5]. Note also that the 
localization law takes into account the plastic strain evolution ( )p tε  
at the RVE scale. This means that the pre-plastification stage of the 
structures before undergoing elastic fatigue is taken into account by 
means of the pε -term of the scale transition law (8). Further study 
of notched specimens loaded at high mean stresses uses this feature 
(§ "Fatigue of axisymmetric notched specimens").
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Numerical implementation

With regard to the numerical implementation, a post-processing 
approach is proposed. The strain and plastic strain histories at 
the mesoscale are assumed to be known from a reference Finite 
Element elastic or elasto-plastic computation. The micro-plas-
ticity and damage are obtained by the time integration, step by 
step, of the incremental constitutive equations.  At each time 
step tn+1

 and for a known strain increment at the mesoscale 
 = n+1 

- n, the numerical scheme must calculate, by time in-
tegration of the constitutive equations at the microscale together 
with the consideration of the localization law, the strain 1n

µε + , 
stress 1n

µσ + , plastic strain 1
p

n
µε + , accumulated plastic strain 1npµ

+  
and damage 1nD +  at microscale.  The Euler backward scheme 
is used to discretize their rate form, as for classical single scale 
plasticity and damage models. The 3 stages for the numerical 
resolutions of the two-scale model equations are classically [44, 
46, 20]: 1) an elastic prediction at the microscale, taking into 
account the localization law, 2) a test over the criterion function  
f µ , and 3) if f µ  is found to be positive, a plastic-damage cor-

rection (still at the microscale).

Elastic Prediction

The elastic prediction assumes an elastic behavior at the microscale 
with constant plastic strain 1 =p p

nn
µ µε ε+ , constant kinematic harde-

ning 1 = nn
µ µ
+X X  and constant damage 1 =n nD D+ . The elastic pre-

diction gives a first estimate for the total strain, the elastic strain and 
the effective stress at the microscale at time 1nt + , 
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Plastic-damage correction

The previous elastic prediction gives the estimate σ  of the effec-
tive stress 1nσ +  at time 1nt + , with unchanged kinematic harde-
ning = nX X , and allows the yield criterion to be calculated. 
If the condition 1 0nf

µ
+ ≤  is fulfilled, the calculation is over and 

1 =p p
nn

µ µε ε+ , 1 =n n+X X , 1 =n nD D+  is set. If not, this elastic solu-
tion is corrected by ensuring the consistency condition 1 = 0nf

µ
+ . 

The Euler Backward scheme is used for all variables except da-
mage: = nD D  is considered over a time step 1= n nt t t+∆ −  in 
the strain localization law and in plasticity equations coupled with 
damage. This is of course not a limitation at all in fatigue, since 
over an entire cycle – made up of many time steps – the damage 
increment usually does not exceed 3/ < 10c RD N −  where 1cD ≤  
is the critical damage and RN  is the number of cycles to crack 
initiation.

Assuming then that the damage does not increase much over a time 
step, the set of nonlinear equations (11) must be solved, including 
the localization law, 

1 1
1 1

( ) = 0t1 (1 )(1 )

e e

n n

p n

n n n

D D
D

rD D D

µ µβε ε ε
β β
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−
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−
+ ∆ − ∆

− − −
1

  (14)

and the yield condition = 0f µ  at time 1nt +

1 1 1= ( ) = 0eq fn n nf µ µ µσ σ ∞
+ + +− −X   (15)

Equations (14)-(15) are combined with the normality rule for plas-
tic strain and with the evolution law for kinematic hardening, dis-

cretized as 1 1 1

1 1 1

3 3= =
2 2( ) ( )

D D
p n n n
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( )2= 1
3

p
y nC Dµ µε∆ − ∆X . These equations can of course be

solved using the Newton iterative method, but must be rewritten in the 
following form, 
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s s Q
s

s
  (16)

a function of the unknown accumulated plastic strain increment pµ∆  
and of the unknown variable 1 1 1=n n n

µ µ µσ+ + +−s X  allows a closed-
form solution to be obtained explicitly. The following is set in Equa-
tions (16) (details can be found in [20]): 

1=
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  (17)

where = / 2(1 )G E ν+  and = / 3(1 2 )K E ν−  are the shear and 
bulk moduli.

