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Aerial Robotics

Aerial Robotics: a Bird's-Eye View

After manufacturing, ground transpor tation and medicine, robotics has now 
made an incursion in the field of aerial applications. Several domains, such 

as mapping, shooting, monitoring of indoor and outdoor 3D environments, 
agriculture and traffic monitoring, surveillance of sensitive  areas, structure 
inspection, handling and carrying of heavy loads, and physical interventions 
now seek to exploit what are commonly called "drones". While these unmanned 
aerial vehicles (whether called UAV, UAS, or RPAS) have reached a fair degree 
of maturity, as witnessed by their success in entirely new aerial missions 
(dangerous, long, tedious, etc.), their capabilities and their performance generally 
remain limited. These systems are still endowed with scant autonomy capabilities, 
in par ticular with regard to their capacity for sensing and interacting with their 
environment, and significant progress is expected in this direction. Other topics of 
practical impor tance concern energetic autonomy (i.e., the capacity to fly longer), 
or avionic architecture in relation with security issues. Robotics will undoubtedly 
play a major role in replacing humans onboard these aerial vehicles. Robotics is 
one of the scientific fields of information science that relies on computer science, 
automatic control and signal and image processing. The involvement of several 
of these different aspects in the development of next generation unmanned aerial 
vehicles is discussed in the ar ticles contained in this special issue.

Introduction

After manufacturing, ground transportation and medicine, robotics 
has now made an incursion in the field of aerial applications. Several 
domains, such as mapping, shooting, monitoring of indoor and outdoor 
3D environments,  agriculture and traffic monitoring, surveillance 
of sensitive  areas, structure inspection, handling and carrying of 
heavy loads and physical interventions, now seek to exploit what are 
commonly called "drones". These Aerial Robotics systems can also 
be a flexible alternative to satellites and antennas for optimal network 
territory coverage. Today, their application potential is recognized as 
quite considerable. 

While these unmanned aerial vehicles (whether called UAV, UAS, or 
RPAS) have reached a fair degree of maturity, as witnessed by their 
success in entirely new aerial missions (dangerous, long, tedious, 
etc.), their capabilities and their performance generally remain limited. 
These systems are still endowed with scant autonomy capabilities, in 

particular with regard to their capacity for sensing and interacting with 
their environment, and significant progress is expected in this direction. 
Other topics of practical importance concern energetic autonomy (i.e., 
the capacity to fly longer), or avionic architecture in relation with security 
issues. For now, the bottom line seems to be that, while research and 
development efforts are underway to mitigate barriers to the safe and 
routine integration of unmanned aircraft into the national airspace, these 
efforts cannot be completed and validated without safety, reliability and 
performance standards. 

Robotics will undoubtedly play a major role in replacing humans onboard 
these aerial vehicles. Robotics is one of the scientific fields of information 
science that relies on computer science, automatic control and signal 
and image processing. It also draws on engineering for modeling at 
various levels of fidelity and for mechatronical design. It helps to address 
design and control systems problems, in order to develop a form of 
intelligence enabling very different tasks to be carried out autonomously 
(or with some human assistance) in highly dynamic environments.
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The science and technology of Robotics, as such, cover a relatively 
wide range. They focus on aspects related to:

• Structural systems design;
• Control systems, computer architecture (hardware and software) 

for control;
• Perception (often multi-modal) of the environment, detection 

and information retrieval at various semantic levels;
• Localization and navigation in complex environments, 
• Development of complex functions in autonomous forms and/or 

interaction with humans or other robotic agents;
• Planning of these functions for performing tasks/complex 

missions, their dynamic linking, the execution control and adaptation 
activities with "cognitive" artificial systems;

• Development of learning methods for the representation and 
solution of problems relating to particular tasks or missions, based 
on machine learning.

The involvement of several of these various aspects in the development 
of next generation unmanned aerial vehicles is discussed in the articles 
contained in this special issue.

Mechanical design and pre-sizing of unmanned aerial 
vehicles pre-sizing

Most mini-drones are rotary-wing aircraft, due to the ability of this 
family of systems to perform vertical take-off and landing. There is 
a very large variety of existing concepts and the development of new 
platforms is still an active research topic. Among the various possible 
objectives, obtaining a good trade-off between good hovering capacity 
and good energy efficiency in cruising flight for a given speed range, 
maximum weight, payload, dimension, etc., is a complex optimization 
problem that can involve multidisciplinary models. An article in this 
special issue discusses these various aspects and describes research 
projects conducted at Onera for rotary-wing aircraft design and pre-
sizing.

Reactive control

Once a UAV (Unmanned Aerial Vehicle) has been built, the first step 
is to design low-level feedback control laws that ensure good flight 
stability. For VTOL (Vertical Take-Off and Landing) aircraft, this starts 
with attitude control, since these systems are inherently unstable. 
Higher level control objectives include, for example, velocity/position 
control based on GPS data, which is now part of the functionalities 

available on most commercial mini-drones. More recently, progress in 
the miniaturization, cost and energy consumption of micro-processors 
have made possible the on-board processing of complex sensory 
data, such as camera data. This opens the door to feedback control 
strategies based on exteroceptive sensors (cameras, laser scanners), 
which are very well suited to inspection applications. Several 
articles in this issue address these various topics from different 
viewpoints: modeling of strapdown IMU (Inertial Measurement Unit) 
measurements in relation with quadrotor UAV aerodynamics, design 
of attitude observers, design of non-linear feedback control laws to 
ensure stability over large flight envelopes and perturbation rejection, 
and vision-based control.

Planning and mapping

Reactive control may be sufficient for the remote operation of an 
aerial vehicle by a human pilot. To further increase the autonomy and 
envision fully autonomous flight in cluttered environments, a high level 
of perception and planning capability must be reached. First, the vehicle 
must be able to build a map of its environment and locate itself on this 
map. This is a major problem in robotics, usually referred to as the 
SLAM problem (Simultaneous Localization and Mapping). Once this 
map is available, planning strategies can be developed so as to ensure 
safe navigation in the environment. Results on visual SLAM conducted 
at Onera are presented in one paper in this special issue and planning 
issues are also covered in two articles. The first, which also describes 
research work conducted at Onera, addresses planning and training 
flight for a fleet of vehicles. The second describes research conducted 
at the University of Sidney on autonomous soaring, with the purpose 
of achieving long endurance flight. This article also discusses other 
means to achieve this goal.

Avionic architecture and security

A high level of autonomy can only be achieved via the use of many 
different sensors and the on-board processing of the associated 
sensory data. This leads to complex systems, at both the hardware 
and software levels. Such complexity is a challenge to the design of 
certified avionics, especially for small UAVs, which are subjected to 
very strong payload constraints. On the other hand, with the rapid 
increase in the number of UAVs operating close to inhabited areas, 
security demands will increase. Based on existing methods that were 
developed for commercial fixed-wing aircraft, work is being conducted 
in research labs to develop certified avionics architectures tailored to 
UAVs. An article in this special issue is dedicated to these aspects n
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In the coming years, unmanned combat air vehicles will be designed to outperform 
most pilot-in-the-loop systems. The absence of a pilot onboard allows larger flight 

envelopes to be considered with, for example, higher load factors. From a control pers-
pective, the above remark induces new needs for improved design methods to obtain 
robust controllers that will automatically adapt to extremely varying flight conditions. 
Based on the well-known concept of nonlinear dynamic inversion (NDI), the approach 
of this paper introduces an original and rather generic “robustification” framework, 
which leads to a multi-objective H∞ design problem. The latter is now easily solved by 
existing and efficient numerical tools based on nonsmooth optimization. The proposed 
design methodology is illustrated by a combat aircraft control problem. 

Introduction

Unlike civilian aircraft, unmanned combat air vehicles are ex-
pected to operate in extended flight domains with high per-
formance requirements. In this challenging context, control 
systems have to cope with rapidly varying and possibly non-
linear dynamics, induced by large variations of load factors, 
angle-of-attack or sideslip angles for example. As a result, 
popular gain scheduling techniques essentially based on linear 
interpolations of static gains are no longer applicable, since 
no guarantee exists in case of rapid changes in the gain sche-
duling variables [35, 36]. This weakness was the main moti-
vation behind initial research on LPV control techniques in the 
1990’s [23, 6, 3, 2, 46, 8, 17, 20]. More recently, over the past 
decade, many efforts were devoted to various improvements, 
in order to reduce the conservatism of standard LPV design 
approaches [34, 1, 44, 32, 42, 45, 33]. Unfortunately, most of 
the proposed extensions introduce many additional variables 
and lead to (possibly non-convex) optimization problems, 
which rapidly become intractable beyond three parameters. 
This certainly explains why more standard gain-scheduling 
design approaches are still experiencing a large success in the 
aerospace industry today. This has also been a strong moti-
vation for many researchers who have explored connections 
between LPV control and gain-scheduling methods [36, 31] 
or have provided frameworks [30, 35, 13] thanks to which the 
latter can be theoretically justified. Based on such frameworks, 
the development of specific implementation strategies for gain-
scheduled controllers was made possible. A possible strategy 
uses the concept of velocity-based linearization [19, 21, 18], 

but the most popular ones are certainly stability preserving 
interpolation methods [37, 38, 25, 39, 40]. Within the specific 
context of aerospace applications, for which analytical models 
are often available, LPV or gain-scheduled control laws can 
be interestingly replaced by nonlinear dynamic-inversion (NDI) 
based controllers. Moreover, as is clarified in [26, 43, 24], 
strong links can be established between LPV and NDI control. 

These links offer interesting ways to study the stability of nonlinear 
closed-loop systems with NDI controllers. They also provide new 
possibilities for improving the design of robust NDI controllers, as is 
further clarified below. 

The outline of this paper is as follows. The connections between the 
LPV framework and dynamic-inversion (DI) based techniques are 
preliminarily explored. Next, an application to a generic aircraft control 
problem is considered  and an original tuning procedure is detailed. 
Results of the tuning procedure are then presented, and finally some 
concluding comments end the paper.

Dynamic-inversion based LPV control 

Since the early 1990s, nonlinear dynamic-inversion (NDI) based (or 
feedback linearization) control techniques have received considerable 
attention in the literature regarding their application to the design of 
flight control systems for missiles and aircraft. Given a possibly time-
varying nonlinear plant: 

( , ) ( , )      x f x g x uθ θ= + 	 (1) 
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a control law that achieves the desired response characteristics may 
be formulated as follows 

-1( , ) ( - ( , ))   u g x v f xθ θ= 	 (2)
 
where v specifies the desired response and is generally produced as 
the output of a linear controller, remarking that – in the ideal case – 
the closed-loop system now simply reads: 

x v= 	 (3)
 
Interestingly, when an accurate model is available, the control struc-
ture (2) compensates not only for the nonlinearities of the plant, but 
also for its parametric variations, as is further clarified below. Unfortu-
nately, an exact compensation is never achieved in practice because 
of uncertainties in the model, because of noises in the measurements, 
because part of the states might not be available, because the control 
efficiency g(x,) might be temporarily non-invertible and, finally, be-
cause of control saturations. For these reasons, making the desired 
response v requires special attention. 

Within the context of Linear Parameter Varying (LPV) plants, the non-
linear differential equation (1) can be rewritten as: 

( ) ( )x A x B u
z Lx

θ θ= +
 =



	 (4)

where z denotes the signal to be tracked and B() is a square and 
non-singular matrix throughout the operating domain of the plant. 
Thus, the above ”linearizing” control law (2) can be adapted as fol-
lows: 

-1
0 0( ) ( - ( ( ) - ) ) u B B v A A xθ θ= 	 (5)

 
so that the LPV plant now becomes LTI: 

0 0x A x B v
z Lx
= +

 =



	 (6)

for which the new control input v in the following format: 

( ) ( )  cv H s z K s x= + 	 (7)
 
is easily designed by any standard approach. It is easily verified that 
the combination of equations (5) and (7) defines a standard LPV 
control law: 

[ ]-1
0 0 0( ) ( ) ( ( ) - ( ))  cu B B H s z B K s A A xθ θ= + + 	 (8)

 
It is very interesting here to point out that any difficulty related to 
the size of the parametric vector  has been removed, which, for 
many reasons, is clearly a weak point of most LPV or gain sche-
duling techniques. Note that the selection of the “central” matrices 
A0 and B0 is completely free. A standard choice consists in setting 

( ) ( )0 0andA A B Bθ θ= =   where θ denotes a mean value of the 
varying parameter. However, in some cases, it might not be the best. 
Rather than considering mean values of the parameters, an interes-
ting alternative consists in focusing on worst case combinations, for 
which the instability degree of A

0
, for example, is maximized, or for 

which the control efficiency is minimized. The central idea is that the 
LTI system (6) should not necessarily capture the mean behavior of 
the LPV plant, but rather a worst case behavior. Unfortunately, there 
are still no general rules for the selection of the ”central” model. This 
is still an open issue and it seems that the best choice will highly de-
pend on the application. Another difficulty of the proposed approach 
is related to the assumptions regarding the matrix B(), which must 
be square and invertible. In practice, these two requirements are ra-
rely met. However, within the context of aerospace systems, a time 
scale separation technique can be used to bypass such difficulties 
[26]. This point is clarified in the following. 

Application to a generic aircraft control problem 

Let us consider a longitudinal aircraft short-term dynamics control 
problem, where the objective is to track the angle-of-attack over a 
large flight envelope. Using standard flight dynamics notation (see 
[10] for further details), the equations of interest are as follows, where 
 and q denote the angle-of-attack and the pitch rate, respectively:

( )

( ) ( )

 

 
p

yy q p p

q w

J q w m
αα θ

θ λ θ δ

= +
 = +





	 (9)

with: 

2 2

( ) (cos cos cos sin sin
cos

cos - sin ) - tan
( ) ( ( ) / )

( - ) ( - )
( ) ( )

  

  

q

p

z x i

q p d M M

zz xx xz

p d M

gw
V

a a p
w q SL C M qLC V

J J pr J r p
q SLC M

α

δ

α

α

α

θ α θ φ α θ
β

α α β
θ

λ θ

 = +


+
 = +


+ +
 =


 

	 (10)

and:

2 2

cos sin

( )
( - )

     

   

    

i

x xm a

z zm a

p p r

a ga L g q r
a ga L g q pr

α α= +


= + +
 = +



 

	 (11)

 
In the above representation, all parametric variations of the system 
(mainly induced by the variations of velocity) are captured by the 
parametric vector p. The notation , widely used in the LPV control 
literature, is no longer appropriate here, since it now denotes the pitch 
angle (see Equation 10). The longitudinal short-term motion of the 
aircraft is essentially controlled through the second equation in (9), 
via the control input m denoting the elevator deflection. The latter also 
impacts the first equation through a small effect on the accelerations 

xa  and za . However, the latter is small enough to be neglected.
 
Interestingly, the expressions of the nonlinear inputs (w


 and wq) and 

of the control efficiency ((p)) given in (10) depend on known and 
on-line measurable data. Consequently, these three parameter-va-
rying terms can be used by the controller. Observing that the control 
efficiency verifies (p) < 0 (and is thus invertible) over the entire 
flight envelope, a standard NDI approach consists in inverting the 
moment equation, so as to control the pitch rate. Assuming that the 
actuator dynamics are much faster than the desired response on q, 
they are temporarily neglected. It is then readily verified that the fol-
lowing control law: 
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-1 -1( ) ( ( - ) - )mc p yy q c qJ q q wδ λ θ τ= 	 (12)

yields: 

-1( - ) q cq q qτ≈ 	 (13)

Since the pitch rate evolves much faster than the angle-of-attack, 
(this also can be enforced by choosing q small enough), one further 
considers that q ≈ qc, so that the first equation in (9) is now controlled 
via qc and the following choice for the commanded pitch rate: 

2 ( - ) - 2 -  
t

c r c r r
o

q d wαω α α τ ξ ω α= ∫ 	 (14)

enforces a second-order behavior on the angle-of-attack: 

2

2 2( )
2

 r

c r r r
s

s s
ωα

α ξ ω ω
≈

+ +
	 (15)

where the desired closed-loop pulsation r is chosen as a function 
of the calibrated airspeed. Combining the above equations, one ob-
serves that the nonlinear parameter-varying control law may be sum-
marized as: 

( ) ( )[ ] ( )[ ]     c p mc c qu H s w w K s qαλ θ δ α α′ ′= = + 	 (16)
 
with 

2 2
( ) 1 , ( ) 2 1 yy r yy yy r

r r
q q q

J J J
H s K s

s s
ω ω ξ ω

τ τ τ

   
= − − = − +   
    

	 (17)

Note that Equation (16) can be viewed as an alternative formulation 
of (8). With this approach, rather sophisticated parameter-varying 
control laws covering the entire flight domain of interest are then easi-
ly obtained after a very short design process. However, the efficiency 
of such control laws relies strongly on the availability of the nonlinear 
inputs w


 and wq. In practice, uncertainties affect these two signals 

and the control efficiency (p) is not known precisely. Moreover, 
because of the actuator dynamics, the actual deflection m may differ 
sometimes significantly from the commanded variable mc . Within 
the context of dynamic inversion, several techniques have been pro-
posed to cope with these limitations, by improving the robustness of 
the controller [26]. The central idea of these techniques consists in 
mixing the concept of dynamic inversion with robust control theory. 
Based on this idea, in the design procedure which is detailed next, a 
multi-objective H∞ framework is proposed to generalize the above 
control structure and to better optimize the gains K(s) and H(s). 

A novel tuning procedure 

As mentioned above, the desired elevator deflection is not produced 
instantaneously, but rather is delivered by an actuator of limited capa-
city. Within our context, its dynamics are accurately described by 
a linear second-order transfer function. Here, to further simplify the 
following discussion, let us temporarily reduce it to a first-order sys-
tem so that ( )1

cm m mδ τ δ δ−= −  and let us define the new variable 
u = (p)m. Thus, one obtains: 

1( ) ( ) ( ) ( )  p m p m p m u c uu w u u wλ θ δ λ θ δ λ θ δ τ −= + = + = − +  

 	 (18)
 

where the commanded input uc is defined in (16) and the perturbation 
term wu may further be characterized as: 

( )
( )

( )  
p

u p
p

w u u
λ θ

µ θ
λ θ

= =


	 (19)
	
Hence, the nonlinear aircraft model of equation (9), including the 
actuator, can be drawn as shown in figure 1, where the state-space 
data of the linear system G(s)= CG(sI − AG)−1BG is initially given by:

1 1

1 0 00 1 1 0
, ,

0 0 0 10
  G G G

yy yy
A B C

J J− −

    
= = =    
     

	 (20)
 

Figure 1 - Description of a nonlinear plant as a linear system 
with nonlinear inputs 

Remark  As already discussed above, the linear system G(s) should 
at least locally represent a realistic behavior of the aircraft, which is 
definitely not the case in (20), which corresponds to a double-inte-
grator. For given values pθ  of the varying parameters, a linearization 
technique yields: 

( ). ( ).