The exact solution of the set of equations (16) for the plastic-damage 
correction is: 

1
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where 
3= :
2

' '
seq s sQ Q Q  is the Von Mises norm of sQ , 

1= t3sH sQ rQ  is its hydrostatic part and ='
s s sHQ−Q Q 1  is its

deviatoric part.
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The proposed scheme is implicit but does require iterations.

Variable updating

Once the previous plastic-damage correction has been made, all of 
the variables at the microscale are updated as follows:  

    • normal to the yield surface: 13=
2

D
n

f

µ
µ

σ
+
∞

sm

    • plastic strain: 1 =p p
nn pµ µ µ µε ε+ + ∆m

    • kinematic hardening: 1 1
2= (1 )
3

p
y n nn nC Dµ µ µε+ +− ∆ +X X  

    • effective stress: 1 1 1=n n n
µ µ µσ + + ++s X

    • damage: 
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with

    • stress tensor : 11 1= (1 )nn nDµ µσ σ++ +−    
and the calculation can then be started at time 2nt +  

DAMAGE EAS post-processor for multiaxial fatigue

The DAMAGE_EAS post-processor solves the two-scale damage 
model constitutive equations and allows the micro-plasticity and 
damage history to be determined for complex loading. For a given 
material parameter file and for a given loading sequence (made up 
of the repetition by blocks of complex cycles defined at the RVE 
mesoscale), the post-processor calculates the damage history 
D(t) and the time to crack initiation, i.e., the time for D to reach 
the critical damage Dc. The inputs (mesostrains, total and plastic) 
come from a Finite Element reference computation and are thus 
at one or several user chosen structure Gauss points. Given that 
the maximum number of increments used to describe a cycle is 
large (actually 5000), the program allows quasi random fatigue 
calculations. The post-processor DAMAGE_EAS has a graphical 
interface with material parameter identification and result plotting 
capabilities [19].

The inputs are thus a material file and a loading file. The outputs of 
any calculation are:  
 • the number of cycles to crack initiation for the case considered; 
 •a standard result file made up of 50 lines with the values (the 
histories)  versus the number of cycles of the accumulated plastic 
strain and of the damage at the microscale; 
 •optional (large) files for complete results at the mesoscale 
and microscale (stresses, strains and plastic strain components 
versus time). 

Fast identification procedure

The purpose of this work is to study the ability of the model to handle 
notched structure fatigue, when the material parameters are first 
identified on tensile uniaxial (or "smooth") testing specimens. For the 
parameter identification, the following is proposed.  

Stage 1. The mesoscale parameters (Young modulus E, Poisson 
ratio v, yield stress y, plastic modulus Cy) are identified at each tem-
perature on the monotonic tensile curve.

Stage 2. The asymptotic fatigue limit fσ ∞  is guessed from an 
experimental Wöhler curve as the horizontal "asymptote" at a 
very high number of cycles to rupture (at least 7> 10RN ), 

( ) =
2 2 f RNσ σ σ

∞
∞∆ ∆

→ ⇒ →∞

For a non-symmetric fatigue loading (and in this model because of the 
Von Mises yield criterion at the microscale), the asymptote in terms of 

the stress amplitude ( ) =
2 f
σ σ

∞
∞∆  is independent from the load ratio

= /min MaxR σ σ . In terms of maximum stress, the corres-
ponding asymptote is = 2 / (1 )Max f Rσ σ∞ ∞ − – it is still due to 

( ) = (1 ) =
2 2

Max
fRσσ σ

∞
∞∆

−  – and is dependent on R. 

If the  Maxσ  vs. RN  diagram is used, the guessed horizontal 
asymptote Maxσ ∞  at a given load ratio R thus allows the – material 
parameter – fatigue limit fσ ∞  to be identified as: 

1= (1 )
2f MaxRσ σ∞ ∞−  (19)

Stage 3. The parameters h and Dc are considered to be equal to the 
default constant values for metals, = 0.2h , = 0.3cD  [43].

Stage 4. The damage parameters S and s are pre-identified from a 
non-linear curve fitting in Wšhler diagram (figure 3) using an approxi-
mate closed-form expression for NR (under the assumption h = 1 of 
a no micro-defect closure effect). This allows a first estimate of the 
damage parameters S and s to be easily determined. For a cyclically 
varying stress of = Max minσ σ σ∆ −  between minσ  and Maxσ , the 
following closed form expression for the number of cycles to rupture 
is used [15, 16], here with no damage threshold, 

2
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 (20)

where G is the shear modulus.
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Stage 5. At this final identification stage, the values for all parameters 
are kept identical, except for the damage strength S; h = 0.2 is set 
and the parameter S is re-adjusted by comparison with the reference 
Wöhler curve. The full set of constitutive equations is solved – nume-
rically this time – instead of using the approximate formula (20). 

An illustration of Stages 4 and 5 of the identification procedure is 
given for a TA6V alloy at a low temperature in figure 3, in which the 
experimental fatigue curve and the analytic (from equation 20) and 
computed (DAMAGE_EAS) model responses are sketched and com-
pared.

The final set of material parameters is only composed of the elasticity 
parameters E, v  0.3, the plastic modulus Cy, the asymptotic fatigue 
limit fσ ∞ , the damage strength S (in MPa), the damage exponent s, 
the micro-defect closure effect parameter h = 0.2 and the critical 
damage  Dc = 0.3. Let us point out that the identification of parame-
ters S, s and fσ ∞  is carried out by using a first population of uniaxial 
(smooth) specimens at R = 0.1 (test results reported as marks in 
figure 3). Next, the model is evaluated on a second independent popu-
lation of notched specimens made of the same material, tested at the 
same temperature, but at higher stress ratios.

Figure 3 - Illustration of Stages 4 and 5 of the identification procedure on the 
Wöhler curve for TA6V at a low temperature (marks: experimental, analytical: 
Eq. (20), DAMAGE: numerical solution by DAMAGE_EAS of set of equations 
(8) and (11)).

Fatigue of axisymmetric notched specimens

Axisymmetric Finite Element computations of 3 notched specimens 
have been performed with a refined mesh in the notch (figure 4). The 
three elastic stress concentration factors are Kr = 1.5, 2.5 and 3.5. 
The specimen height is 60 mm.

Elasto-plastic constitutive equations with linear kinematic hardening 
are used to model TA6V behavior. The considered stress ratios are 
positive, the notch plastification only occurs at the first load applica-
tion. The microscale behavior is represented by the elasto-plasticity 
coupled with damage constitutive equations (11). The scale transition 
law is Eq. (8).

Figure 4 - Details of the meshes in the notch for Kr = 1.5 (left), Kr = 2.5 
(middle) and Kr = 3.5 (right).

Structure computations with pre-plastification

The applied loading is presented in figure 5. It consists in a uniaxial 
(longitudinal) load varying between a maximum load MaxF  and a 
minimum load minF . Various maximum loads are considered, cor-
responding to different numbers of cycles to crack initiation. Various 
positive load ratios = /F min MaxR F F  are also considered, which are 
equal to the (applied) far field stress ratio and to the local longitudinal 
stress ratio /min Maxσ σ  obtained in elastic computations. As mentio-
ned already, plastification takes place in the stress concentration zone 
during the first load application (a stage therefore called pre-plastifi-
cation) making the local stress ratio R  obtained in plasticity different 
from the applied load ratio RF (The value of obtained is lower than RF).

An example of a map of accumulated plastic strains in the notch is gi-
ven in figure 6 for = 46minF kN , = 52MaxF kN , = 0.88FR . Sim-
ply note that this pre-plastification is naturally taken into account wit-
hin the two-scale damage model, through the use of the localization 
law (8) (through the existence of a mesoscopic plastic strain pε ).

Figure  5 - Applied loading

Figure 6 - Maps of plastic strain after pre-plastification for one of the 
= 2.5TK  specimens (applied load ratio = / = 0.88F min MaxR F F , compu-

ted stress ratio = / = 0.72min MaxR σ σ ).
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Number of cycles to rupture from two-scale damage analysis

For the calculations of the numbers of cycles to crack initiation (or 
for the prediction of the "no crack initiation" events), the total  and 
plastic p strain tensors have been interpolated at the node located 
at the surface of the notch. These data constitute the input of the 
DAMAGE EAS post-processor and are entered in the form of an 
ASCII file. The tensors are extracted from the plasticity computa-
tions at time steps t

1
, t

2
, t

3
 and t

4
 defined in figure 5. Only the second 

part of the loading – the part between FMax and Fmin – is repeated. 
A maximum number of repetitions of this sequence or block must 
be set when using DAMAGE_EAS ( 107 in these calculations). The 
21 damage post-processings corresponding to 21 tested notched 
specimens were made in a single (batch) operation taking approxi-
mately 45 min on a PC.