( ). ( ).

 

 

p p

q q
q p p

w ww q w
q

w w
w q w

q

α α
α α

α

θ α θ
α

θ α θ
α

∂ ∂ = + + ∂ ∂
 ∂ ∂ = + + ∂ ∂

 



 



	 (21)

Thus, the nonlinear inputs of G(s) become wα  and qw  and its AG 
matrix is updated as follows: 

( ) ( )

( ) ( )

1
( )

p p

G p
q q

p p

w w
q

A
w w

q

α αθ θ
α

θ
θ θ

α

∂ ∂ + ∂ ∂ =
∂ ∂ 
 ∂ ∂ 

 



 

	 (22)

Formulation as a multi-channel H∞ design problem
 
Merging the above actuator description and G(s), an augmented 
linear interconnection model M(s) can be obtained as the linear multi-
variable transfer matrix from inputs , , andu q cw w w uα   to the outputs 
z

 = , zu = u and zy = y. This linear interconnection is the central 

element of the H∞ design diagram visualized in figure 2. 

Figure 2 - Design model 
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Basically, the general idea consists in computing the best controller 
K(s), such that a few relevant weighted transfers from wi to zi are 
minimized. More precisely, the transfer from w3 to z3 can be associa-
ted with the nominal performance, since w3 corresponds to a control 
input on the angle-of-attack while z3 denotes the error between the 
actual output and that of the reference model R(s). Thus, the problem 
to be solved takes the form of the following multi-channel H∞ optimi-
zation program: 

1 1

2 3

3 3

3 2

2 2

( )

11

23

32

22

( )

( )
min ( )

( )

( )

 with  
K s

w z

w z
w z

w z

w z

T s c

T s c
T s

T s c

T s c

→ ∞

→ ∞
→ ∞

→ ∞

→ ∞

 ≤

 ≤


≤

 ≤

	 (23) 

where constant terms cij can be tuned to quantify various robustness 
levels: 

	 c
11

: stability robustness against the neglected term wu = µ()u 
	 c

23
: performance robustness against perturbations wα  and qw 		

	 c
32

: bound on the nominal control activity 
	 c

22
: bound on the ”perturbed” (by wα  and qw ) control activity 

Interpretation and controller structure 

As is visible in the diagram of figure 2 and from (23), the nonlinear 
control design problem has been re-formulated as a rejection pro-
blem of on-line estimated nonlinear input perturbations. Assume 
that a controller K(s) has been computed, then the control law to be 
implemented will read: 

( )
1 ( )[ , , , ]  mc q c

p
K s w w yαδ α α

λ θ
′= −  	 (24) 

The above expression generalizes (16). Here, the unique compensa-
tor K(s) includes both the feedforward (previously denoted H(s)) and 
feedback (previously denoted K(s)) paths. Note that the signal wu is 
not used by the controller, since its estimation might be very poor 
(because of possibly fast variations). Moreover, it has been observed 
in practice that this signal is often very small. As is clear from (19), 
its magnitude is directly related to the rate-of-change in the varying 
parameters. 

Weighting function tuning procedure 

The most challenging task in H∞ design approaches, once the control-
ler structure has been defined, consists in tuning the weighting func-
tions correctly. This step is often very tricky. Fortunately, the situation 
is quite favorable here, since an initial solution can be obtained by a 
standard dynamic inversion approach (see Equations (16) and (17)). 
As a result, the weighting functions can be tuned by a frequency-do-
main analysis of the design model in feedback loop with this standard 
solution. Thus, all that remains is to iterate from this starting point, to 
improve the standard controller. Alternatively, the tuning procedure 
may also be started from scratch when the standard dynamic inver-
sion based controller fails to satisfy any of the desired closed-loop 
properties. 

Dealing with saturations 

A key improvement axis in the above procedure consists in minimi-
zing the control activity by ”playing” on the weighting function Wa(s), 
for example. It is then expected that magnitude and rate limits will no 
longer induce loss of performance or stability. In a next step, further 
improvements can be obtained by plugging in an anti-windup com-
pensator J(s), which can also be optimized by H∞ norm minimization, 
together with the previous feedback gain K(s). Further details on such 
an approach can be found in [7] and [9]. 

Resolution aspects
 
Last but not least, the resolution of the multi-channel H∞ optimiza-
tion problem (23) deserves a few comments. Unlike standard full-
order H∞ design problems, the latter is non-convex, because of the 
multi-channel aspect. Moreover, as shown by Figure 2, numerous 
weighting functions have been introduced in the design model, which 
contributes to a significant increase in its number of states. As a re-
sult, the optimization of a full-order controller would certainly result 
in non-implementable control laws. It is thus strongly recommended 
here to search for fixed-order and structured controllers, which is a 
second source of non-convexity. Until recently, these problems were 
very hard to solve, which certainly explains why formulations such as 
those stated by (23) have rarely been considered. However, over the 
last few years, thanks to very recent progress on nonsmooth opti-
mization techniques [4, 5, 11], new efficient tools dedicated to the 
local optimization of fixed-order and fixed structure H∞ controllers 
have appeared. Let us first cite the public domain software HIFOO 
[15, 16, 14] for use with MATLAB, which is backed up by the theore-
tical advances described in [11]. Then, appeared the routine HINFS-
TRUCT, whose theoretical foundations are described in [4]. The latter 
has been directly integrated to MATLAB by Mathworks Inc., and is 
available with the Robust Control Toolbox [22].

Results on the flight control problem
 
The above strategy is now applied to the flight control problem, 
but here both the longitudinal and the lateral axes are considered. 
Baseline controllers are preliminarily designed for each axis. Next, 
both controllers are plugged into design models, as shown in figure 
2, where all weighting functions are first set to identity. A singular 
value analysis is then performed in order to initialize the weighting 
functions and the fixed-order multi-channel H∞ (23) is preliminarily 
solved for each axis. In each case, the initial set of weighting func-
tions is chosen so that all constraints cij are normalized. The best 
achieved H∞ norm of the main transfer associated to the nominal 
performance also verifies: 

3 3
( ) 1w zT s→ ∞

< . Then, an iterative pro-
cedure is applied to decrease the constants cij, while preserving the 
nominal performance constraint. During this procedure, one essen-
tially tries to minimize c

23
, which reflects the capacity of the control-

lers to reject the nonlinear input signals, thus extending their ope-
rating domains. For each axis, this value is approximately divided 
by 3. During this iterative tuning procedure, the transfer Tw3z1

(s) 
from w

3
 to z

1
 will also receive particular attention, as well as the 

selection of the weighting function Wu(s), in order to minimize the 
control activity. 
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Point # Mach number Altitude (ft)

1 0.25 5000

2 0.5 20000

3 0.7 10000

4 0.9 36000

5 0.9 5000

Table 1: Test points in the flight domain

Both longitudinal and lateral controllers are then implemented in a 
nonlinear SIMULINK diagram including a complete description of the 
aircraft, which remains valid over the entire subsonic flight domain. 
Ten simulations are then performed to evaluate both the longitudinal 
and lateral controllers throughout the flight domain, in which 5 points 
are selected (see table 1).  

Figure 3 - Nonlinear simulations for various flight conditions: longitudinal axis

Figure 4 - Nonlinear simulations for various flight conditions: lateral axis
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For each of these points, the aircraft is preliminarily trimmed (initial 
thrust and elevator deflections are set to ensure steady state flight 
conditions) and two maneuvers are performed: 

	 • Longitudinal maneuver: this sequence consists of two steps 
on the angle-of-attack. The flrst is applied after 1s. Its magnitude is 
tuned according to the flight point, so that the vertical load factor 
does not exceed the maximum value of 9g. Next, after 6s a new step 
is applied, so that the final angle-of-attack is now between 0 and 
−10deg. Here again, the magnitude is adapted as a function of the 
flight point, so that the vertical load factor remains above its minimum 
value, which is fixed to −3g. The total length of this maneuver is 10s. 
The simulation results are visible in figure 3.
 
	 • Lateral maneuver: during this sequence, the lateral behavior 
of the aircraft control laws is evaluated through their capacity to track 
roll-rate commands. For this purpose, a series of roll-rate steps is 
applied, as shown in figure 4. During these steps, the objective is to 
maintain the sideslip angle around 0.

Concluding remarks 

In this paper, an original control design methodology combining 
the concepts of dynamic inversion and LPV control techniques has 
been described. The proposed strategy, which essentially consists 
in revisiting NDI control as a linear control problem with measured 

(or estimated) nonlinear disturbing inputs, is particularly well-suited 
to aerospace applications. The proposed design approach has been 
validated on a realistic and complete aircraft control problem over a 
large flight envelope.

A key advantage of this last parameter-varying control strategy re-
sides in its capacity for handling many parameters without critical 
impact during the design process.
 
However, when the nonlinear input signals – which in most cases 
have to be estimated on-line – differ significantly from reality, it 
becomes difficult to predict whether the closed-loop properties will 
be guaranteed or not. A controller validation phase is then required. 
Such validations generally consist of extensive nonlinear simulations 
for many flight conditions, many parametric configurations and many 
different types of maneuvers. This unavoidable process takes a lot 
of time. This is why many efforts have been recently devoted to the 
development of numerically cheaper validation techniques for para-
meter-varying flight control laws. The interested reader may consult 
references [28, 27, 29, 12] and the book [41] and the references 
therein 

Acronyms 

LPV	 (Linear Parameter Varying) 
LTI	 (Linear Time Invariant) 
NDI	 (Nonlinear Dynamic Inversion)
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Aerial Robotics

Towards Modular and Certified 
Avionics for UAV

This paper proposes a review of the current state and for thcoming evolutions 
for UAV avionics architecture and software. It provides an outlook of the 

specific technical issues arising in the design of embedded systems for UAV.

Introduction

The Unmanned Aerial Vehicle (UAV) industry has been rapidly growing 
over the last decade. New UAV are being developed for military 
applications and also for civil usage. There is a strong correlation 
between the mission of a UAV and the avionics necessary to implement 
it. For this reason, the design, development and verification of UAV 
avionics, including hardware and software architecture, have been the 
subject of considerable research [23, 21, 16, 22].

UAV avionics, like those of traditional aircraft, are in charge of 
implementing flight control and flight navigation. However, they should 
also ensure a desired level of autonomy and the control of the payload 
(if any).

For flight navigation, a UAV includes embedded means for estimating, 
at any time and anywhere, its position, speed and acceleration. This 
requires navigation sensors (such a GPS) and robust estimation 
algorithms. For flight control, the UAV must generate the steering 
commands and subsequent control surface deflections to stabilize the 
vehicle and to adequately follow the flight plan. This again requires 
robust control algorithms. These computations are relatively simple 
compared to the flight planning algorithms. They however require the 
use of accurate real-time processors and operating systems.

In addition to the flight control and navigation part, UAV require specific 
autonomy means. The autonomy requirement is the main difference 
between UAV and manned aircraft. Autonomy is the ability to operate 
without direct control from a ground operator. Complex or faraway 
missions without ground infrastructure (for instance data link means 
and ground stations) would necessitate making the UAV increasingly 
autonomous. Autonomy requires specific sensors, such as optical 
devices, and complex software, such as image processing software 
and intelligent flight planning. Ideally, the UAV must have the capability 
to plan and re-plan its own flight plan. This results in the requirement for 
an on-board high-performance computing architecture where flight-

planning algorithms can be run. These algorithms require knowledge 
of the UAV’s surroundings, including other traffic, weather, obstacles, 
fuel usage, flight time, etc. Furthermore, in the event of failure, the UAV 
must have the capability to reconfigure itself and re-plan its trajectory 
or its mission. These autonomy requirements result in complex 
software, which requires high performance computing means without 
compromising safety: efficient techniques are necessary to verify and 
validate software.

The aim of this article is to discuss new challenges for future UAV 
avionics architectures and software : current state and forthcoming 
evolutions of UAV avionics, use of IMA (Integrated Modular Avionics) 
for UAV and certification issues.

Current state and forthcoming changes

Current state

The main challenge encountered by UAV avionics is to safely operate 
on-board two types of computation: flight control/navigation and flight 
planning/re-planning, including the reconfiguration of the avionics 
itself in case of mission re-planning.

In order to respond to this challenge, the first generation of UAV 
avionics architectures were divided into three loosely coupled physical 
parts. The first one is dedicated to navigation and flight control; the 
second one offers sensors, hardware and software components 
ensuring the desired level of autonomy; while the third part controls the 
payload of the UAV. The second and third parts are generally specific 
to the operational role that the UAV is supposed to carry out. In most 
cases, each part is implemented by a monolithic dedicated platform 
composed of the simplest possible processor with its own resources 
(memory and communication bus) (figure 1). UAV developed in 
the 90 s and 2000 s were based on this principle (see for instance 
appendix A of [27], and the Piccolo architecture in [33]). 
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Figure 1 – Typical UAV 1st-generation architecture

Such a physical segregation between the three parts ensures that they 
operate (nearly) independently from each other. More precisely, the 
autonomy sensors and algorithms do not interfere with the control 
loop and vice-versa. Likewise, the payload software does not affect 
the rest of the avionics. Thus, a failure in the payload part should 
not affect the safety of the vehicle. Thus, each part can be designed, 
developed, dimensioned and certified separately, without considering 
interferences coming from the other parts. Finally, in the event of 
failure in one of the first two parts, a human operator can directly 
control the vehicle from the ground by means of a set of data-links 
and specific components. The vehicle becomes in that case a remote-
controlled plane.

However, these first architectures based on the principle of separation 
of concerns have many limitations. 

Forthcoming changes

Firstly, safety is guaranteed in the final degraded mode (i.e., the mode 
in which the automatic flight control part is lost) by the ability to pilot 
the vehicle from the ground. As stated above, it assumes (1) safe 
onboard mechanisms to commute from the automatic flight mode 
to the remote-controlled flight, (2) a data-link between the vehicle 
and the group operator, which guarantees that orders and data are 
transmitted in real-time (in less than 10 or 100 milliseconds for flight 
control orders) and, (3) a ground infrastructure able to present to the 
human operator the complete situation of the vehicle (position, speed, 
attitude, obstacles in front of the vehicle, etc.). Such requirements are 
not consistent with complex and faraway missions, or with missions 
in a hostile environment. In that case, contrarily to manned aircraft, the 
UAV must ensure its own safety without waiting for backup orders sent 
by a human pilot. However, first generation UAV avionics architectures 
do not offer the appropriate safety level. This is their first limitation.

Secondly, the continual development of UAV applications results 
in an ever-increasing demand on embedded algorithms. On board 
computational resources must meet this demand, while at the same 
time providing robustness, reliability and a small footprint, both in 
physical size, mass and power consumption.

Thirdly, new applications may necessitate the integration in a more 
coupled way of the three parts of the UAV avionics. In particular, the 
payload management may depend on flight data, such as position, 
speed, attitude, etc. Conversely, navigation and flight control may 
depend on the state of the payload. This requires an appropriate 
mechanism providing navigation data to the payload and conversely, 
in such a manner that the payload activity cannot interfere with flight 
control and planning. Failure of the payload must not compromise the 
safety of the UAV (for example, denying access to the on-board data-
bus by saturating it with payload messages). First generation UAV 
avionics architectures do not offer such a mechanism.

A first solution could be to continue with the segregation principle 
(each part has its own sub-architecture), while increasing the number 
of computing resources. It should lead to the duplication of several 
components (for instance, the flight data calculation for the payload). 
However, this first architecture principle reaches its natural limit when 
the weight and volume of the dedicated sub-architectures encounter 
the envelope restrictions of the UAV. This issue becomes central in 
the case of small UAV able to carry only a few kilograms (generally 
less than 10 kg) including payload and avionics. Another drawback 
becomes obvious: the huge number of different resources has 
significantly increased the maintenance costs in terms of component 
spare part provisioning and handling.

Another approach, called Integrated Modular Avionics (IMA) [2, 3] has 
been suggested to address this issue for manned aircraft, such as 
Airbus A380 / A350 and Boeing B787.

Towards modular integrated avionics for UAV

Modular Integrated Avionics

Resource sharing and robust partitioning are the central ideas of the 
IMA concept. They are based on two principles: partitioning principles 
in processing modules and partitioning principles for communications 
between functions.

Processing module partitioning

As has already been explained, an UAV avionics architecture 
implements several software functions (flight control, navigation, 
planning and payload management), each of them possibly divided 
into sub-functions. Initially running on different processors, the first 
IMA idea is to place these functions on processing modules partitioned 
with respect to space (resource partitioning) and time (temporal 
partitioning).

• Resource partitioning. A processing module is divided into 
partitions. Each partition is seen as a virtual processing module. 
It is allocated a set of private spatial resources (memory, non-
volatile memory, I/O resources, etc.) in a static manner. Low-level 
mechanisms (at the operating system level) provide protection for 
partition data against any modification from the other partitions. They 
monitor function activity with reference to allowed resources, which 
are statically allocated through configuration tables. 

• Temporal partitioning. Each function is allocated a partition. 
The scheduling of partitions on each module is defined off-line by 
a periodic sequence of slots, statically organized in a time-frame. 
Each partition is allocated a time slot for execution. At the end of 
this time slot, the partition is suspended and execution is given to 
the next partition (running another function). Thus, each function is 
periodically executed at fixed times.

Thanks to partitioning mechanisms, functions become independent. 
A faulty function can be isolated without affecting functions placed on 
the same module.

Communication resource partitioning

Initially routed onto different physical links, the second IMA idea is to 
place communications between functions on shared communication 
networks. The network is divided into Virtual Links (VL). Each VL is 
dedicated to the traffic coming from a single function. It is characterized 
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by a bounded bandwidth. Similarly to processing modules, a low-level 
mechanism (at the network level) guarantees that no function can go 
beyond its contract, that is, produce more communication than the 
permitted bandwidth. Such a mechanism can be implemented by a 
traffic shaper, which separates two successive emissions on the VL 
by at least a fixed time interval called Bandwidth Allocation Gap (BAG). 
This principle has been implemented in the Avionics Full Duplex Ethernet 
(AFDX) architecture embedded in the Airbus A380 and A350 [3].