Figure 7 - Comparison between the experimental and predicted lifetimes for 
axisymmetric notched specimens

Failure is interpreted here as the mesocrack initiation condition, which 
corresponds to when the damage D reaches the critical value Dc (a 
material parameter here equal to 0.3).

The results obtained show an average ratio Experimental num-
ber of cycles to failure exp

RN  / Calculated number of cycles 
( )calc

R cN N D D= =  of 1.9 (figure 7). As far as the unbroken spe-
cimens at   cycles are concerned, the model correctly predicts the 
non-initiation of a crack in 10 out of 12 cases (83%). The fact that 
most of the predictions underestimate the experimental fatigue 
lifetimes seems logical. We must indeed recall that the model only 
predicts the crack initiation at the RVE mesoscale and does not 
take into account the cycles necessary to make these small cracks 
propagate to the final structural failure.

As far as the results obtained here for the TA6V alloy at a low 
temperature are concerned, the mean factor  2 obtained is quite 
a good result: this corresponds to the expected performance of a 
model for its industrial use, when the results are obtained from an 
independent identification on uniaxial (smooth) fatigue specimens. 
What is also of utmost importance is the ability of the model to 
correctly predict the time to crack initiation of a specimen subjec-
ted to a high mean stress effect, with more or less plastification 
(up to 5% here) and for a multiaxial stress state.

Computed Haigh diagram for TA6V alloy at a low temperature

The classical Haigh diagram corresponds to the curve given, 
at a given number of cycles to failure, by the stress amplitude 

1= ( )
2a Max minσ σ σ−  versus the mean stress 

1= ( )
2 min Maxσ σ σ+ .

First, in order to better characterize the model response over the 
entire stress ratio range, [ 1,0.9]R∈ − , several theoretical times 
to crack initiation have been calculated using uniaxial strain and 
plastic strain tensors (i.e., corresponding to uniaxial stress states 
of smooth specimens) generated for different maximum stresses 
at a given R. The corresponding points are reported on the dif-
ferent iso-R lines (R = 0.1, 0.5, 0.6, 0.8 and 0.9, figure 9). Each 

Figure 8 - Experimental multiaxial /II fA σ ∞ vs. ( ) /eq uσ σ  Haigh diagram of a TA6V alloy at a low temperature
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point is associated with a number of cycles to crack initiation 
calculated by DAMAGE EAS. The maximum stress was syste-
matically chosen above the  fσ ∞ -fatigue limit identified for the 
material at R = -1 which is, in this two-scale analysis, the limit 
below which the model does not announce any crack initiation. 
With such a network of theoretical points associated with their 
lifetime prediction, it is then possible to plot both the experimental 
(here at NR = 106 cycles, "Experimental 1E6 line") and the theore-
tical iso-lifetime curves (using a Box-Cox regression technique). 
The iso-lifetime curves given by the two-scale damage model for 
106(1E6), 5 106(5E6) and 107(1E7) cycles are shown in figure 9, 
each corresponding to a classical Haigh diagram for this TA6V 
alloy.

IIA vs. ( )eqσ  multiaxial Haigh diagram

Both the experimental and computational results have been reported 
in figures 8 and 9 (by means of the two scale damage analysis). 
The asymptotic fatigue limit and the ultimate stress are respectively 
denoted by fσ ∞  and uσ . The unbroken specimens after 107 cycles 
are represented by white marks, whereas the broken ones are repre-
sented by plain black marks. The smooth specimens (R = 0.1) are 
represented by triangular marks. The notched specimens are repre-
sented by diamonds marks. For these, the stress state is 3D so a 
first multiaxial Haigh diagram can be plotted by replacing the uniaxial 
stress amplitude (vertical axis) by the octahedral shear II , the local 
equivalent alternated stress, 