A typical IMA platform is described in figure 2. Its hardware architecture 
consists of 3 generic computing processing modules (called CPM) that 
are connected to a communication network. The network is composed 
of two identical redundant parts (Part A in blue, and Part B in red). 
CPM1 and 2 are connected to Switches 1 (A and  B), while CPM3 
is connected to Switches 2 (A and B).  Flight control and navigation 
sensors and actuators are reached through a redundant gateway 
(Gtw1) connected to Switches 1. Similarly, the payload and the 
data link interface are reached through a second redundant gateway 
(Gtw2). As shown in the figure, the critical functions Flight Control 
(FC) and Navigation (Nav) are triplicated and the Planning Function 
(Plan) is duplicated, while the Payload Management Function (PLMgt) 
is implemented by a single occurrence (i.e., without any redundancy). 
Each CPM is divided into four partitions (e.g., FC1 is hosted in the 
first partition of CPM1). On each module, partitioning and scheduling 
are ensured by a partition manager, while bandwidth communication 
from each function is controlled by a VLs manager. Figure 3 shows 
the time-triggered scheduling of the four partitions hosted by CPM1. 
As has already been explained, this scheduling is organized as a 
sequence of time slots. It is composed of two minor frames (MiF), 
the duration of which is 10 ms. FC1 runs in the first time slot of each 
MiF. The duration of this time slot is 2ms. FC1 is then supposed to 
execute every 10 ms within an execution time of less than 2 ms. Nav1 
runs only in the first MiF, while PLMgt runs in the second MiF. The aim 
of the partition manager is to unroll this sequence and monitor each 
partition. For instance, if PLMgt tries to continue after the end of its 
time slot, the partition manager stops it and starts the next partition 
(FC1). Hence, a software failure in PLMgt does not affect FC1. Note 
that in the CPM1 scheduling, a spare time slot is reserved for hosting 
potential new functions without affecting other functions.
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Figure 2 – Example of UAS IMA architecture
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Figure 3 – Temporal scheduling of CPM1

Benefits and effects for UAV avionics

The benefits of such a new architecture are mainly:  safety level 
improvement, as well as weight and power consumption reduction. 
Let us again consider the architectures given in figure 1 and figure 2. 
These two architectures implement the same functions FC, Nav, Plan 
and PLMgt. They are both composed of 3 processors. However, the 
first architecture is not fault tolerant. For instance, loss of Processor 1 
leads to total loss of the vehicle. Conversely, the IMA architecture 
(figure 2) is fault tolerant with the same number of processors. For 
instance, despite of the loss of CPM1, the flight control and navigation 
functions still run properly on CPM2 and CPM3. Only the payload 
management is lost. It is obvious that the total loss of the vehicle is 
consecutive to at least two failures: for instance, loss of Switches 
1.A and 1.B or loss of Gateways 1.A and 1.B, etc. In that sense, with 
(nearly) the same number of resources, the IMA architecture is safer 
than the first one.

Globally, IMA results in a reduction of the required physical resources. 
Reduced physical resources translate into global weight and power 
savings for the UAV. The same trend has been observed in aircraft 
architectures: for instance, the number of processing units in the 
A380 is half that of previous generations. Reductions in operating 
costs are expected to be significant, with the decrease in the number 
of computers and cables (for power supply or communication), 
contributing to a reduction of vehicle weight leading to better fuel 
consumption efficiency and then to a greater autonomy.

Past and recent experiments on applying IMA to UAV

Considering these expected benefits, recent research has been 
conducted on the integration of IMA architecture into modern UAV. A 
preliminary work has been proposed by Elston et al. [17]. They are 
developing a distributed modular architecture concept for small UAV 
(about 10 kg). This architecture is composed of a set of computing 
modules communicating through a CAN bus. Similarly, Ellen et al. 
investigated in [16] an architecture for the QUT research UAV, still based 
on a cluster of small dedicated processors communicating through 
CAN buses. They show that the performances of this architecture, in 
terms of power consumption, size and weight, are better than those 
for the legacy architecture (based on a centralized PC104 computer). 
However, contrary to the full IMA concept, computing modules in these 
proposed architectures still own their private sensors and actuators 
and host only one function. There is no partitioning mechanism.

Following this direction, Lopez et al. investigated in [25] a middleware-
based architecture suitable to operate as a flexible payload and 
mission controller in a UAV. The architecture is composed of low-
cost computing devices connected by a network. The functionality 
is divided into reusable services distributed over a number of nodes, 
with a middleware partitioning their lifecycle and communication. 
However, the middleware does not take into account real-time issues. 
Thus, flight control and navigation cannot run on this platform and still 
require a dedicated real-time architecture.

In order to respond to the real-time issue, [29] proposes an architecture 
platform based on a Time-Triggered network. Functions, including 
flight control and navigation, run on dedicated PC/104 computers and 
communicate in a deterministic way through the network. Thanks to 
the time-triggered protocol, the network guarantees fixed time slots for 
each function. This solution has been implemented on large UAV, such 
as the R-MAX Helicopter (about 10 kg).
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More recently, [22] has developed a complete IMA solution, based on 
an ARINC 653 processing module, for a small quad-rotor helicopter. 
Due to the UAV size (70 cm in diameter and 1 kg payload), the avionics 
only include a single embedded processor hosting the flight control, 
navigation and planning functions. The processing unit is partitioned in 
a deterministic way according to the IMA principle. To our knowledge, 
this experiment is the first attempt to apply the IMA concept, here 
reduced to the processing module part, to small UAV.

All of these experiments clearly show the trend to embed an IMA 
execution platform for flight control and the navigation function, as 
well as for planning and payload management, in both small and larger 
UAVs.

Certification issues

Given that the use of drones for different kinds of mission is spreading, 
and will continue to do so, their safety and security will become a 
crucial issue. For aircraft, safety and security are assessed using 
certification standards. The ARP 4754 [4] is the standard for systems, 
DO-178 [14] is the standard for software, while Common Criteria (ISO 
15408) [12] handles security aspects.

These standards are bound to also be applied for UAV systems and 
software. Application of ISO 15408 will enforce security requirements 
and help to prevent the hacking of UAV. However, it will only be effective 
if safety-critical requirements are also taken into account. Ensuring the 
safety of embedded software is paramount, since there is no human 
pilot onboard. In this section, we consider the challenges at stake for 
the certification of this software. We distinguish the domains where 
aircraft solutions can be adapted to UAV without too much trouble and 
UAV specific certification issues.

[28] gives a broader overview of the challenges and a roadmap for 
the certification of Remotely-Piloted Aircraft Systems. We focus on 
software aspects, but also consider autonomous systems (even 
though their operational use is further away). [28] also tackles 
insertion into the airspace; we do not consider this certification issue. 

Issues similar to those for aircraft

Flight control and navigation systems are certified for aircraft, using 
classical means or more recently innovative verification techniques. 
We will not provide an exhaustive overview of existing work here, but 
rather only list the various aspects that should be considered together 
with a few references, mainly of Onera work in this domain. We focus 
on aspects related to avionics; safety and security assessment at the 
aircraft and system levels are also essential, but will not be discussed 
here (see [7,5]).

Real-time analysis

Certification objectives regarding real time are scattered around in 
various certification standards (IMA, software) but they are essential 
for the correctness of software and systems. Regarding real-time 
behaviors, the first requirement is to guarantee that each function 
located in an IMA partition terminates properly before the end of 
the partition. For instance, let us consider the flight control function 
FC1 hosted by CPM1 (figure 2). FC1 runs in a partition of which 
the duration is 2 ms (figure 3). Thus, it must be shown that all sub-
functions involved in FC1 are scheduled in such a way that they will 

all terminate before 2 ms have elapsed. Several techniques and tools 
have been developed to analyze worst-case execution time [1, 26], 
and worst-case response time [30, 11] for IMA software, or generate 
a correct scheduling from different constraints within a partition [30].

The second certification requirement deals with worst-case traversal 
time through a communication network. Let us again consider the 
example in figure 2. FC1 periodically sends orders to actuators through 
the network. Note that the payload also sends and receives data 
through the same network. It could then happen that, if a failure occurs 
somewhere in the payload, it may begin to send a huge amount of data 
to PLMgt, overloading the communication network, leading to delays 
in the flight control orders. Such a scenario may lead to a catastrophic 
situation, despite the initial single failure being of minor importance. 
An interesting benefit of the IMA principle is that, if functions are 
statically allocated in modules and partitions, and if the network hosts 
mechanisms enforcing functions to respect their communication 
contract (e.g., traffic shapers), then it is possible to mathematically 
prove that the end-to-end delay of any message is bounded and it is 
possible to evaluate an over-approximation of this bound. This proof 
is based on the network calculus theory [8, 9]. Network calculus has 
been used for certification of the A380 and A350 avionics network. 
It contributes an adequate mathematical technique for UAV avionics 
network certification as well.

Software verification

DO-178/ED-12 [14] does not prescribe a specific development 
process for software, but rather identifies important activities and 
design considerations throughout a development process and 
defines objectives for each of these. DO-178 [14] distinguishes 
development processes from “integral” processes that are meant to 
ensure correctness, control and confidence in the software life cycle 
processes and their outputs. The verification process is part of the 
integral processes, along with configuration management and quality 
assurance. Version C of this standard, which was published in 2011, 
includes technical supplements to take into account and facilitate the 
appropriate use of new software engineering techniques. DO-333/ED-
216 [15] is the formal method supplement. Formal methods can be 
applied to many of the development and verification activities required 
for software. The supplement proposes guidance for the use of formal 
methods. It describes the activities that are needed when using formal 
methods, new or modified objectives and the evidence needed for 
meeting those objectives.

Formal verification techniques have already been used for the 
certification of aircraft avionics software [32] and a lot of work is 
underway in this field [34]. Specific work on the verification of stability 
and safety properties of flight control software could be of special 
interest for UAV [10]. 

UAV specific issues

In this section, we point out the specific certification issues arising for 
UAV in the various domains considered previously.

In-flight reconfiguration

As explained above, IMA architectures are based on a strict principle: 
static and fixed allocations. However, it could be interesting, in the event 
of a hardware failure or in the event of loss of the communication link, for 
example, to be able to reconfigure the system, which means reallocating 
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functions to safe processors. Let us consider the example in figure 2 and 
let us imagine that CPM1 fails. Then PLMgt is lost. It could be interesting 
to reallocate it in the spare partition of CPM2. Such a mechanism 
could allow a reduction of the number of on-board processors, thereby 
saving weight, particularly for small UAV. Unfortunately, current IMA 
architectures do not allow in-flight reconfiguration. Recent research 
work conducted by Onera with Thales and Airbus has explored the 
reconfiguration issue for aircraft IMA architectures in the European 
SCARLETT project (http://www.scarlettproject.eu/) [6]. The solution is 
limited to on-the-ground reconfigurations, which seems to be enough 
for aircraft architectures. However, small UAV can only include a small 
number of embedded resources. Safe in-flight reconfiguration remains 
a strong challenge for UAV architectures. 

Software verification

A significant difference between aircraft and UAS resides in mission 
management software. As stated by [23], mission management 
software may be quite complex, in order to be able to respond to various 
situations; it may include various concurrent tasks, etc. Moreover, the 
development of mission management software typically does not follow 
stringent processes, such as those used for flight critical software; the 
verification of this software is currently mostly done through simulations 
and flight tests. The proliferation of UAV will call for the use of more 
rigorous means of verification for mission management software.

Requirements for this kind of software will first have to be identified 
and formalized. It may not be an easy task, due to the very nature of 

the software. In order to ensure the autonomy of the UAV, mission 
management software is designed to be “intelligent”, to be able to 
respond to many different situations by analyzing available information. 
An exhaustive enumeration of all possible situations might be a tedious 
and difficult task. Once the requirements have been expressed, formal 
verification techniques will also have to be adapted, or extended, to 
handle the specificities of mission software. A family of techniques 
that could be useful for the verification of mission software is runtime 
verification. The principle is to monitor the software with respect to a 
given set of formalized properties [18, 20].

Conclusion

In this paper, we have described the current state of avionics for UAV, 
identified challenges in this domain and proposed directions for future 
work. In conclusion, we would also like to mention an Onera initiative, 
called FORC3ES (Formal engineering for certified control-command 
embedded systems). This initiative is aimed at defining a set of 
techniques and tools for the formal development and verification of 
control-command systems. The framework is experimented with on a 
UAV and its associated Iron Bird (an Iron Bird is a system test bench; it 
includes the same sensors, actuators and avionics as the real aircraft; 
see pictures in figure 4). The first part of this project is dedicated to 
flight control software development and verification, but in the long 
run we also intend to study the verification of mission management 
software and to experiment with new concepts of IMA architectures 
for UAV n

Figure 4 – UAV (left) and associated Iron Bird (right)
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This paper concerns recent work on the application of optic flow for control and 
navigation of small unmanned aerial vehicles. Bio-inspired strategies, such as the 

use of optic flow, have always motivated researchers in the control community. Recent 
methodologies for active and passive navigation of aerial vehicles using optic flow, 
such as obstacle detection or terrain following, are presented. Applications to path 
following that have been achieved at Heudiasyc Laboratory (CNRS-UTC) in Compiègne 
are described, in order to illustrate the strength of the concept. 

Introduction

Nowadays, we see an increased interest in mini and micro-UAVs. 
This growing activity in regard to small flying machines is motivated 
by recent advances in miniaturized electronics, but also by the increa-
sing demand for military and civilian applications. Autonomous func-
tions become more and more essential for UAVs and vision-based 
approaches offer undeniable assets for the autonomous navigation 
of such systems. In this paper, we will show the interest and the 
contribution of vision in the navigation of UAVs and especially the use 
of optic flow for control and navigation. 

Ideally, in order to improve its autonomy, a vehicle has to perceive, 
model and interpret its environment to adapt its actions. In the same 
way as a man relies on his senses, an autonomous vehicle uses 
data provided by sensors. Among the sensory resources, we find 
proprioceptive sensors, which perform their actions in relation to 
what they locally perceive of the robot movement, or exterocep-
tive sensors, which are based on measurements taken in relation 
to their overall environment. The eye is indeed a perfect illustration 
of an exteroceptive sensor. Physiologically, vision is the ability that 
seems to give to living beings the most information about their envi-
ronment. Motivated by work on insects, principles inspired on their 
behavior were developed in [5], [16] and have allowed natural ideas 
to solve localization issues, navigation, obstacle detection, etc., to 
be brought to robotics. Insects move and act according to exterior 
movements caused by their own movement. This visual characte-
rization, called optic flow, is increasingly used for guidance assis-
tance in robotics. We are particularly interested in the contribution of 
optic flow for UAVs navigation, which is the purpose of this article. 

Optic flow 

Definition 

The optic flow is defined as the apparent motion of the image intensi-
ties (or brightness patterns) caused by the 2D projection onto a retina 
of the relative 3D motion of scene points. Ideally, it corresponds to the 
approximation of the velocity field in the image plane (or visual dis-
placement field of image points) obtained by the 2D projection of 
the speed of moving objects in 3D space (geometric concept). This 
movement helps to explain variations in displacement of a moving 
picture. The optic flow is formulated as a vector field over two dimen-
sions, where the domain is either the two-dimensional visual field or 
a focal plane and the range is a vector describing how fast and in 
which direction the texture is moving. The optic flow is created by the 
translational and the rotational movements of a point P (X, Y, Z) in 
the camera reference frame. Considering the projection of this point 
in the image plane p(x, y) (figure 1), we can express it according to 
point P and the focal length f .
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Figure 1 - Scheme of projective geometry for optic flow computing
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The velocity of p is found through differentiation of (1). Thus, the 
optic flow computed at an image point (x, y) can be expressed as a 
summation of translational and rotational parts, as follows: 
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where OFj is the optic flow component in the coordinate j of the point 
p, Vk and k are the translation velocities and rotation rates, respec-
tively, of the point P at the coordinate k. This expression represents 
the optic flow defined on the image plane. Note that the optic flow can 
be defined on projection surfaces other than image planes, such as 
spheres, which are often used for their passivity properties [18]. Fur-
thermore, relationships exist between different expressions of optic 
flow, so there is no information loss when the projection surface is 
changed. 

Computation methods
 
Standard techniques for calculating optic flow can be classified into 
four groups: differential or gradient methods based on intensity [22], 
[24], [26], [35], correlation or block matching methods [1], [32], 
methods based on energy [19] and those based on phase [15], [37]. 
Block matching techniques present very good accuracy and perfor-
mance against aperture problems (figure 2) and large displacements, 
but they are computationally expensive, less accurate in the pres-
ence of deformation and displacements of less than one pixel are 
not detectable. Energy-based and phase-based methods are also 
very expensive in terms of processing time and also very complex to 
implement. On the other hand, differential methods suffer from sensi-
tivity issues due to changing lighting and noise due to the calculation 
of derivatives. They are nevertheless precise, with less computing 
time necessary compared with all cited techniques. Differential or gra-
dient-based methods are thus well known, are the most implemented 
techniques because of their properties and are widely used in the 
literature for optic flow computations. 

Despite their differences, many of the gradient-based techniques can 
be conceptually viewed in terms of a set of three processing stages: 
1) pre-filtering or smoothing; 
2) computation of spatiotemporal derivatives or local correlation 
surfaces 
3) integration of these measurements to produce a two-dimensional 
flow field. 

Differential methods are based on calculations of the derived spatio-
temporal image intensity over a region of the image. The conservation 
of intensity is reflected by the following equation (see [4]) 

( , , ) ( , , )I x y t I x dx y dy t dt= + + + 	 (5)

where I(x, y, t) is the intensity of the image, t is the time and (dx, dy) 
is the image displacement. From equation (5) it is possible to obtain 
the intensity conservation constraint, also called optic flow or gradient 
constraint equation [4], expressed by 

( , )( , ) 0x y tI x y Iν ν∇ + = 	 (6)
 
where I(x, y) is the spatial gradient, (vx,vy) is the image velocity 
and It is the temporal derivative of the image intensity. Giving this 
constraint, B. Lucas and T. Kanade [24] have constructed a technique 
for estimating the optic flow, based on a weighted least squares mini-
mization of the intensity conservation constraint in each small spatial 
neighborhood S. 