1 3= = ( ) : ( )
2 2

' ' ' '
a II Max min Max minAσ σ σ σ σ− −  (21)

and by replacing the uniaxial mean stress (horizontal axis) by the Von 
Mises equivalent stress of the mean stress tensor, the mean local 
stress is  

1 3( ) = ( ) : ( )
2 2

' ' ' '
eq Max min Max minσ σ σ σ σ+ +  (22)

The horizontal line / = / = 1II f a fA σ σ σ∞ ∞  or = =II a fA σ σ ∞  corres-
ponds to the infinite alternated fatigue limit (identified from the § "Fast 
identification" procedure). It is interesting to notice that, for this TA6V 
at a low temperature, this limit separates the broken specimens (black 
marks) from the unbroken ones (white marks) quite well. Note that the 
model theoretical iso-lifetime curves drawn here are rapidly decreasing 
in the -1 to 0.1 -range. All of the lines converge towards the asymptotic 
fatigue limit identified at R = -1 (horizontal line / = 1a fσ σ ∞ ). This line 
constitutes an asymptote for the iso-lifetime curves when the number 
of cycles to crack initiation increases. This feature is due to the fact that 
the equation for the asymptote is = 0f µ  and that in this case a Von 
Mises plasticity criterion is considered at the microscale.

In order to directly compare the theoretical iso-lifetime curves to 
their experimental counterparts, a more detailed study can be carried 
out on the 6= 10RN  line – which corresponds to the usual Haigh 
diagram at 106 cycles – for both the theoretical predictions and the 
available experimental data. A non-linear data regression allows the 
experimental 106(1E6) iso-life line (dashed line) to be plotted. It is 
remarkable that the experimental line fits its theoretical counterpart 
quite well. The global decreasing shape of the 6= 10RN  computed 
Haigh diagram is quite similar to that of the experimental one: the 
two-scale damage model proposes an evolution of the theoretical iso-
lifetime curve in good accordance with the experimental 6= 10RN  
line evolution for this TA6V alloy at a low temperature.

Finally, the influence of the local plastification on the local true stress 
ratio   can also be observed. Once the yield stress is reached (straight 
line "Yield Strength" in figure 8), the local stress ratio computed at the 
notch tip decreases and the corresponding point leaves its original 

Figure 9 - Multiaxial /II fA σ∞  vs. ( ) /eq uσ σ  Haigh diagram with two-scale damage model iso-lifetime lines
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iso-R line. All plastified points accumulate along the 45° "Ultimate 
Strength" straight line. This phenomenon has already been observed 
[37] and shows the importance of considering the local stress and 
strain state when drawing Haigh diagrams for notched specimens.

IIA vs. trσ  multiaxial Haigh diagram

It is also possible to use another multiaxial extension of the Haigh 
diagram, the octahedral shear =a IIAσ  versus the trace of the mean 
stress tensor, 

11 22 33
1tr = = ( )
2 min Maxσ σ σ σ σ σ σ+ + +with  (23)

This complementary representation offers the advantage of better 
taking the stress triaxiality into account (it is consistent with the Sines 
approach of multiaxial fatigue [59]). The further values of the stress 
tensor trace are those of the smooth and notched fatigue specimens, 
computed by Finite Elements.

In figure 10, three different iso-lifetime lines predicted by the two-
scale damage model have been plotted: the 5 105(5E5), 106(1E6) 
and 5 106(5E6) iso-lifetime lines, with the corresponding experimen-
tal points. Several fatigue tests carried out on smooth specimens at 
R = -1, R = 0.1 and R = 0.5 up to 106 cycles, allow the shape of 
the 6= 10RN  cycles line to be confirmed. As mentioned before, the 
theory and experiments fit quite well.
  
Figure 11 is the equivalent of figure 9 (with ( )eqσ  replaced by trσ ). 
The level of local triaxiality and yielding for each test is better ap-
prehended (this information was not clear in figure 9, since all plasti-
fied points were aligned).

Let us insist once again on the fact that the observations made here 
only concern locally plastified specimens. It would not have been pos-
sible to explore such high stress ratio values and such high plastifica-
tion levels in the High Cycle Fatigue with uniaxial smooth specimens.