2 2

( , )

min ( , )[ ( , , ) ( , , )]t
x y S

W x y I x y t I x y tν
∈

∇ +∑ 

	 (7)

where W is a window that gives more importance to the constraints 
near the center of the chosen neighborhood. The solution of equation 
(7) is given by 

2 1 2[ ]T TA W A A W bν −=


	 (8)
 
where 

1 1[ ( , ), , ( , )]Tn nA I x y I x y= ∇ … ∇ 	 (9)
 

1 1[ ( , ), , ( , )]n nW diag W x y W x y= … 	 (10)
 

1 1[ ( , ), , ( , )]t t n nb I x y I x y= − … 	 (11)
 
One advantage of the Lucas-Kanade algorithm is that it provides a 
measure of the estimation error, given that the matrix [AT W2A]−1 
is consistent with a covariance matrix. Unreliable estimates can be 
identified using the inverse eigenvalues of this matrix. However, this 
method is not suitable for displacements larger than one pixel per 
frame, which causes estimation to fail. Nevertheless, an extension of 
this method has been proposed, resulting in a solution that computes 
optic flow via a hierarchical coarse-to-fine process, called pyramidal 
representation. This coarse-to-fine method is based on the Lucas-
Kanade algorithm, which is complemented by a pseudo-iterative 
scheme that allows optic flow to be computed by propagating the 
flow in lower resolutions to the larger resolutions [9]. Despite all of the 
advantages of the Lucas-Kanade algorithm, it is important to remem-
ber that optic flow estimated by this method represents the apparent 
movement of objects in the scene, which may not correspond to real 
object movement. Indeed, a number of assumptions are made, in 
order to be able to compute optic flow. These hypotheses can be 
summarized as follows: 
	 • Lighting must remain constant over time. This hypothesis is the 
basis of optic flow computation. Without it, equation (5) could not be 
written. If the lighting in the scene changes from one instant to ano-
ther, objects may seem to move when in reality they are static over 
time. Indeed, shadows are different depending on the position of the 
light source and while the object is stationary the camera can detect 
shadow movement; 
	 • Rich textured features are another important condition for accu-
rate estimation of optic flow. For an effective differential approach, 
such as the Lucas-Kanade algorithm, there must be contrasts in the 
scene and thus contrasting textures must be chosen. Furthermore, 
in order to increase image contrasts, low pass filtering can be ap-
plied. There are two ways of achieving this filtering; one is to apply 
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a Gaussian filter to create a sort of blurring of the images. On the other 
hand, a simple way to apply such a filter is to de-focus the lens (the 
image becomes blurred). Nevertheless, this is prejudicial to the com-
putation of the optic flow, since it requires a good texture but must not 
be too discontinuous; 
	 • Finally, the well-known aperture problem must be taken into 
account. In general, a differential method alone does not solve what is 
called the aperture problem (figure 2). However, this entails increased 
computing time. One solution to this problem is to eliminate incon-
sistent points by means of the covariance matrix previously defined. 

Aperture

Final
edge position

Candidate motions
of point on edge

Initial
edge position

Figure 2 - Aperture problem

Navigation using optic flow 

Active navigation 

In order to ensure UAV autonomy with respect to unexpected changes 
in its environment, several approaches using optic flow can be found 
in the literature. Indeed, the main techniques developed have sought 
to provide the necessary information for the vehicle, enabling it to 
react against obstacles. Among reactive navigation modes using optic 
flow algorithms, we can cite: the effect of centering (Urban Canyon), 
wall monitoring, frontal obstacle detection and altitude centering for 
navigation within buildings. 
 
Centering in a corridor 

L. Muratet et al. [25] developed a centering strategy by equaling pixel 
motion calculated on the right and left of a helicopter. Optic flow rota-
tional components were compensated using inertial unit (IMU) data. 
Indeed, at each point having an estimated optic flow, the rotational 
components were subtracted. These components were predicted 
using the camera projective model and the rotational speeds were 
calculated by the inertial measurement unit. 

2

2
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y z x

y z x

rot i i i i
i

i i i i

x y x y
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ω ω ω

ω ω ω
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 =

+ − −  
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where 
rot

iOF


 is the optic flow rotational component, k are rota-
tional velocities around the axes and xi and yi are coordinates in the 
image plane. The optic flow resulting from the difference between 
the estimation and the prediction of the rotational component was 
considered as the optic flow due only to translational movement. The 
difference of the translational optic flows on either side was used to 
construct a proportional controller that provides the centering effect. 
Note that these methods that compensate for the rotational compo-
nents require accurate calibration between the camera and the inertial 
measurement unit. 

A. Argyros and F. Bergholm [2] achieved a centering effect in real 
time, for a mobile robot using a trinocular vision system: a camera 
pointing toward the front of the robot and two lateral cameras. The 
central camera was used to remove the optic flow rotational compo-
nents calculated by peripheral cameras. The difference of both remai-
ning optic flows was fed back, so as to produce a centering effect. 
Moreover, in [3], Argyros et al. used a panoramic camera to develop 
a control strategy for centering a mobile robot in a hallway. By using 
a coordinate transformation (polar to Cartesian) to find a set of cylin-
drical images, a large number of perspective images were approxima-
ted, while each column of pixels defined a steering angle. The central 
region was considered to be the one representing the angle  = 0, 
the optic flow was used to compensate offset components caused by 
the rotation of the robot. By taking symmetrical windows with respect 
to the central region, a centering effect was produced by performing 
a proportional control strategy using the optic flow calculated in each 
window. The embedded implementation was performed using two 
Pentium III (800 MHz) and Lucas-Kanade algorithm [24] for estima-
ting optic flow. 

S. Serres et al. [31] studied insects, in order to develop a stabilized 
binocular system comprising optic flow sensors instead of a standard 
camera system and an estimation algorithm. Each sensor had only 
two pixels and they were always aligned to the direction of displace-
ment with gyro-compass servoing. Lateral flows measured by these 
sensors were then used in an optic flow regulator that ensured the 
stabilization of a hovercraft in the middle of a corridor. This strategy 
was only tested in simulation. 

In Conroy et al. [14], a bio-inspired optic flow navigation system was 
implemented on a quad-rotorcraft and demonstrated in an indoor tex-
tured corridor. The inner-loop pitch and roll stabilization was accom-
plished using rate gyros and accelerometers. Altitude control was 
achieved via the fusion of sonar and accelerometer measurements. A 
ventrally located optic flow sensor from Centeye was used to increase 
the longitudinal and lateral damping, thus improving vehicle stability. 
An omnidirectional visual sensor, based on a Surveyor camera board 
and a parabolic mirror, was used for optic flow estimation and ou-
ter-loop control. The navigation strategy consisted in decomposing 
translational optic flow patterns (magnitude, phase, and asymmetry) 
with weighting functions, in order to extract signals that encoded rela-
tive proximity and speed, with respect to obstacles in the environ-
ment, which were used directly for outer-loop navigation feedback. 
The flight tests were performed in a textured corridor about 1.5m wide 
and 9m long. The quadrotor successfully avoided corridor walls and 
finished its course without collisions. 

Obstacle detection 

T. Camus used [10] a method for estimating optic flow in real time, in 
order to calculate the time-to-contact or time-to-collision of an obs-
tacle. Time-to-contact is mathematically defined as the time until an 
object crosses an infinite plane defined by the image plane. T. Camus 
showed that taking a series of circles with different radii and center as 
the focus of image expansion, the time-to-contact may be calculated 
as the ratio between the distance between each point and the circle 
center, and the divergence from this point. 

2 2

2 2

( ) ( )FOE FOE

x y

x x y y
TTC

V V

− + −
=

+
	 (13) 
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where (xFOE, yFOE) are the coordinates of the expansion focus (the 
point in the center of the horizon from which, when we are in motion, 
all points in the perspective image seem to emanate), Vx et Vy are the 
components of the velocity vector at point (x, y). The time-to-contact 
was calculated in each region defined by means of a circle of a given 
radius. The global result, in the entire image, was taken as the esti-
mate of Least Squares of means for each region. The expansion focus 
position was estimated at any time from the average displacement 
of pixels. Indeed, T. Camus only considered full frontal obstacles, 
whose initial FOE estimate was the image center. The average of 
each coordinate of the optic flow vector was considered as an offset 
of the initial estimate. 

In [25], L. Muratet et al. implemented, in a helicopter, a simplified 
method of this technique. They considered a fixed focus of expan-
sion in the image center. They developed a control law that operated 
the opposite of this time-to-contact, commonly known as the relative 
depth. 

J.-C. Zufferey and D. Floreano [38] implemented an obstacle avoi-
dance technique for a 30g autonomous aerial vehicle. In this study, 
they were inspired by insects and optic flow sensors were used 
instead of the usual vision system. Optic flow sensors were composed 
of a 102 pixel vector and a microcontroller containing an estimation 
algorithm proposed by Srinivasan [33]. In order to compensate for 
the optic flow rotational components, sensors were first calibrated 
using a gyroscope. Since the output signal of these sensors was of 
the same order as that of the gyroscope, the measurement of the 
latter was directly used to subtract rotational components of the mea-
sured optic flow. The proposed obstacle avoidance method was only 
based on the optic flow divergence. When approaching an obstacle, 
the optic flow at the sensor extremes had a maximum amplitude and 
opposite directions. The difference of these two maximum speeds 
gave an estimate of the optic flow divergence, which is proportional 
to the inverse of the time-to-contact. This approach was justified by 
a theoretical study of areas of interest generated by calculating the 
optic flow, using a camera as it approached an obstacle. Experiments 
were conducted on a platform on the ground and on the aircraft for 
indoor flight. 

A. Beyeler et al. [7] conducted a study on altitude control, considering 
it as a case of detection and obstacle avoidance. By applying the 
method developed previously by [38], they built a pseudo-centering 
method for a vehicle in indoor flight. The floor and roof were therefore 
taken as a corridor. The authors showed simulation results, but the 
algorithm was not experimentally tested. 
A. Beyeler, J.-C. Zufferey and D. Floreano [8] described another 
optic-flow-based autopilot (optiPilot) for an outdoor fixed-wing MAV. 
The optiPilot was based on seven optic mouse sensors, MEMS rate 
gyroscopes and a pressure-based airspeed sensor. It was validated 
in simulations and demonstrated in real flights to avoid a group of tall 
trees (lateral avoidance) and small trees. 

Passive navigation: terrain following and automatic landing 

The passive navigation is the UAV ability to determine its own motion 
parameters with respect to the navigation reference. The estimation of 
these parameters is commonly called egomotion problem. However, 
there are new approaches used to estimate other important parame-
ters for navigation, such as: altitude, direction of travel, pitch and roll 

angle, in order to perform terrain following, or altitude control and 
automatic landing. 

J.-C. Zufferey et al. [38] used an altitude control using optic flow. 
They showed that an optic flow sensor pointing downward from the 
vehicle measured optic flow generated by the translational movement. 
A regulator allowed a constant optic flow to be maintained, which 
was equivalent to keeping the vehicle at a constant height. In [6], 
A. Beyeler et al. developed a similar strategy, but directly using raw 
(unprocessed) data from the optic flow sensor. By applying an opti-
mization technique to the sensor raw data, the pitch angle and the 
altitude were estimated in real time, without needing to estimate any 
velocity vector. 

The optic floww obtained from a camera pointing downwards may 
be used to perceive depth (ground). In fact, the optic flow model that 
appears for a 1D translational movement can be expressed as [29] 

[ ] sinx
y

VOF
Z

α° = −Ω 	 (14)

where y is the pitch angular velocity and  is the elevation angle. 
Since the optic flow rotational component y does not contain dis-
tance information, it is generally assumed to be equal to zero, or it is 
compensated for using inertial data. Most techniques based on optic 
flow for UAVs altitude control refer to equation (14). 

The idea of terrain following is to fly at a fixed altitude above the ground 
by maintaining the optic floww at a constant value and then following 
the ground profile by regulating the optic flow [29], [12]. Maintaining 
a constant optic flow in (14) leads to an automatic reduction of the 
horizontal speed Vx when the height Z decreases. Thus, if the descent 
speed Vz is controlled proportionally to the forward speed, the des-
cent angle remains constant.

Bees use this simple strategy (two rules) to ensure a smooth landing 
without explicit measurement or knowledge of their flight speed, or 
height above the ground [34]. Therefore, the height, the forward and 
descent speeds will exponentially decrease with time and become 
null at landing. This landing strategy inspired by insects has been 
demonstrated by many researchers [29], [13], [17]. 

Wagter and Mulder [36] constructed an algorithm for performing 
the 3D terrain reconstruction using optic flow. However, their sys-
tem considered that the real rotation and translation speeds were 
known. Since the optic flow component created by the vehicle motion 
is inversely proportional to the depth and directly proportional to the 
translation speed, if the translation speed is known, the depth can be 
deduced. By using a camera pointing downward from an autonomous 
vehicle, the altitude can be estimated in real time so a reconstruction 
of the terrain can thus be achieved. The algorithm estimated the optic 
flow generated by the vehicle rotations from the gyro data, and this 
estimation was subtracted from the measured optic flow.
 
In Kendoul, Fantoni, and Nonami [23], the Structure From Motion 
(SFM) method (which deals with camera ego-motion estimation and 
the reconstruction of the 3D structure of the scene) was successfully 
applied for the state estimation and flight control of a small quadrotor 
system. The proposed implementation was based on three nested 
Kalman filters (3NKF) and involved real-time computation of the optic 
flow, fusion of visual and inertial data, and recovery of translational 
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motion parameters. The scale factor ambiguity was solved by using 
height measurements from a pressure sensor and assuming flat 
ground. The system was also augmented by a visual odometer that 
estimated the horizontal position by integrating image displacements. 
The developed system was first validated on a ground vehicle and 
then on a quadrotor system through vision-based autonomous flights, 
including automatic takeoff and landing, outdoor and indoor hovering, 
and velocity command tracking. 

An optic flow-based terrain-following algorithm for mini quad-ro-
torcraft was proposed in Hérissé et al. [20]. The developed system 
computed optic flows at multiple observation points, obtained from 
two onboard cameras, using the LK algorithm and combined this 
information with forward speed measurements to estimate the height 
above the ground. A backstepping controller was used to regulate the 
height to some desired value. Indoor closed-loop flights were perfor-
med over a textured terrain using the CEA quadrotor vehicle flying at 
a forward speed of 0.3-0.4 m/s. The system was able to maintain 
a desired height of 1.5 m above a ramp and 2D corner textured ter-
rain of about 4 m in length. In an extended work [21], the authors 
presented a nonlinear controller for a VTOL UAV that exploited a 
measured optic flow to enable hover and landing control on a moving 
platform. Their first objective concerned the stabilization of the vehicle 
relative to the moving platform that maintained a constant offset from 
a moving reference. The second concerned the regulation of automa-
tic vertical landing onto a moving platform. Experimental results were 
provided for a quadrotor UAV to demonstrate the performance of the 
proposed control strategy. 

In Sabiron et al. [30], a 6-pixel low-speed Visual Motion Sensor 
(VMS), inspired by insect visual systems, performed local 1-D angu-
lar speed measurements ranging from 1.5°/s to 25°/s. The sensor 
was tested under free-flying outdoor conditions over various fields, 
onboard an 80kg unmanned helicopter. The results showed that the 
optic flow measured closely matched the approximate ground-truth 
optic flow, despite the complex disturbances encountered. The sen-
sor was also able to accurately sense low visual angular speeds, 
giving quite frequently refreshed measurements even at great heights 
over an unknown complex outdoor environment. 

Application to path following

The strength of optic flow-based strategies for aerial vehicles has 
been extensively demonstrated through the work cited above. In the 
Heudiasyc laboratory, we have addressed the problem of hover flight 
and velocity regulation of a quad-rotorcraft along a followed path 
(line). This objective can be viewed as a first step for future work rela-
ting to road following, for traffic monitoring, or for power or railway 
line  supervision.
 
Line following with velocity regulation 

In [27] and [28], the problem of stabilizing the position and transla-
tional velocity of a quad-rotorcraft during autonomous flight along 
a road was considered. The proposed solution was based on a 
vision algorithm for line detection and optic flow computation. The 
algorithm used images provided by a monocular camera system 
embedded onboard the UAV. Such research involves two fun-
damental characteristics for any autonomous navigation system: 

we seek to accurately measure translational displacements and to 
eliminate the position drift when hovering. If the translational drift 
is correctly compensated, the hover flight can be used as an inter-
mediary task between different flying behaviors, each suited to 
different conditions of the environment. Furthermore, velocity re-
gulation was implemented to establish the different flying modes, 
such as lateral displacement and forward displacement actions. In 
order to make use of the optic flow in a very appropriate manner, a 
vision-based altitude controller was also developed. The combina-
tion of these three vision-based controllers (hover flight, velocity 
regulation and altitude stabilization) allowed the vehicle to navi-
gate autonomously over a road model in a real-time application. 
Two different kinds of missions were tested: position hold over a 
road segment and road following at constant velocity. In the work 
[28], the road model was known (especially the width of the road); 
this allowed the altitude of the UAV above the road to be deduced. 
A diagram of the quad-rotorcraft above the road model can be 
seen in figure 3. The performance of the proposed methodologies 
was validated in a simulation environment. Real-time experimen-
tal applications with a quad-rotorcraft aerial vehicle, consisting 
of autonomous hover and forward flight at constant velocity were 
successfully achieved. Note that the experiments were achieved 
through a supervisory PC ground station, while the vision sys-
tem was embedded on the UAV. The communication between the 
quad-rotorcraft and the ground station was provided by a wireless 
data link. The image processing computations were done on the 
ground station and sent to the UAV, where the low-level control-
lers were executed onboard the vehicle. 