Stronger asymptotic mean stress effect

The mean stress obtained previously in the mean stress range 
considered was in fact not so important, so that it has been mode-
led through the dissymmetry of damage growth (by means of a low 
fatigue limit and a micro-crack closure parameter h<<1). A more 
general model is possible, still within the kinetic framework of rate 
form damage modeling, i.e., still with no need for the notion of cycle 
or for the Rainflow-type counting cycle method.

Linear mean stress effect

A linear mean stress effect on the fatigue asymptote can be intro-
duced into the two-scale damage model by considering a Drucker-
Prager criterion function at the microscale [3, 4], where   is a material 
parameter,

( )
( )

=  tr

= 3

feq

H feq

f X a

X a

µ µ µ µ

µ µ

σ σ σ

σ σ σ

∞

∞

− + −

− + −
  (24)

i.e., by making the fatigue criterion pressure/first invariant dependent, 
as proposed by many authors [12, 59, 13, 24, 42, 50] for fatigue. From 
the Eshelby-Kröner scale transition law (5) – as well as from the scale 
transition law (8) – and incompressible plasticity, tr = tr = 3 H

µσ σ σ  
is still obtained. The differences here compared with classical works 
are: (i) the infinite lifetime domain < 0f µ  is translated by micro-
plasticity, (ii) the current values of the stresses are used (not the 
maximum or mean values) and the modeling remains incremental. 
Micro-plasticity and damage are the solution of a kinetic differential 
equation, so there is no need to define a cycle in order to calculate the 
time to crack initiation (it is the time at which  D(t) = Dc, the critical 
damage).

Figure 10 - Partial multiaxial /II fA σ∞  vs. trσ  Haigh diagram (TA6V alloy at a low temperature).
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In box 1, from the two-scale damage model constitutive equations, 
the asymptotic fatigue limit is shown to be linearly mean stress de-
pendent as at infinite lifetime,

 : = =

 , : = =  tr
a f

II f

a

A a

σ σ σ σ

σ σ σ

∞

∞

−

−





in 1D

in 3D proportional loading
  (25)

so that the Sines criterion is retrieved in 3D, under a proportional 
loading assumption with octahedral stress IIA  equal to the Von 
Mises norm of stress tensor amplitude. The fatigue limit in shear is 
obtained as = / 3f fτ σ∞ ∞  for any mean shear stress τ : it is not 
mean stress dependent, as experimentally observed [59, 42].

Bi-linear mean stress effect

A non-linear or at least bilinear modeling of the mean stress effect is 
sometimes needed if the applications range from alternated fatigue to 
high mean stress loading [33, 6].

A bilinear mean stress effect on the fatigue asymptote can be intro-
duced into the two-scale damage model, by considering a bilinear 
definition of the first invariant term of the criterion function at the 
microscale, as  

( )

1 0

2 1 2 0 0

= ( ) 3

13
3( ) =

13 ( ) >
3

H feq

H H

H

H H

f X K

a if
K

a a a if

µ µ µ µ

µ

σ σ τ

σ σ σ
σ

σ σ σ σ

∞− + −

 ≤

 + −


  (26)

where a
1
, a

2
 and the mean stress domain transition stress 


0
 are material parameters and ( = 0) = 0HK µ σ  so fτ

∞  
is the fatigue limit mean stress, independent in pure shear. 

( ) = 3 =  tr =  trH HK a a aµ µσ σ σ σ  is recovered and the linear 
mean stress effect from a

1
 = a

2
 = a.

The dependency of the fatigue limit σ


 on the mean stress is now 
obtained as follows. For a positive mean stress:  

    • for 0σ σ≤      0=a f aσ σ σ∞ −

    • for 0>σ σ      1 2 0 2= 3 ( )a f a a aσ τ σ σ∞ − − −

where  

1 2 0

1 2

1 2 0
0

0 2

1 2
0

1 2

2 3 ( )
=

2 ( )

3 ( )
=

=
2 ( )

f
f

f f

a a
a a

a a
a a

a aa
a a

τ σ
σ

σ τ σ
σ

∞
∞

∞ ∞

− −

− −

− + −

−

+
− −

  (27)

The calculations of an asymptotic multiaxial Haigh diagram (at infinite 
lifetime) can be found in Appendix A. Note that over the entire range of 
mean stresses, including the highly negative ones, the Haigh diagram 
is in fact trilinear.

Conclusion

The computation of two complementary multiaxial Haigh diagrams 
has been presented by means of an incremental two-scale damage 
analysis. Damage and failure are considered as part of the material 
behavior, in High Cycle Fatigue also, and this even if a structure be-
haves elastically at the macroscopic scale. The time integration, time 
step by time step, of the plasticity coupled with the damage micros-
cale constitutive equations determines HCF failure, here the micro-
crack initiation, simply by the reaching of a critical damage, D = Dc, 
in 3D cases, in notch yielding cases, in any general complex fatigue 
loading cases.

Figure 11 - Multiaxial /II fA σ∞  vs. trσ  Haigh diagram (TA6V alloy at a low temperature).
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The two scale damage analysis has been carried out on TA6V not-
ched specimens at a low temperature. The TA6V specimens were 
tested at up to 107 cycles at different stress ratios, from R = 0.5 up 
to R = 0.9. The advantages of notched specimens have been pointed 
out as twofold,  
    • on the one hand, they allow an interesting bi-axial stress state 
to be obtained in the average proportion of 70% in axial and 30% in 
hoop stresses, 
    • on the other hand, they allow high stress ratios and high local 
plastification levels to be easily explored; these levels are often obser-
ved in real structures. 

This is often not possible with uniaxial (smooth) specimens.

The model has been identified first by fatigue data for a single popula-
tion of smooth specimens tested at R = -1. It has then been applied, 
in a post-processing approach, to notched specimens exhibiting plas-
tification at the notch tip (at different stress ratios R). Both the non-
rupture events and the numbers of cycles to crack initiation have been 
correctly predicted. An average factor of 2 has been obtained between 

the experimental lifetimes and the computed numbers of cycles to 
crack initiation (over a 21 notched specimen population).
This work also emphasizes a quite good concordance between the 
experimental iso-lifetime curves and their theoretical counterparts, at 
least at NR = 106 for TA6V at a low temperature: they decrease and 
seem to converge towards a unique asymptote in Haigh diagrams, as 
the stress ratio increases. This asymptote corresponds to the infinite 
alternated fatigue limit, a material parameter also called asymptotic 
fatigue limit, for the considered titanium alloy – a TA6V optimized for 
aeronautics applications.

The asymptote may not be horizontal, thus leading to a stronger mean 
stress effect. A way to obtain a linear or piecewise linear Haigh dia-
gram from the two-scale damage model has been finally addressed.

Finally, note that neither the scale nor the gradient effects have been 
introduced (nor are they needed) in the modeling. A quantitative 
study of such effects for this titanium alloy is left for further work. 
It must be noted that the possibilities of gradient modeling within a 
two-scale damage model can be found, in [16, 46] 

Box 1 - Mean stress effect from a two-scale damage model: proof under proportional loading
 
Under a proportional loading, a time-space multiplicative decomposition can be applied: 

2= ( ) = ' : ' = 1
3eqtσ σ Σ Σ Σ Σwith   (1-1)

where = ( ) = ( ) eqt signσ σ σ σ  is a scalar function (the signed Von Mises stress) and  is a constant tensor, normed, such as 

tr>0, so the stress triaxiality is 
1/ = ( )t3H eq sign rσ σ σ Σ .

At the microscale, due to the Eshelby-Kršner scale transition (5), proportionality is maintained only for deviatoric tensors : 

3e = ' = '
2

p p X Xµ µ µ µε Σ Σand   (1-2)

where = (1 ) pX C Dµ µ µε−

  for the now scalar kinematic hardening law.

The deviatoric part of the scale transition for the deviatoric tensors gives = ' 2 (1 ) = ( 3 (1 ) ) 'p pG Gµ µ µσ σ β ε σ β ε′ − − − − Σ , so quanti-
ties at the microscale can be expressed from the scalar signed Von Mises stress : 

( ) = ( ) = ( )t t t
( ) =| (3 (1 ) ) |p

eq

r r r
X G C

µ

µ µ µ µ

σ σ σ

σ σ β ε

 Σ


− − − +
  (1-3)

The expression (24), generalized into Eq. (26) for the yield criterion at the microscale, becomes in proportional loading : 