Figure 3 - Quad-Rotorcraft navigation: a diagram of the proposed 
setup presented in [28] 

Figure 4: Experimental quadrotor designed and constructed at the Heudiasyc 
laboratory 
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Full autonomous line following 

Heudiasyc quad-rotorcraft 

The Heudiasyc laboratory at the University of Technology of Com-
piègne, in France, has a long experience with control and navigation 
of UAVs, especially using quadrotors. The latest version of our expe-
rimental quadrotor, shown in figure 4, is a UAV based on a Mikrokop-
ter frame (with modifications). It has four brushless motors driven by 
BLCTRLV2 controllers. The total weight is 1.2 kg, using an 11.1 V 
LiPO battery of 6000 mAh, giving about 15 minutes of flight time. The 
main electronic board is based on an IGEP module, equipped with a 
System On Chip (SOC) DM3730 from Texas Instruments. This SOC 
has one ARM Cortex A8 core running at 1 GHz and one DSP C64x+ 
core running at 800 MHz, which allows embedded image processing. 
The ARM processor allows Linux and its real-time extension Xenomai 
to be run. Thus, the control law runs in real time at 100 Hz. The UAV 
is also equipped with a Microstrain 3DMGX3-25 IMU giving Euler 
angles and rotation speed measurements at 100Hz, a SRF10 ultraso-
nic range finder that provides the vehicle altitude at 50 Hz in a range 
between 0 and 2 meters and a PS3Eye camera capable of providing 
up to 120 images per second, at a resolution of 320x240 pixels. The 
camera points downwards, which allows the scene below the vehi-
cle to be observed. Note that planarity of the scene is assumed in 
this work by the Heudiasyc laboratory. The images provided by the 
camera are processed by computer vision algorithms, in order to esti-
mate the helicopter translational velocity in the x-y plane and the hea-
ding angle, as well as the lateral position w.r.t. the road direction. The 
translational velocity in the x-y plane is obtained from an optic flow 
algorithm, which is based on the pyramidal Lucas-Kanade method. 
For this purpose, the algorithm uses two pyramid levels, seeking up to 
64 points of interest in the image. A Harris affine region detector was 
implemented to perform the characteristic feature detection. The DSP 
allows embedded calculation of the optic flow at about 100 Hz. Final-
ly, the UAV is connected to the ground station via a WiFi connection. 

Line following 

The strategy described here, is based on the work developed in [11]. 
A line is placed on the ground and the UAV follows it autonomously. 
This is done thanks to the downward looking embedded camera, 
which computes a Hough transform to detect lines. Thus, the UAV 
stabilizes itself over the line and can move forward using the optic 
flow to regulate its speed. Again, the embedded DSP is used for all 
image processing, running at 90 frames per second, to provide high 
speed measurements. The main contribution was to permit the quad-
rotor to navigate over a line in a completely autonomous manner with 
full embedded control and image processing. No external sensors or 
system (such as a motion capture system) are needed here, des-
pite the presence of markers onboard the quadrotor (figure 4 of the 
quadrotor).

Indeed, we have used markers for other experiments where the 
knowledge of the vehicle position was needed. The present methodo-
logy has resulted in several improvements to the embedded control 
and image processing and a summary of real-time experiments that 
are currently being shown in the Heudiasyc Laboratory is presented 
here. 

The quadrotor is able to follow a line without knowing its size, its color 
or its shape. We perform a demonstration with a closed 8-shape, 

where the quadrotor can continuously navigate over the path as 
shown in figure 5. A raw gray scale image obtained from the onboard 
camera while the vehicle is flying over the road is shown in Figure 
6(a). The image obtained by edge detection using Sobel is shown in 
figure 6(b) and a binary image (black and white image) deduced by 
thresholding is presented in figure 6(c). Specifically, the grayscale 
image is used by the optic flow algorithm, while the black and white 
image is used by the line detection algorithm. A Hough transform 
computation allows vertical straight lines to be found in the image 
with an appropriate selection of the followed line. Finally, the post-
processed image where the road has been detected is highlighted 
in green, as shown in Figure 6(d). Note that the Sobel detection is 
only performed in the x-axis direction to speed up image processing. 
Therefore, the heading angle of the vehicle is aligned 

Figure 5 - Line following mission: the quadrotor flies over the line 
autonomously 

  
	 a) Raw grayscale image 	 b) Sobel detection 

  
	 c) Binary image	 d) Processed image after Hough
		  transform algorithm 
Figure 6 - Image processing 

with the direction of the line. Using imaging sensors, the lateral dis-
tance of the vehicle is then stabilized through the yaw angle, in order 
to navigate exactly over the road. Optic flow computation also allows 
the vehicle to navigate at a constant velocity over the path. Figure 7 
shows optic flow vectors at points of interest and projected on one 
image. Figures 8(a) to 8(d) describe the consecutive images along 
the path. Since the overall objective of such an application would be 
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to supervise road traffic, power lines or railway infrastructure, the 
idea was also to consider cases when the line goes out the field of 
view of the downward pointing camera. Therefore, a switching control 
strategy was designed in order to consider both operational modes: 
the nominal case presented above, i.e., the camera allows the lateral 
position and the yaw angle to be stabilized; and the degraded mode, 
which is implemented in case the vehicle loses the line. In the nomi-
nal case, the forward speed is constant and regulated by optic flow. 
The degraded mode involves an algorithm integrating the lateral optic 
flow, in order to estimate the position and return to the line.

  
Figure 7 - Optic flow vectors from points of interest projected on one image 
along the line
a) Example of an original image with pieces of black tapes to improve Harris 
point detection, in order to avoid the aperture problem
b) Optic flow vectors projected on one image 

  

  
Figure 8 - Consecutive images along the 8-path

In this mode, the yaw angle is pointed using the IMU with the pre-
ceding value before the loss of the road detection. Figures 9(a)-9(c) 
demonstrate the degraded mode when the quadrotor is perturbed. A 
video of the demonstration can be viewed on the Heudiasyc UAV 
team web site: www.hds.utc.fr/uav-horus/platform/videos/. 

     

Figure 9 - The quadrotor is moved from its initial path by a manual 
perturbation. It can retrieve the followed line

Conclusion 

Significant progress has been made in the development of autono-
mous UAVs. Although there is often a gap between theoretical work 
and experimental developments, numerous reported experiments are 
appearing with validation in real time. Vision-based navigation, inclu-
ding bio-inspired strategies such as the use of optic flow, is a very 
active research topic. Numerous developments are arising, especially 
indoors. New technologies and extensive engineering work are also 
needed for outdoor implementations. We believe that bio-inspired 
visual control and navigation approaches for UAVs will increase in 
the future

Acronims

VTOL	 (Vertical Take-Off and Landing)
UAV	 (Unmanned Aerial Vehicule)
IMU	 (Inertial Measurement Unit)
FOE	 (Focus Of Expansion)
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SFM	 (Structure From Motion)
3NKF	 (Three Nested Kalman Filter)
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VMS	 (Visual Motion Sensor)
SOC	 (System On Chip)
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A          robust and reliable attitude estimator is a key technology enabler for the deve-
lopment of autonomous aerial vehicles. This paper is an introduction to attitude 

estimation for aerial robotic systems. First, attitude definition and parameterizations 
are recalled and discussed. Then, several attitude estimation techniques – ranging 
from algebraic vector observation-based attitude determination algorithms to dynamic 
attitude filtering and estimation methodologies – are presented and commented upon in 
relation to practical implementation issues. Particular attention is devoted to the appli-
cations of a well-known nonlinear attitude observer (called explicit complementary filter 
in the literature) to aerial robotics, using a low-cost and light-weight inertial measure-
ment unit, which can be complemented with a GPS or airspeed sensors.

Introduction

The growing interest of the robotics research community in aerial robo-
tic vehicles is partly related to numerous Applications, such as surveil-
lance, inspection, and mapping. The development of a small-scale low-
cost autonomous aerial vehicle requires effective solutions to a number 
of key technological problems. The avionics system of such a vehicle 
is arguably the technology that is most closely coupled to the auto-
nomy of the vehicle. Within an avionics system, the attitude estimator 
provides the primary measurement that ensures robust stability of the 
vehicle flight. The development of a robust and reliable attitude estima-
tor that can run on low-cost computational hardware and that requires 
only measurements from low-cost and light-weight sensing systems, 
is a key technology enabler for the development of such systems.

This paper is an introduction to attitude estimation for aerial robotic 
systems, with a focus on nonlinear attitude observers. In fact, recent 
advances in observer theory have led to the development of a signifi-
cant body of nonlinear attitude observers [13], [25], [26], [32], [40], 
[47], [51]. These observers are algorithmically simple and can be 
implemented on low-processing power microprocessors in unit qua-
ternion form. They need only vector measurement inputs from low-cost 
and light-weight microelectromechanical system (MEMS) strap-down 
inertial measurement units (IMUs), which can be further complemented 
with a GPS or airspeed sensors. Typically, the algorithms make use of 
a measurement of angular velocity, measured by a 3-axis gyroscope, 
a vector direction estimate of the gravitational direction derived from a 
3-axis accelerometer (based on the small acceleration assumption) and 
where possible, vector measurement of the magnetic field, measured 
by a 3-axis magnetometer [13], [25], [32]. All low-cost MEMS devices 

are subject to significant noise effects. Gyroscopes and accelerometers 
suffer from time-varying bias and noise due to temperature change, 
vibration and impacts; magntometer readings are corrupted by onboard 
magnetic fields generated by motors and currents, as well as external 
magnetic fields experienced by vehicles that maneuver in built environ-
ments. Earlier work in the development of attitude observers tackled 
the question of bias in the gyrometer MEMS devices [13], [25], [32], 
[47], [49] by introducing an adaptive bias estimate in the algorithm. 
Decoupling of input signals to ensure that the roll and pitch estimates 
are not affected by deviations in the magnetometer measurements was 
considered in [17], [32], [16] and represents an important modification 
of the basic algorithm to improve the overall quality of the attitude esti-
mate. On the other hand, when the vehicle is subject to important linear 
accelerations, the attitude estimate provided by conventional solutions 
can be significantly erroneous, since the vector direction estimate of the 
gravitational direction is no longer close to that obtained from the acce-
lerometer measurements. To cope with strong accelerations, a com-
plementary GPS measurement of the vehicle’s linear velocity can be 
used to estimate its linear acceleration and, subsequently, to improve 
the precision of the attitude estimate [31], [15], [38]. In addition, in the 
case of an aircraft performing a level turn, air pressure sensors, such 
as pitot tubes that measure the magnitude of the airspeed, can be com-
bined with accelerometer readings in order to derive a more precise 
estimate of the gravitational direction and, thus, significantly improve 
the quality of the attitude estimate [23]. 

The paper is organized as follows. In § "Attitude parameterizations", 
attitude definition and parameterizations are recalled and discussed. 
In § "Overview on attitude estimation based on vector observations", 
existing attitude estimation methods based on vector observations, 
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including both static and dynamic attitude estimation methodologies, 
are reviewed with a particular discussion on a nonlinear explicit com-
plementary filter/observer [25] that was proposed by the last two 
authors of this paper and has become a common solution for most 
aerial robotic applications. Then, § "Nonlinear attitude observers for 
aerial robotic systems" presents some relevant nonlinear attitude ob-
servers for aerial robotic systems that were developed on the basis of 
the explicit complementary filter. Finally, conclusions are given.
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Attitude parameterizations

The attitude represents the orientation of a frame, attached to the mo-
ving rigid body (i.e., body frame B), with respect to (w.r.t.) an inertial 
reference frame I (see figure 1). It can be described by a rotation 
matrix, an element of the special orthogonal group SO(3), where

3 3
3SO(3) { det( ) 1, }T TR R R R RR I×∈ = = =  ∣

By denoting such a rotation matrix as SO(3)R∈ , it satisfies the fol-
lowing differential equation

( )R RS ω= 	 (1)

where 1 2 3[ , , ]ω ω ω ω= ∈  is the angular velocity vector of the 
body frame relative to the inertial frame, expressed in the body frame 
and the notation S(•) denotes the skew-symmetric matrix associated 
with the cross product ×, i.e., 3, , ( )a b S a b a b∀ ∈ = × .

Studies about the rotation group SO(3) started in the eighteenth cen-
tury and the problem of parameterization of the rotation group of the 
Euclidean 3D-space has received great interest since 1776, when 
Euler showed that this group is a three-dimensional manifold. A rota-
tion matrix has nine scalar components, but an element of the rotation 
group can be represented by a set of less than nine parameters. Three 
is the minimum number of parameters required for this. However, it 
was shown that no three-dimensional parameterization can be 1-1 
(i.e., its transformation to SO(3) is a global diffeomorphism) [45]. 
Previously, Hopf showed in 1940 that no four-dimensional paramete-
rization can be 1-1 and that a five-dimensional parameterization can 
be used to represent the rotation group in a 1-1 global manner. Howe-
ver, the greatest inconvenience of Hopf’s five-dimensional paramete-
rization concerns the nonlinearity of the associated differential equa-

tions [45]. On the other hand, four-dimensional parameterizations 
[45], [39], like the quaternion parameterization, only represent the 
rotation group in a 2-1 manner. Nevertheless, although the quaternion 
parameterization is not 1-1, no difficulty arises for practical purposes, 
because the transformation of a unit quaternion to SO(3) is a local 
diffeomorphism everywhere. Hereafter, the Euler angles and the
quaternion parameterizations are recalled and discussed.

Euler angle parameterization

Among many three-dimensional parameterizations [45], the Euler 
angles are the most widely-used. Their definition depends on the pro-
blem to be solved and on the chosen coordinate systems. A definition 
commonly used in the aerospace field is the Euler angle parameteri-
zation with three angles ,  and  corresponding to roll, pitch and
yaw respectively [45], [34]. These Euler angles allow a rotation matrix 
R to be factorized into  a product of three matrices of rotation about 
three axes of the body frame as follows:

0 0 1 0 0
0 0 1 0 0 ,

0 0 1 0 0

C S C S
R S C C S

S C S C

ψ ψ θ θ
ψ ψ φ φ

θ θ φ φ

−     
     = −     
     −     

where S and C denote the sin(•) and cos(•) operators. They can be 
computed from the rotation matrix R as

3,2 3,3

3,1

2,1 1,1

atan2( , )

asin( )

atan2( , )

r r
r
r r

φ

θ

ψ

 =


= −
 =
where ri,j is the component of row i and column j of R. The Euler 
angle kinematics satisfy [45], [34]

1 2 3

2 3

2 3

S T C T

C S
S C
C C

φ ω φ θω φ θω

θ φω φω
φ φψ ω ω
θ θ


= + +


= −


 = +








where T denotes the tan(•) operator. If 3,1 1r = ± , then / 2θ π=  , 
but  and  are no longer well-defined. Therefore, the Euler angles 
constitute a parameterization of the rotation group, except at points 
corresponding to / 2θ π= ± . Furthermore, when / 2,θ π φ= ±   
and ψ  are not well-defined either. The problem of singularities is a 
weakness of the Euler angle parameterization and, as a matter of fact, 
of all three-dimensional parameterization techniques.

Unit quaternion parameterization

Compared to three-dimensional parameterizations, four-dimensional 
parameterizations allow singularities to be avoided. The earliest for-
mulation of the four-dimensional parameterization, as pointed out in 
[39], was given by Euler in 1776. Earlier in 1775, he stated that in 
three dimensions, every rotation has an axis. This statement can be 
reformulated as follows (see e.g., [39], [37] for the proof). 

Euler’s theorem: For any SO(3)R∈ , there is a non-zero vector 
3v∈  satisfying v vR = .

This theorem implies that the attitude of a body can be specified 
in terms of a rotation by some angle about some fixed axis. It also 
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indicates that any rotation matrix has an eigenvalue equal to one. A 
number of four-dimensional parameterizations can be found in the 
literature (see e.g., [39], [7]), such as the Euler parameters, the qua-
ternionparameters, the Rodrigues parameters and the Cayley-Klein 
parameters. Here, only the quaternion parameters are presented.

The quaternions were first proposed by Hamilton in 1843 [14] and 
further studied by Cayley and Klein. A unit
quaternion has the form

1 2 3= +q s iv jv kv+ +
where 1 2 3, , , s v v v  are real numbers satisfying 2 2 2 2

1 2 3 1s v v v+ + + = , 
called constituents of the quaternion q, and i, j, k are imaginary units 
that satisfy

2 2 2 1, , ,i j k ij ji k jk kj i ki ik j= = = − = − = = − = = − =

In the literature, the unit quaternion q can be represented in a more 
concise way as 3( , )q s v= ∈ ×  , where s∈  is the real part of 
the quaternion q and 3

1 2 3[ , , ]and Tv v v v v= ∈  is its pure part or 
imaginary part. The quaternions are not commutative, but associative, 
and they form a group known as the quaternion group where the unit 
element is (1,0)1  and the quaternion product  associated with this 
group is defined by

Ts s ss v v
v v sv sv v v

     −
=      + + ×     



The transformed rotation matrix R is uniquely defined from 
the unit quaternion q, using Rodrigues’ rotation formula

2
3 2 ( ) 2 ( ) .R I s S v S v= + +

On the other hand, converting a rotation matrix to a quaternion is less 
direct. In fact, there always exists at least one component of the unit 
quaternion q different from zero. Once this component is identified, 
the quaternion can be deduced. Note that only two values of the unit 
quaternion q correspond to the rotation matrix R and that they have 
opposed signs. For example, if ( ) 1R ≠ −tr , then

1 ( ), ( )
2 4

R Rs tr R S v= ± + =

Finally, the quaternion kinematics are given by
01

2
q q

ω
 

=  
 

 

The quaternion parameterization involves four parameters (i.e., only 
one redundant parameter) and is free of singularities. The associated 
differential equation is linear in q. Furthermore, the structure of the 
quaternion group is, by itself, of great interest.