=| (3 (1 ) ) | ( ) 3p
H ff G C Kµ µ µ µσ β ε σ τ ∞− − + + −   (1-4)

The extrema of a cycle at the onset of plasticity f = 0 at both the maximum stress Max and minimum stress min are 

= (3 (1 ) ) ( ) 3 = 0

= 3 (1 ) ( ) 3 = 0

p
Max Max HMax f

p
min min Hmin f

f G X K

f G X K

µ µ µ

µ µ µ

σ β ε σ τ

σ β ε σ τ

∞

∞

 − − + + −


− + − + + −
  (1-5)
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Infinite lifetime (endurance) corresponds to a possible pre-yielding, but then to elastic loading at constant p and X at the microscale, 

to a stress amplitude lower than 1 1= ( ) = ( ) =
2 2a Max min Max min eq IIAσ σ σ σ σ′ ′− Σ − Σ  (due to = 1eqΣ ) determined from both condi-

tions = = 0Max minf f . In any case, it is 
1= 3 ( ( ) ( ))
2II f Hmin HMaxA K Kµ µτ σ σ∞ − + ,  

    • if a linear Drucker-Prager expression (24) is used 
1 ( ( ) ( )) =
2 HMax HminK K ktrµ µσ σ σ+  so that linear Sines criterion describing 

the infinite lifetime domain is obtained : 

1= ( ) = 3 t2II Max min eq fA a rσ σ τ σ∞− −   (1-6)

    • if a bilinear definition of function ( )HK µ σ  is used, there are 3 cases : 

i) 0t Maxrσ σ≤  or ii) 0t minrσ σ≥  or iii) 0( ) >t Maxr σ σ  and 0( ) <t minr σ σ . 

For cases (i) and (ii) the same parameter ai acts in fmin and   fmin  so that the same calculations as previously hold, therefore the mean 
stress effect is linear (but with different slopes a1 or a2) as  

Max 0 1

min 0 1 2 0 2

1< = ( ) = 3tr t2
1> = ( ) = 3 ( )tr t2

II Max min eq f

II Max min eq f

A a r

A a a a r

σ σ σ σ τ σ

σ σ σ σ τ σ σ

∞

∞

− −

− − − −

when

when
  (1-7)

In the last case, the two constants a1 and a2 act as in eq. (26) 

0 2 1 2 0

0 1

> = (3 (1 ) ) ( ) 3 = 0t t

< = 3 (1 ) 3 = 0t t

p
Max Max Max f

p
min min min f

f G X a a ar r

f G X ar r

µ µ µ

µ µ µ

σ σ σ β ε σ σ τ

σ σ σ β ε σ τ

∞

∞

 − − + + Σ+ − −


− + − + + Σ−
  (1-8)

By adding the two equations, at identical p, the amplitude is obtained: 

1 2 0 2 1= 3 ( ) ( )ta f Max mina a a a rσ τ σ σ σ∞ − − − + Σ   (1-9)

Finally, using =Max aσ σ σ+ , =min aσ σ σ− , = /t t eqr rσ σΣ  and =a IIAσ  in such a proportional cyclic loading a linear mean 
stress effect is obtained, which is stress triaxiality dependent, with a slope in the Haigh diagram different from parameters a1 and a2, 

1 2 00 1 2

0
1 2 1 2

2 3 ( )>t = t<t 2 3( ) 2 3( )

fMax

H Hmin

eq eq

a a a ar A II r
r a a a a

τ σσ σ
σσ σσ σ

σ σ

∞ − − +
−

 − − − −
when   (1-10)

In uniaxial tension-compression = [1,0,0]diagΣ , there is a diagonal tensor so 

1 2 0 1 2
0

1 2 1 2

2 3 ( )
= =

2 ( ) 2 ( )
f

a f
a a a a a

a a a a
τ σ

σ σ σ σ
∞

∞− − +
− −

− − − −
  (1-11)

This last equation defines the mean stress effect at low mean stress, if a parameter 
0
 is identified that is smaller than the uniaxial 

fatigue limit fσ ∞ . It thus defines the fatigue limit at zero mean stress fσ ∞  from the fatigue limit in pure shear fτ
∞  and the parameters 

a1, a2, 0
 of the bilinear ( )HK µ σ  function.
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