Overview on attitude estimation based on vector 
observations

Algebraic attitude determination

The attitude is often reconstructed from the observation of at least 
two non-collinear vectors. The first solution is the TRIAD algorithm, 
proposed by Black in 1964 [44], which algebraically computes the 
attitude matrix from the information in both the body frame and the 
inertial frame of two non-collinear unit vectors. More precisely, by 
denoting 1 1 2 2, , ,v v v vI B I B  as the vectors of coordinates, expressed in 
the inertial frame and the body frame respectively, of two unitary 

Euclidean vectors 1v  and 2v , one has 1 1 2 2,v Rv v Rv= =I B I B  , and 
the TRIAD algorithm provides the attitude matrix R as

[ ][ ]
3

1 2 3 1 2 3
1

,TT
i i

i

R s r s s s r r r
=

= =∑
with two orthonormal triads

1 2
1 1 2 3 1 2

1 2

1 2
1 1 2 3 1 2

1 2

, , ,
| |

, , .
| |

v vs v s s s s
v v

v vr v r r r r
v v

 ×
= = = ×

×


× = = = × ×

I I
I

I I

B B
B

B B

Although this algorithm is simple to implement, the resulting estima-
ted attitude matrix, in the presence of measurement noises, is not 
guaranteed to remain in the rotation group SO(3) and, thus, additio-
nal projection of the computed attitude into the group SO(3) is often 
required (using, for example, the Gram-Schmidt orthonormalization).
Moreover, the TRIAD algorithm can only accommodate two vector 
observations, which may lead to difficulty in treating information when 
the observation of more than two vectors is available.  For instance, 
in this case, the observation of which pair of vectors provides the 
best attitude estimate using the TRIAD algorithm may not be known a 
priori. Additionally, it does not take the relative reliability of the vector 
observations into account, even in the case of two vector observa-
tions. These drawbacks of the TRIAD algorithm disappear in optimal 
algorithms, which compute the best attitude estimate based on a 
cost function for which all vector observations are taken into account 
simultaneously. Optimal algorithms are, however, computationally 
more expensive than the TRIAD algorithm. The first and also the best-
known optimal attitude estimation problem is the least-square Wahba 
problem [52]. It consists in finding a rotation matrix ˆ (3)A SO∈  which 
minimizes the cost function

2
2

1

1( ) | |
2

n

i i i
i

J A k v Av
≥

=

−∑ B I
 	 (2)

where A corresponds to the transpose of the estimated attitude 
ˆ (3)R SO∈  ˆ( ., );Tie A R=  { }ivB  is a set of measurements of ( 2)n ≥  

unit vectors, expressed in the body frame; { }ivB  are the correspon-
ding unit vectors, expressed in the inertial frame; and { }ik  is a set of 
non-negative weights, which can be designed based on the reliability 
of the corresponding measurements. Wahba’s problem allows arbi-
trary weighting of vector observations. In [42], the author proposes 
the particular choice 2

i ik σ −=  , the inverse variance of the measure-
ment vi

B , in order to relate Wahba’s problem to Maximum Likelihood 
Estimation of the attitude based on an uncorrelated noise model [42]. 
In fact, the cost function J(A) defined by Eq. (2) can be rewritten as

( )

( )

2

1
2

2 2

1

1( ) ( )( )
2

1 | | | | ( )
2

n
T

i i i i i
i
n

T
i i i

i

J A k tr v Av v Av

k v v tr AB

≥

=
≥

=

= − −

= + −

∑

∑

B I B I

I B

with 2
1 ( )Tn

i i iiB k v v≥
=∑ B I . Therefore, the problem of finding a 

rotation matrix Â  that minimizes J(A) is equivalent to finding a rota-
tion matrix Â  that maximizes tr(ABT). The first solutions to Wahba’s 
problem, based on this observation, were proposed in 1966 by Farrell 
and Stuelpnagel [53] and by Wessner, Velman, Brock in the same 
paper1. However, these solutions, being computationally expensive, 
are not well suited to real-time applications. For instance, Farrell and 

1 These solutions were sent to Wahba and he presented them in that paper.
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Stuelpnagel’s method requires a polar decomposition of the matrix 
B into a product B = UP (with U an orthogonal matrix2 and P a 
symmetric and positive semidefinite matrix) and a diagonalization of 
P into P = WDWT 3 (with W a orthogonal matrix and D a diagonal 
matrix whose diagonal elements are arranged in decreasing order, 
i.e., D = diag(d

1
, d

2
, d

3
) with d

1
 ≥ d

2
 ≥ d

3
). The optimal rotation 

matrix Â  is then given by ˆ (1,1,det( )) TA UWdiag U W= .

As for Wessner’s solution, which is a particular case of Farrell and 
Stuelpnagel’s solution, the optimal rotation matrix Â  is calculated 
according to 

( ) ( )1 1/2ˆ T TA B B B
−

=

For this solution, due to the inverse of BT , a minimum of three (non-
collinear) vector observations must be available, knowing that two 
non-collinear vectors are sufficient for attitude reconstruction using 
the TRIAD algorithm. In addition, the calculation of the square root 
of the matrix BTB also requires expensive computation. For example,
it is necessary to diagonalize BTB as BTB = WB DB W

T
B  to obtain 

(BTB)1/2 = WB D
1/2
B WT

B.

No solution to Wahba’s problem was able to replace the TRIAD algo-
rithm in practice, until Davenport’s q method [10] and the numerical 
technique QUEST (QUaternion ESTimator) [41] were proposed. By 
using the quaternion parameterization, Davenport transformed Wah-
ba’s problem into the problem of finding the largest eigenvalue max of 
the symmetric Davenport matrix 4 4×∈  defined by

3C I z
K

z

γ

γ

− 
 
 
 

with TC B B+ , ( )Bγ tr , 2
1

n
i i iiz k v v≥

= ×∑ B I . The optimal qua-
ternion, corresponding to the optimal rotation matrix Â  of Wahba’s 
problem, is the normalized eigenvector qmax of K associated with the 
eigenvalue max. In fact, the largest eigenvalue max may be obtained by 
solving analytically the largest zero of the fourth-degree characteris-
tic polynomial det 4( )K Iλ−  [10]. However, Davenport’s q-method 
is also computationally complex. This leads to the development of 
the QUEST algorithm by Shuster [41] on the basis of Davenport’s 
q-method. QUEST consists in solving numerically the equation 
det 4( )K Iλ− , or equivalently

4 2( ) ( ) 0a b c ab c dλ λ λ γ− + − + + − = 	 (3)

with4 2 ( ( ))a tr adj Cγ − , 22b zγ +
, ( )c det C z Cz+

 ,
2d z C z

 . More precisely, based on Shuster’s observation that max 
is close to 2

1
n

o ii kλ ≥
=∑ , QUEST makes use of the Newton-Raphson 

method to solve Eq. (3), with o as the initial guess. It thus avoids 
the computation of all eigenvalues of K (i.e., all solutions to Eq. (3)). 
QUEST is theoretically less robust than Davenport’s q-method, but it 
is clearly faster (normally few iterations are sufficient) and has proven 
to be reliable in practice (e.g., QUEST was implemented in the Magsat 
satellite in 1979). Many alternative numerical solutions for QUEST and 
Davenport’s q-method to Wahba’s problem have been proposed like, 
for instance, the Singular Value Decomposition (SVD), the Fast Opti-
mal Attitude Matrix (FOAM), the Estimator of the Optimal Quaternion 
(ESOQ), ESOQ-1, ESOQ-2 algorithms [29]. These solutions, along 

2 det(U) can be either 1 or −1.
3 Note that any symmetric matrix is diagonalizable.
4 Recall that adj(A)A = Aadj(A) = det(A)In, for an n × n matrix A.

with QUEST, for Wahba’s problem require a trade-off between com-
putational time and precision; for instance, the number of iterations 
has to be defined in advance. Additionally, their main shortcoming 
concerns the memoryless characteristic in the sense that information 
contained in measurements of past attitudes is not preserved.

Dynamic attitude filtering and estimation

Since a filtering algorithm is usually preferred when measurements 
are obtained over a range of times and especially when vector mea-
surements are noisy, many alternative solutions to algebraic methods 
have been proposed. They combine the vector measurements with 
the kinematic equation of rotation (i.e., Eq. (1)) and the angular velo-
city measurements. In this manner, the attitude estimation methods 
such as TRIAD, QUEST, SVD, FOAM, ESOQ, etc., can still be used as 
a preprocessor (i.e., the role of an attitude sensor) for a certain num-
ber of attitude filtering methods, such as in many Kalman filters (KFs), 
extended Kalman filters (EKFs), or Kalman-like filters (see, e.g., [11],
[21], [28], [9], [3] and the references therein), or nonlinear obser-
vers (see, e.g., [40], [24], [25], [47], [51]). However, this process is 
not a prerequisite and is loosened in many attitude filtering methods, 
including KFs and EKFs, as proposed in [43], [1], [13], [25], [26], 
[30], [50], [9], etc. This leads to simpler, faster and (probably) more 
accurate methodologies. For instance, consider the filter QUEST al-
gorithm (a recursive discrete-time Kalman-like estimator) [43]. The 
author proposes to calculate the estimated attitude using the QUEST 
algorithm and by propagating and updating the matrix B (which is, 
itself, involved in the Davenport matrix K) as

3 3 1 1
1

( ) ( , ) ( ) ( )
kn

T
k k k k i i i

i

B t t t B t k v vµ × − −
=

= Φ +∑ B I

where 3 3 1 1( , ) ( )k k kt t B t× − −Φ  is the state transition matrix of the trans-
pose of the rotation matrix R,  is a fading memory factor and nk is 
the number of vector observations at time tk. An alternative sequential 
algorithm for the filter QUEST is the recursive quaternion estimator 
(REQUEST) [1] which propagates and updates the Davenport matrix 
K by

4 4 1 1
1

( ) ( , ) ( )
kn

k k k k i i
i

K t t t B t k Kµ × − −
=

= Φ +∑

where 4 4 1 1( , ) ( )k k kt t B t× − −Φ  is the quaternion state transition matrix 
and Ki is the Davenport matrix for a single vector observation

3( ) ( ) (( ) ) ( )

( ) ( )

T T T
i i i i i i i i

i T T
i i i i

v v v v v v I v v
K

v v v v

 + − ×
=  

×  

B I I B B I B I

B I B I

The main shortcoming of the filter QUEST and REQUEST algorithms 
concerns the fading memory factor  which, being arbitrarily cho-
sen, makes these solutions suboptimal filters. This leads to the deve-
lopment of the Optimal-REQUEST algorithm [8][Ch.3] which, being 
essentially based on the REQUEST algorithm, further optimally cal-
culates the fading memory factor  in the update stage of REQUEST 
according to a covariance optimization argument. Note that the filter 
QUEST, REQUEST and Optimal-REQUEST algorithm, being based on 
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QUEST, are numerical gradient methods and computationally more 
expensive than other modern algorithms (such as nonlinear attitude 
observers) due to their optimization-based nature.

Other worthy examples are nonlinear attitude observers. The earliest 
nonlinear observer was proposed by Salcudean [40] using the unit 
quaternion representation. This work has led to the development of 
a significant body of nonlinear attitude observers over the last fifteen 
years, by exploiting either the unit quaternion or the rotation matrix 
[40], [35], [51], [47], [24], [46], [25], [49], [32], [12], [16]. The 
performance of recent observers is comparable to modern nonlinear 
filtering techniques [9]. They generally have much stronger stability 
and robustness properties and are simple to tune and implement [25]. 
Most early nonlinear attitude observers were developed on the basis
of Lyapunov analysis. However, the attitude estimation problem has 
also become an intuitive example for the development of recent theo-
ries on invariant observers for systems with symmetry [4], [5], [6], 
[25], [19], [48]. For instance, an illustrative example concerning the 
nonlinear explicit complementary filter proposed by Mahony et al. 
[25] is taken. This method is basically inspired by the Luenberger 
observer [22] in the sense that the dynamics of the estimated attitude 
R̂  contains two parts: a main part copying the dynamics of the real 
attitude (i.e., Eq. (1)), and an innovation part allowing the correction 
of the estimated attitude to the real attitude. For instance, if the gyro 
measurements are not affected by biases, the observer dynamics is 
given as

1

ˆ ˆ ˆ
n

i i i
i

R RS k v vω
=

 
= + ×  

 
∑ B B 	 (4)

with ki positive constant gains designed based on the reliability of 
the corresponding measurements and ˆˆ T

i iv R v

B I  . An important 
issue of the attitude filtering concerns the gyro bias, leading to a com-
plementary approach in which the gyroscopes are used to filter the 
vector measurements, which are in turn used to estimate the gyro 
bias (e.g., [25], [47], [51]). By making a constant gyro bias assump-
tion (i.e., y =  + b


, with y the gyro measurement and b


 the 

constant gyro bias vector), a complete version of the explicit comple-
mentary filter is given as [25]

1

ˆˆ ˆ ( )

ˆ

ˆ

y R

b
n

R i i i
i

b b R

R RS b

b

k v v

k

ω

ω

ω σ

σ

σ

σ σ
=

 = − +
 =

 ×



−

∑









B B
	 (5)

where kb, ki are positive constants. This is a continuous version; 
however, a discrete version can be easily derived. It can also be 
conveniently rewritten in quaternion form [25], [16]. Furthermore, a 
fast attitude estimation method from vector observations like TRIAD 
or QUEST can be used for a good initial attitude estimate. This obser-
ver is derived by considering the Lyapunov function candidate

2 2

1

2 ˆˆ| | | |
n

T
i i i

bi

L k v R v b b
k ω ω

=

− + −∑ B I 	 (6)

whose derivative along any solution to the error system is 
22 ( ) 0a RM= − ≤P 

L ‖ ‖ , with , 1
ˆ , ( ) , ·T Tn

i iiR R R M v v=∑

 

B B ‖‖ the 
Frobenius norm and Pa(•) the skew-symmetric projection operator in 

square matrix space. With at least two non-collinear vector observa-
tions the estimated attitude asymptotically converges to the real one,
for almost all initial conditions, even in the case of time-varying vectors 
(see [25], [48] for the detailed proofs). This is the strongest possible 
result  knowing that no smooth globally asymptotically stable obser-
vers exist on SO(3) due to the topology obstruction of the rotation 
group [2]. In the case of a single vector observation, the solutions to 
this filter are still well-posed, whereas analytically reconstructing the 
attitude from a single vector observation is not possible. In particular, 
almost-global asymptotical stability is still ensured in the case of a 
single vector observation under the persistent excitation assumption 
(i.e., if the vector’s direction or the vehicle’s attitude is permanently 
varying) [26].

Remark  
Interestingly, the first term on the right-hand side of the Lyapunov 
function L defined by (6) corresponds to the cost function ˆ( )TJ R  
related to Wahba’s problem. Therefore, in the absence of gyro bias, 
the (numerical) solution to the bias-free explicit complementary filter 
(4) converges asymptotically/exponentially to the optimal solution to 
Wahba’s problem for almost all initial conditions under observability 
conditions.

A generalized version of the explicit complementary filter (5) recently 
proposed by Jensen [18] is given as follows

1

ˆˆ ˆ ( )

ˆ ˆˆ ( )

ˆ

y P

y P

n

i i i
i

R RS b K

b RS b K

k v v

ω

ω ω

ω σ

ω σ

σ
=

= − +

− +

×






=





∑







B B

	 (7)

where ki are positive constant scalar gains; KP and KI are symme-
tric positive definite matrices (not necessarily constant). Clearly, this 
generalized observer offers a larger tuning space than the explicit 
complementary filter (5) while ensuring similar stability and conver-
gence properties; in addition, it is shown that bias-free multiplicative 
extended Kalman filter (MEKF) and constant-gain MEKF correspond 
to its particular cases [18].

Nonlinear attitude observers for aerial robotic 
systems

Sensor measurements

The most basic instrumentation embarked on an aerial robot for atti-
tude estimation is a MEMS IMU, which can be complemented with a 
GPS or airspeed sensors. Assume that the IMU consists of a 3-axis 
gyroscope, a 3-axis accelerometer and a 3-axis magnetometer.

	 • The 3-axis gyroscope measures the angular velocity 
y =  + b


 + 


 

where ∈  is the measurement noise and 3bω ∈  denotes a 
constant (or slowly time-varying) gyro bias. Generally, gyroscopes 
are rather robust to noise and quite reliable for aerial robotics appli-
cations.
	 • The specific acceleration 3a ∈B  expressed in the body-
fixed frame B is defined as 3( )Ta R v ge= −B , where the vehicle’s 
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acceleration expressed in the inertial frame I is v  and the gravitatio-
nal acceleration expressed in the frame I is ge3, with 3 (0,0,1)Te = . 
The 3-axis accelerometer measures this specific acceleration

 y a aa a b η= + +B  
where 3

aη ∈  is the measurement noise and 3bω ∈  denotes a 
bias term. Accelerometers are highly sensitive to vibration and, thus, 
often require significant low-pass mechanical and/or digital filtering 
to be usable.
	 • The 3-axis magnetometer measures the ambient magnetic field

 y m mm m B η= + +B
where 3

mη ∈  is the measurement noise, 3T
B Im R m= ∈  is the 

Earth’s magnetic field expressed in the body frame B and 3
mB ∈  

represents the sum of all local magnetic disturbances generated by 
motors and currents, as well as external magnetic fields experienced 
by vehicles that maneuver in built environments. While the magne-
tometer noise mη  is usually low, the local magnetic disturbance Bm 
can be significant, especially if the sensor is near the power wires of 
the motors.

Application of the explicit complementary filter for IMUs

In view of the attitude estimation survey in Section 3, most existing 
methods of attitude estimation make use of the measurement of at 
least two known non-collinear inertial vectors. Obtaining measure-
ments of two known vectors is, however, difficult in practice and 
in particular for small aerial robots. In fact, while the magnetome-
ter provides a vector measurement related to the Earth’s magnetic 
field, the accelerometer does not directly measure the gravitational 
direction. This is due to the vehicle’s linear acceleration involved 
in the specific acceleration that is measured by the accelerometer. 
However, most robotic vertical take-off and landing (VTOL) vehicles 
(such as multicopters, or ducted fans) spend a significant amount 
of time in near hovering or slow forward flight, with v˙ ≈ 0; thus, 
using the accelerometer as an inclinometer has been shown to be 
efficient in practice during this flight regime. In fact, it is known that 
for an ideal thrust controlled aerial vehicle, the measurement of the 
gravitational direction cannot be directly extracted from accelero-
meter measurement data [27], [33], [36]. However, VTOL robotic 
vehicles are subject to secondary aerodynamic forces (e.g., blade 
flapping and induced drag) that inject low frequency information 
on the gravitational direction into the accelerometer measurements 
[27], [33]. It follows that the model 3

Ta R e≈ −gB  is an effective 
model for vector attitude measurement in a wide range of practical 
systems [13], [24], [25], [32].

Standard implementation and associated coupling issues

Once the approximation 3
Ta R e≈ −gB  is made, the standard imple-

mentation of the explicit complementary filter (5) consists in defining 
the innovation term R as [25]

1 2
ˆˆ ,R k u u k m mσ × + × B B B B 	 (8)

with k1,2 positive constant gains, /u a− gB B , 3u eI , ˆˆ Tu R uB I, 

/ | |m m mB B I , / | |m m mI I I , ˆˆ Tm R mB I . However, it has been 
recognized that this standard implementation encounters some cou-
pling issues that are well discussed in [16], [17], [30].

	 • Magnetic disturbances and bias influence the estimation of 
roll and pitch angles. In many applications, especially for small-size 
electric motorized aerial robots, significant magnetic disturbances are 

almost unavoidable, leading to significant time-varying deterministic 
error between mB and RTmI. This not only leads to large estimation 
errors of the yaw angle, but also non-negligible errors in the roll and 
pitch estimation.

	 • The dynamics of roll, pitch and yaw estimates are highly 
coupled. This implies that the estimation of the yaw angle strongly 
affects the estimation of the roll and pitch angles. This issue can 
be observed by analyzing the linearized system around the system 
equilibrium. For the sake of simplicity, let us, for instance, neglect 
the gyro-bias b


 and the dynamics of the estimated bias b̂ω  only 

in this discussion. This supposition in association with Eqs. (5) 
and (8) yields the following dynamics of the error attitude matrix 

ˆTR RR=

1 3 3 2( )k e Re k m Rm RR = − × + × ×  

I I 	 (9)

Consider a first order approximation of R  around the equilibrium 
3 3R I R I x×= ≈ + as  , with 3x∈ . Note that locally the first, second 

and third components of x correspond, respectively, to the roll, pitch 
and yaw error estimates. From Eq. (9) it can easily be verified that

2
1 2 ,1 2 ,1 ,2 2 ,1 ,3

2
2 ,1 ,2 1 2 ,2 2 ,2 ,3

2
2 ,1 ,3 2 ,2 ,3 2 ,3

(1 )

(1 )

(1 )

k k m k m m k m m

x k m m k k m k m m x

k m m k m m k m

 − − −
 

≈ − − − 
 

− −  

I I I I I

I I I I I

I I I I I

 	 (10)

In practice, the gravity vector and the Earth’s magnetic field vector 
(i.e., e

3
 and mI ) can be “ill-conditioned” in the sense that they are 

very close to each other. In such a case, the third component of mI
is dominant in relation to its first and second ones. For example, in 
France ,3 0.9m ≈I . As a consequence, in view of Eq. (10) the dyna-
mics of the roll and pitch errors (i.e., x

1
 and x

2
) are strongly coupled 

with the yaw error dynamics (i.e., x
3
).

	 • On the other hand, the ill-conditioning of the two vectors e
3
 and 

mI  may also lead to the impossibility of finding a set of “non-high” 
gains {k

1
, k

2
} so as to provide the system with fast time response, 

bearing in mind that high gains may excessively amplify measure-
ment noises. For discussion purposes and without loss of generality, 
let us, for instance, assume that ,2 0m ≈I  (i.e., 2 2

,1 ,3 1m m+ ≈I I ) and 
2 2
,3 ,1m mI I . Under this approximation, it is straightforward to verify 

that three poles of System (10) are given by:

1 1 2

2
1 2 ,1

2 1 2 2
1 2

2 2
1 2 ,1 1 2 ,1

3 1 2 2
1 21 2

( )

41 ( ) 1 1
2 ( )

41 ( ) 1 1
2 ( )

k k

k k m
k k

k k

k k m k k m
k k

k kk k

λ

λ

λ



 − +
    − + + −  +  


 
  − + − − ≈−
  ++

=

  

=

=

I

I I

The pole 
1
 is associated with the pitch dynamics and the poles 

2
 

and 
3
 are associated with the coupled roll and yaw dynamics. The 

less negative pole 
3
, approximated by 2

1 2 ,1 1 2/ ( )k k m k k− +I , will be 
very close to zero if k

1
 and k

2
 are not chosen sufficiently high, since 

2
,1 1m I . This leads to slow time response of the coupled roll and 

yaw dynamics.
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Modified solutions for overcoming coupling issues

Decoupling of input signals to ensure that the roll and pitch esti-
mates are not influenced by magnetic disturbances was conside-
red in [32], [30], [17], [16] and represents an important modifica-
tion of the standard implementation of the explicit complementary 
filter (i.e., Observer (5) with R given by (8)) in order to improve 
the overall quality of the attitude estimate. Let us discuss these 
strategies. 

The solution proposed by Martin and Salaun [30], [32] consists 
in creating another inertial vector as the cross product of the gra-
vitational direction and the Earth’s magnetic field direction, and its 
associated “artificial” measurement based on the cross product of 
accelerometer and magnetometer measurements. More precisely, the 
following vectors are computed

| | | |I B
u m u mv v
u m u m

× ×
× ×

 

I I B B

I I B I
	 (11)

with /u a− gB B , 3u eI . Then, the explicit complementary filter 
(5) can be applied with the innovation term R now defined as (com-
pare to (8))

1 2ˆ ˆR k u u k v vσ × + × B B B B 	 (12)

with k
1,2

 positive constant gains, ˆˆ T
Bu R u I , ˆˆ T

Bv R v I . This so-
lution ensures the decoupling of the roll and pitch estimates from 
magnetic disturbances locally in the general case [30] and globally 
in the presence of a constant magnetic bias in the inertial frame (as 
additionally proved in [17]).

I TR

B
α

1e

1e

2e

2e

3e u= I

3e

vI
u mπ

I I

u mπ
B B

mI

mB

ˆv v×B B

vB

v̂B

uB
ûB

ˆu u×B B

3eg

a- B
ˆˆ Ta R u= g- B I

Figure 2 - Vectors involved in the conditioned observer

Inspired by the work of Martin and Salaun, we have proposed ano-
ther observer termed conditioned observer [16], which still takes the 
same form as the explicit complementary filter (5) but with the modi-
fied innovation terms R and b given by 

( )1 2

3 4

ˆ ˆ ˆ ˆ( )

ˆ ˆ

T
R

b

k u u k v v u u

k u u k v v

σ

σ

× + ×

× + ×









B B B B B B

B B B B

	 (13)

with k
1,2,3,4

 positive constant gains satisfying 3 4 , /k k u a> − gB B , 
3u eI , and (compare to (11) and see figure 2)

| | | |
u u

B
u u

m m
v v

m m
π π
π π

 

I B

I I

I B
I

I I
	 (14)

with 2 3
3| | ,T

x x I xx xπ − ∀ ∈  , denoting the projection on the 
plane orthogonal to x. The conditioned observer ensures the global 
decoupling of the roll and pitch estimates from magnetic disturbances 
and also from the dynamics of yaw estimate in the general case. 
This decoupling property is clearly stronger than that of the previous 
solution. Moreover, in contrast with the standard implementation of 
the explicit complementary filter (5), fast convergence rate can still be 
achieved with non-high gains, even in the case of ill-conditioning of 
the gravity and Earth’s magnetic field directions [16].

GPS–aided attitude observers

Most existing (“classical”) attitude observers/filters rely on the 
small acceleration assumption (i.e., v  g ) so that the gravitatio-
nal direction measurement can be approximated by the accelero-
meter measurement, as discussed in the previous subsection. For 
many VTOL vehicles in aggressive motion, however, the vehicle’s 
linear accelerations can be important and can induce large errors 
in the attitude estimate. This is also the case for fixed-wing aircraft 
maneuvering in a limited space and making some rapid turns. To 
deal with strong linear accelerations, a complementary GPS mea-
surement of the linear velocity can be combined with the accele-
rometer measurement to estimate the vehicle’s acceleration and, 
subsequently, improve the precision of the attitude estimate. In 
this way, some GPS–aided attitude observers have been proposed 
recently [31], [15], [38] on the basis of the following differential 
equations

3

( )

v e Ra

R RS ω

= +


=





g B 	 (15)

For instance, the cascade attitude observer proposed by Hua [15] 
consists in, first, estimating the specific acceleration expressed in the 
inertial frame 3v eα − gI  and, then, in using this estimated value 
along with magnetometer measurements to recover the whole attitude 
estimate on the basis of the explicit complementary filter [25]. More
precisely, in order to estimate the specific acceleration αI , the fol-
lowing observer was proposed

1 3ˆ ˆ( )

ˆ( ) ( ) (0, 3)maxT
v q

v k v v e Qa

Q QS k v v a k Q Qω

 = − + +


= + − − −





g B

B ‖ ‖
	 (16)

with k
1
, kv, kq positive constant gains and 3 3Q ×∈  an auxiliary 

matrix that is not a rotation matrix. The last term in the expression 
of Q  creates a dissipative effect when the Frobenius norm of Q be-
comes larger than 3 , allowing it to be driven back to this threshold 
and thus avoiding numerical drifts of Q. It is shown that the errors 

ˆ( , )Ia Qa v v− −B  converge to zero [15]. Consequently, one can view 
either 1 ˆ( )Qa k v v+ −B  as the estimate of I. From here, the author 
proposed the following attitude observer on the basis of the explicit 
complementary filter [25] 

2 3 1

ˆ ˆ ( )
ˆ ˆ ˆ( ( ))

R
T T

R

R RS

k m R m k a R Qa k v v

ω σ

σ

 = +


× + × + − 



B I B B

	 (17)

with k
2,3

 positive constant gains. Almost global convergence of the 
observer is proved. Furthermore, in the special case of constant 



Issue 8 - December 2014 - Introduction to Nonlinear Attitude Estimation for Aerial Robotic Systems
	 AL08-04	 8

accelerations of the vehicle, almost-global asymptotic stability of the 
observer is achieved.

Invariant Attitude Observers
When the objective consists in combining the estimation of the atti-
tude and the filtering of the linear velocity (and eventually the posi-
tion), some invariant attitude observers have been proposed recently 
[31], [15], [38]. The earliest nonlinear invariant GPS–aided attitude 
observer was proposed by Martin and Salaun [31]. When measure-
ments are not affected by bias, this observer has the form

1 3

2 3

ˆˆ ˆ( )

ˆ ˆ ( )
ˆ ˆ ˆ(( ) ) ( )
R

T T T
R

v k v v e Ra

R RS

k m R m a a k a R v v

ω σ

σ

 = − + +
 = +


× + × −

B

B I B B B





 g

	 (18)

with k
1,2,3

 positive constant gains. This defines an invariant observer 
[5], [20] in the sense that it preserves the (Lie group) invariance pro-
perties of System (15) w.r.t. constant velocity translation 0v v v+  
and constant rotation of the body frame 0R RR . A practical advan-
tage of this solution is the (local) decoupling of the roll and pitch angle 
estimation from the measurements of the Earth’s magnetic field (which 
may be rather erroneous due to magnetic disturbances). However, only 
local exponential stability of the estimation error is proven in [31] (based 
on the linearized estimation error dynamics), under some assumptions 
on the reference motion (i.e., “smooth trajectory”).

Motivated by this result, other GPS–aided attitude invariant observers 
have been proposed with associated Lyapunov-based convergence 
and stability analyses [15], [38]. The invariant observer proposed by 
Hua [15] is given by 
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with k
1,2,3

 positive constant gains. In fact, observer (19) is slightly 
different from observer (18), which is a simplified version of the 
observer proposed in [31] suited to the case without gyro biases. 
The sole difference between observers (18) and (19) lies in the 
definition of ,  where the term 2

ˆ(( ) )T Tk m R m a a×B I B B  in (18) 
is replaced in (19) by 2

ˆ( )T
B Ik m R m× . Another invariant observer 

was proposed by Robert and Tayebi [38], which can be rewritten in 
the following form
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with k
1,2,3

 positive constant gains. The additional term
 

1
ˆ(1/ ) ( )Tk R S aσ B  involved in the dynamics of v̂  in (20) consti-

tutes the difference between observers (20) and (19), allowing the 
authors to establish simpler Lyapunov based stability and conver-
gence  nalyses. The main interest of both studies [15] and [38] is 
to yield semi-global exponential convergence proofs. Both observers 
(19) and (20) guarantee the semi-global stability property under a 
“high-gain”-like condition on k

1
, which indicates that the size of the 

basin of attraction is proportional to k
1
 and tends to be almost-global 

when k
1
 tends to infinity. In fact, the “high-gain” condition is only

 sufficient and simulation results seem to indicate that the basin of 
attraction does not depend on the value of 1k  (>0) . However, the 
proof of this property remains an open problem. It is worth noting 
that, contrary to observer (18), all three observers (19), (20) and 
(16)–(17) do not ensure the (local) decoupling of the estimation of 
the roll and pitch (Euler) angles from the magnetic measurements. 
This suggests –as an open problem– the design of an observer that 
combines the advantages of these observers. For instance, observers 
(18) and (16)–(17) can be combined, yielding the following attitude 
observer (in the replacement of (17)) 
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	(21)

with Q the (numerical) solution to System (16). Specifying the stabi-
lity domain of this observer, however, remains open.

Airspeed-aided attitude observer for fixed-wing UAVs

For fixed-wing UAVs that maneuver in GPS denied environments 
(e.g., indoor or near to buildings), an alternative solution of attitude 
estimation based on IMU and improved with GPS data is the use of 
pressure sensors, such as pitot tubes that measure the magnitude 
of the airspeed (i.e., the speed of the vehicle relative to the air) as a 
replacement of GPS velocity measurements. A nonlinear complemen-
tary filter/observer of this nature was proposed [23]. Magnetometer is 
not used in this study since the authors are only interested in roll and 
pitch estimation, but the incorporation of magnetometer measure-
ments into the observer for additional yaw estimation can be done as
described hereafter.

In [23], Mahony et al. consider the case where an aircraft performs a 
level turn (i.e., constant altitude) with constant turn radius 0ρ >  and 
zero sideslip angle. In this case, the vehicle experiences the centripe-
tal acceleration ( ),ca rω ω ρ≈ × ×  with r the unit vector from the air-
craft to the turning center. In order to eliminate the dependence on the 
unknown turn geometry, the approximation r Vω ρ× ≈ air  is made, 
so that the centripetal acceleration can be approximately given by 

ca Vω≈ × air . The airspeed vector Vair is not directly measured, but 
it can be recovered from the measurement of the norm airV  given 
by the pitot tubes and from the knowledge of the angle-of-attack  
as follows

| | 0air air

C
V V

S

α

α

 
 =  
  

	 (22)

The linearized dynamics model of the angle-of-attack approximately 
satisfy

0
0| |air

c
V

α α θ α= − + +
	 (23)

with c
0
 and 

0
 constant parameters and 2θ ω≈ . By numerically 

integrating Eq. (23), the angle-of-attack  can be obtained, which 
enables the computation of the airspeed vector V

air
 according to Eq. 

(22) and, subsequently, of the approximated measurement of the 
centripetal acceleration ( )a V≈ × air .
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Once the centripetal acceleration ac is computed, the gravitational 
direction expressed in the body frame can also be obtained from 
accelerometer readings as

( )
| |

T c
I

c

a au R u
a a

− −
= ≈

−
B

B
B

with 3Iu e . Then, the explicit complementary filter (5) can be 
applied with the innovation term 

R
 defined as 1 ˆR k u uσ × B B  with 

positive constant gain k
1
 and ˆˆ Tu R uB I . Although, several assump-

tions and approximations are made, the reported experimental results 
are quite satisfying [23].

The yaw angle may be recovered under the persistent excitation 
condition [26]. It can also be estimated when magnetometer measu-
rements are involved by using the conditioned observer [16] (i.e., ob-
server (5) with the innovation terms R and b defined by (13)–(14)).

Conclusions

Several attitude estimation techniques –ranging from algebraic vec-
tor observations-based attitude determination algorithms to dyna-
mics attitude filtering and estimation methodologies– have been 
reviewed and commented upon in relation to practical implemen-
tation issues. A particular attention is devoted to the applications 
of the well known nonlinear explicit complementary filter/observer 
[25] to aerial robotics, using a low-cost and light-weight inertial 
measurement unit, which can be complemented with a GPS or airs-
peed sensors. In the case of “weak” linear accelerations, the vector 
direction estimate of the gravitational direction can be derived from 
accelerometer measurements with reasonably good accuracy and, 
thus, the explicit complementary filter can be directly applied. In 
this case, decoupling of input signals to ensure that the roll and 
pitch estimates are not disturbed by deviation in the magnetometer 
measurements represents an important improvement of the basic 
algorithm. On the other hand, in the case of “strong” linear accele-
rations, the combination of IMU with GPS-velocity or airspeed mea-
surements allows the overall quality of the attitude estimate to be 
effectively improved 
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Long Endurance Autonomous Flight 
for Unmanned Aerial Vehicles

This paper presents a summary of research performed at the University of Sydney 
towards extending the flight duration of fixed-wing unmanned aerial vehicles. A his-

torical context to extended flight is provided and particular attention is paid to research 
in autonomous soaring and aerial refueling. Autonomous soaring presents a unique set 
of challenges whereby an aircraft must autonomously identify sources of energy in the 
wind field and generate trajectories to exploit these conditions to collect energy. The 
basic mechanisms of soaring flight are examined and methods for generating energy 
gaining trajectories for exploration, information gathering and patrolling missions with 
multiple aircraft are detailed. Aerial refueling represents a complementary approach for 
extending flight duration, and the challenges and current efforts towards autonomous 
refueling between small aircraft are also detailed.

Introduction

Whilst Unmanned Aerial Vehicles (UAVs) have become increasingly 
capable platforms used in a wide variety of applications, most are 
still limited in their endurance by the necessity for on-board energy 
storage for propulsion. However, recent research has aimed to ad-
dress this issue by examining methods for extending flight duration 
by collecting energy during flight. There are two distinct approaches 
to this problem. The first is the direct and ongoing capture of energy 
from the vehicle’s surrounding environment, such as soaring in wind 
or collecting solar energy using solar panels. The second is the de-
liberate resupply of energy from other vehicles using aerial refueling 
or recharging.

Soaring

Soaring is the process of exploiting wind to collect energy. Soaring 
was discovered when some birds were noted to be capable of flying 
for extended periods of time without flapping their wings and seem-
ingly without losing airspeed or altitude. Early aerodynamic research 
had shown that energy must be lost to drag by any object moving 
through a fluid. Thus, it was determined that since the birds were 
not directly expending energy they must be capturing energy from 
the wind [49, 52, 2]. This process is known as soaring and there are 
two primary methods for energy capture in wind, static soaring and 

dynamic soaring. Static soaring is the process of flying through air 
that is rising relative to the ground. This method is utilized by both 
birds and manned gliders where there are naturally occurring sources 
of rising air (thermals) [60, 50]. Thermals occur when an area of the 
ground is heated (usually by the sun) to a warmer temperature than 
surrounding areas. The warm air is less dense and rises with respect 
to the cooler surrounding air, and an aircraft that flies in the rising air 
will collect energy (illustrated in figure 1). Thermals are favoured by 
both birds and human glider pilots because they are relatively com-
mon and easy to utilise for energy gain [51, 57].

Figure 1 - Static soaring in a thermal

Cool air is displaced and sinks outside the thermal

Warm air rises relative to the surrounding cooler air 



Issue 8 - December 2014 - Long Endurance Autonomous Flight for Unmanned Aerial Vehicles
	 AL08-05	 2

Dynamic soaring utilises trajectories through distributions of wind 
speed (wind shear) to obtain increased kinetic energy (see figure 2). 
This is often performed cyclically, with the energy gained in each 
cycle being used to travel before starting the next cycle. This method 
was originally discovered being used by birds such as albatrosses 
over the ocean [24, 62, 69]. Dynamic soaring generally requires good 
knowledge of the wind field to calculate trajectories which result in 
energy gain. Naturally occurring sources of wind shear are boundary 
layers which occur over surfaces (such as the ground or ocean), 
shear generated by flow around geographic obstacles, and meteoro-
logical shear.

Early research in soaring focused on how birds identified and used 
sources of energy, the amount of energy that could be obtained, and 
how they integrated soaring behaviours with their needs for travelling 
and foraging flight [63, 55]. Parallel research for manned aircraft has 
focused mainly on static soaring which is the primary energy capture 
method for manned gliders. This led to the development of relatively 
simple algorithms such as the speed-to-fly rules [39, 40] for cross 
country gliding. These rules are used to determine when a vehicle 
should utilise a thermal and when to travel to maximise overall ave-
rage speed based on an estimate of thermal strengths. 

Whilst the bird and manned glider problems have received significant 
attention, it is only in recent years that soaring with UAVs has been 
addressed as a research problem. The earliest research attempted to 
imitate the behavior of manned glider pilots by utilising simple gliding 
rules (such as estimating the best orbit radius for a thermal) for cross-
country flights in autonomous UAVs [4, 5, 3]. Extensions to this work 
culminated in the demonstration of a fully autonomous glider which 
flew for over 4 hours on a 97 km round trip flight unofficially setting a 
new soaring record [18]. Dynamic soaring has also been considered 
but due to the difficulty of testing has mainly been limited to simula-
tion. Previous work used off-line numerical optimization techniques 
to calculate the wind strengths required for feasible dynamic soaring 
and showed that shear layers over the ocean should contain sufficient 
energy to provide continuous or assisted flight for small (< 10 kg) 
UAVs [70, 71, 37, 17]. Further work examined on-line reactive stra-
tegies for soaring in shear [8, 7, 32] and turbulent fields [29, 15]. Of 
further interest is the application of machine learning to the soaring 
problem. Reinforcement learning seems like a natural choice for this 
type of problem due to the inherent goal of balancing exploration and 
exploitation, but previous implementations suffered from issues of 
state space complexity and slow learning rates [64, 65, 28].

Figure 2 - Dynamic soaring in wind shear

Autonomous aerial refueling

An alternative to capturing energy from the environment is the deli-
berate resupply of an aerial vehicle during flight. Aerial refueling has 
been used to extend the mission duration of manned aircraft for 
decades. This has been almost exclusively within the military space 
where two strategies are employed. In probe and drogue refueling, a 
drogue is unwound behind a tanker and a pilot navigates a receiver’s 
probe to contact. Boom and receptacle refueling requires a pilot to 
station-keep relative to a tanker aircraft while a human operator ma-
nually navigates an aerodynamically controlled rigid boom to contact 
with the receiver’s receptacle. Due to the close proximity operations 
required by these methods, the procedure is inherently dangerous and 
requires significant pilot training, practice and skill.

With the recent surge in the number of operational UAVs, automa-
ting this procedure is the natural next step and is not limited to the 
military space, or even large UAVs. To date, completely autonomous 
aerial refueling (AAR) between two UAVs has not been demonstrated. 
Although an AAR procedure comprises many phases, the barrier to 
success is generally accepted as being the sensing and navigation 
challenges surrounding tight formation flight. Here, separation is defi-
ned as being less than one wingspan [56] and can translate to only a 
few meters in some cases. 

Work on tight formation relative navigation has focused on utilising 
air-to-air relative observations to obtain an accurate and timely rela-
tive state estimate. Vision-only techniques have included active visual 
contours [16], silhouette based techniques [27], template matching 
[44] and feature extraction [41, 61]. Other approaches have fused the 
vision measurements with inertial and GPS sensors from one or more 
aircraft in loosely-coupled [43, 21] and tightly coupled arrangements 
[47, 20, 66]. Experimental validation has mostly occurred in simu-
lations of varying fidelity with notable exceptions being rendezvous 
experiments [48], GPS-based loose formation flights [22] and the 
first closed-loop, vision-only loose formation flight [25].

Figure 3 - Air-relative velocity and applied forces for a gliding aircraft. The 
air relative quantities represent the motion of the vehicle with respect to a 
stationary air frame, which is actually moving through inertial space due to 
the wind.

High  altitude turn

Downwind dive 
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Low altitude turn

ix
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Soaring

Dynamics of soaring flight

The conditions required for energy-gain flight can be identified by 
analysing the equations of motion of an aircraft in wind. This section 
briefly describes a dynamic model for a soaring aircraft and examines 
the mechanisms of soaring through analysis of the resulting energy 
equations.

Dynamic model

The dynamic model used in the analysis and simulation for this work 
is an aerodynamic point mass model. The applied forces are the 
aerodynamic force (decomposed into lift, L, and drag, D) and the 
weight force (mg). The aerodynamic force is a function of the motion 
of the vehicle relative to the surrounding air and the physical proper-
ties of the aircraft (shape, size, surface properties). Body force due 
to sideslip is not considered. Weight is the force due to gravity and 
is directed down (a flat Earth model is assumed due to the relatively 
small scale of the aircraft and flight paths). Thus there are two impor-
tant frames of reference: an inertial frame which is fixed with respect 
to the ground, and the air-relative frame which is the aircraft motion 
relative to the surrounding air. Figure 3 illustrates the forces acting on 
a gliding aircraft in wind.

Wind is defined in inertial space and represents the motion of the 
air relative to the ground-fixed inertial frame. The air-relative velocity 
vector represents the motion of the vehicle with respect to the sur-
rounding air by treating the wind field as a stationary frame. Thus the 
airspeed is the magnitude, the air-relative climb aγ  is the vertical 
angle and  aψ  is the heading angle of this air-relative motion vector. 
The bank angle φ  is the rotation of the lift vector around the velocity 
vector. The air-relative to inertial transformation matrix is denoted i

aC
and is made up of the standard rotation transformation matrices such 
that ( ) ( ) ( )i

a z a y a xC L L Lψ γ φ= .

The air-relative velocity can be described in terms of the airspeed aV , 
heading aψ  and air-relative climb angle aγ  :

cos cos
C 0 cos sin

0 sin

a a a a

a a a a a

a a

V V
V V

γ ψ
γ ψ



  
  = =   
     

                                              (1)

The drag coefficient is estimated using the common approximation 
where the effective drag coefficient )D(C  is the sum of parasitic 

,0 )D(C  and lift-induced D,i(C )  drag components [6]. Induced drag 
is a function of the lift coefficient LC , aspect ratio  and efficiency 
factor ε .

2

0
L

D D,
CC C
π ε

= +
 				                  (2)

Consider the case of locally spatially-fixed linear wind gradients. Let 
Jw be the spatial wind gradients at a particular location,

x x x

y y y
w

z z z

W W W
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x y z
W W W
x y z

∂ ∂ ∂ 
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∂ ∂ ∂ 

=  ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂ 

                                                     (3)

By summing the applied forces (lift, drag, and weight) in the inertial 
frame and differentiating the velocities for acceleration, a set of dyna-
mic equations can be obtained which describe the motion of a gli-
ding aircraft. Assuming that roll rate ( )d / dtϕ  is directly controlled, 
the system can be solved by specifying climb angle rate ( )ad / dtγ  
or specific lift ( )L / m as a control input. Physical limitations mean 
that the maximum specific lift is limited by maximum lift coefficient 
( )L,maxC and load factor constraints ( )min maxn ,n . In such cases, the 
lift is specified and (6) returns the climb angle rate. The resulting 
equations for the system are shown in (5)–(9), where P



  is the velo-
city of the vehicle in the inertial frame.

Further information and full derivation of the equations can be found 
in [33].

wJ

T
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ψ γ
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 			                 (4)
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= + −



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These equations can be integrated numerically to simulate gliding 
flight in wind. This model assumes that a controller is able to track 
a specified roll rate and either pitch rate or lift coefficient. The simu-
lations used in the following sections are based on a remote control 
RnR SBXC scale glider. Relevant parameters are listed in table 2.

Soaring energy

The dynamic model can be examined in terms of the energy gained 
or lost to give an understanding of how wind contributes to the overall 
energy of the platform. The energy of a point mass can be described 
as the sum of gravitational potential and kinetic energy. We define the 
air-relative energy a E as the aerodynamic energy of the vehicle with 
respect to the surrounding air (treating the air as a local inertial frame 
with respect to the aircraft). Taking the time derivative of the air-rela-
tive energy and substituting the airspeed acceleration (equation (8)) 
yields the overall specific power.

 
wJ

Ta
a z a w

E DV gW V V
m m

= − − −
  

                                                 (10)

This equation illustrates how a gliding aircraft can gain or lose air-
relative energy from a wind field. The first term is the power loss 
due to drag. This is always an energy loss term since the airspeed 
must be greater than zero. The second term is the static soaring term 
representing energy gained or lost from vertical wind. The third term 
is the dynamic soaring term and represents energy gained or lost due 
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to wind gradients and is affected by airspeed, climb angle and wind 
gradients. Equation (10) shows that energy gained or lost from wind 
shear is proportional to the airspeed. In general terms, increased airs-
peed increases energy capture or loss rate and allows energy capture 
from lower magnitude wind gradients.

These equations can be used to identify important conditions for gli-
ding flight, such as the optimal airspeed and climb angle for minimum 
sink and maximum range. Further, the optimal conditions for energy 
gain in shear can be calculated when the magnitude of the wind gra-
dient in known. These identities are beyond the scope of this article, 
but can be found in [31].

Exploration of wind fields

An interesting problem in soaring is that of a vehicle attempting to 
simultaneously explore and exploit an unknown wind field using soa-
ring. This introduces a requirement for on-line mapping as the vehi-
cle must now also attempt to create a map of the field whilst using 
that map to generate feasible and energy-gaining paths. This task is 
complicated by the fact that generally the wind cannot be remotely 
observed by a small UAV with common on-board sensors. Further, 
wind fields vary spatially and temporally so observations are only 
locally valid for a limited period of time.

We consider the case of a UAV with the ability to estimate the local 
wind vector using an air data sensor and an inertial sensor. We as-
sume that the air data sensor measures the speed and direction of 
airflow relative to the centre of mass of the aircraft, and the inertial 
sensor measures the acceleration and speed of the vehicle in a fixed 
inertial frame. Whilst airspeed and inertial measurement units are 
common on UAVs, air angle measurements are not. One method for 
estimating air angles is an alpha-beta vane system which records the 
wind direction around two perpendicular axes each using a lightweight 
wind vane and potentiometer [23]. An alternative system is a multi-
hole pressure sensor which estimates the air angles by calculating 
the pressure at different orientations to the wind and solving for the 
wind direction [59]. It is difficult to determine the accuracy required 
from these types of sensor for accurate wind reconstruction, and this 
is part of ongoing work. The collection of truth data is also difficult, 
though some work had been performed towards quantifying the ac-
curacy available from typical sensors available on small UAVs [30].

Gaussian process mapping and control-sampled planning

Our earliest attempt at solving this problem was to use Gaussian 
Process (GP) regression, a non-parametric regression technique, for 
wind mapping to avoid the need for explicit wind feature models. The 
advantage of using a GP to generate the wind map is that the GP 
provides both the mean estimate and a variance estimate which can 
be used to identify the uncertain regions of the map. The exploration/
exploitation trade-off is managed by weighting a utility function such 
that when platform energy is low the utility weights towards known 
areas (low variance in the GP) with high energy gain (exploitation 
action) and when platform energy is high the utility weights towards 
unknown areas (exploration action). An overview of the system is 
provided in figure 4.

 a)

Figure 4 - System overview of simultaneous exploration and exploitation 
path planning architecture for a gliding UAV [34].

Figure 5 - Single thermal exploration at t = 500 s. Autonomous soaring 
flight starts at the green triangle. There is a single thermal bubble with core 
vertical wind speed of 3 m/s illustrated by a filled circle [34].

Figure 6 - Energy change during single thermal exploration [34]
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Planning

Plans are generated by a control-space sampling planner, that selects 
from a number of control actions (in this case three pitch and three 
roll actions), forward simulates the resulting trajectories using the 
mean estimate from the GP wind map for a given search horizon, and 
selects the resulting path which yields the highest estimated utility. 
The utility is a weighted sum of the total estimated energy change over 
the segment, a navigation reward which estimates progress towards 
a goal, and an exploration reward which ‘optimistically’ estimates the 
amount of energy available at the projected sample locations, where 
the ‘optimism’ is a function of the estimated map variance. The cur-
rent target is selected during each planning cycle based on the energy 
of the aircraft and is either an exploration target (the map location with 
maximum estimated variance) or an exploitation target (the position at 
which maximum power gain was recorded).

Simulation results

The planner showed that it was capable of generating paths that conti-
nually improved the map for a specified search region whilst utilising 
energy sources found during the flight. Figure 5 shows the results of 
a single simulation where the aircraft is tasked with exploring a three-
dimensional rectangular region which contains a single thermal. After 
approximately 40 s the aircraft finds the thermal and then repeats a 
process of alternately travelling through the field to reduce variance 
and using the known thermal to collect energy. The time history of 
the vehicle energy is shown in figure 6. Further details and additional 
results are available in [34]. This method showed that a relatively 
simple control strategy with good knowledge of the vehicle motion 
model can map and explore a wind field while using energy found 
during exploration. This was further extended in [35] to account for 
temporally varying wind fields.

Reinforcement learning for exploration and exploitation 
management

An alternative or complementary approach to the soaring problem 
is to pose it as a reinforcement learning (RL) problem where the gli-
der agent must learn the best control action to take given its current 
state in the wind field. The main advantage of this formulation is that 
one can elegantly combine the goals of exploring and exploiting the 
wind field in the RL framework. Further, this does not require expli-
cit identification of soaring behaviours; allowing the system to learn 
behaviours based on the wind field experienced and resulting energy 
changes should allow the system to find new soaring behaviours in 
unknown wind fields.

Reinforcement learning

Standard value-function-based RL control algorithms such as SARSA 
( λ ) [54] learn the value, ( )Q s,a , of taking a particular action, a , 
whilst in a particular state, s, by observing the immediate state tran-
sition reward, r , and updating the estimated value function according 
to the following backup equation :

( ) ( ) ( )t t t tQ s,a Q s,a e s,aαδ+ = +1 			               (11)

where α  is the learning step size, the temporal difference iscomputed 
as,

( ) ( )1 1 1t t t t t t t tr Q s ,a Q s ,aδ Γ+ + += + −  		              (12)

and the eligibility trace is given by,

( ) ( ) ( )
( )1

1 t t
t

t

if s,a s ,a
e s,a

e s,a otherwise
 

Γλ −

 == 


		              (13)

for all ( )s,a . The two discount factors, Γ  and λ , control the contri-
bution of the current reward to the expected return and the value of 
state-actions previously visited in the trajectory history, respectively. 
The interested reader is directed to [58] for a full description of SARSA 
(λ ) and other RL algorithms.

The autonomous soaring problem lends itself naturally to this learning 
framework since it can be considered as a policy learning problem 
with a well-defined reward (platform energy). Furthermore, the eli-
gibility trace allows credit assignment along the state-action history, 
promoting the learning of long and potentially complex trajectories, 
which we expect as a feature of successful soaring policies. However, 
the state-action space in the soaring problem is continuous, whe-
reas traditional SARSA (λ ) deals only with discrete spaces. Thus, 
value function approximation must be applied to extend SARSA(λ ) to 
handle this. We propose using a GP model to approximate the state-
action value function since the GP not only provides an estimate 
of the mean, it also computes a measure of the uncertainty in the 
form of a variance. Specifically, the potential reduction in uncertainty 
(or information gain) from future actions can be used to quantify their 
exploration utility.

Information measure

The GP variance represents a bounding volume around the estima-
ted function surface and the change in this volume over successive 
observations can be defined as the information gain of taking those 
observations [10]. The variance volume can be computed as the inte-
gral of the GP covariance function over the state-action space, which 
has the dimensions [ ] [ ]n u vx ,...,x s ,...,s ,a ,...,a .=1 1 1

[ ]( )nb b

t
na a

x x
bound n t nx x

... .V co .. ...v x , ,x | X dx dx= ∫ ∫
1

1
1 1            (14)

t tgain bound boundI =V -V
+1

		               (15)

The GP training set tX consists of the observed n − dimensional 
state-action pairs, furthermore, 1 1xt t tX X+ +=



. Given an integrable 
covariance function, an analytical solution to (14) and subsequently 
(15) can be found, see [10] for the full solution for the squared expo-
nential covariance function. Drawing inspiration from the eligibility 
trace for the value function, we define an information value that en-
capsulates the discounted sum of the information gain from all future 
state-action observations simulated forward from the next proposed 
action. Figure 7 gives a graphical representation of the rollout infor-
mation value calculation :

1 20

2
total p

p
a gain r gain r gain r gainI I I I .. IΓ Γ Γ= + + ++                    (16)
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Figure 7 - The rollout method introduced in [10]. The information gain of 
each rollout level considers all the reachable state-actions at that level. The 
total information gain is the discounted sum of the information gain of each 
level.

Action selection

Given the state-action (exploitation) value estimated from the GP 
model and the information (exploration) value calculated from (16), 
it is necessary to consolidate the two competing objectives into a 
single control policy. Prior work [12] has investigated the potential 
for applying a dynamic scaling of exploration and exploitation metrics 
according to available platform energy, and this has been adapted 
in [11] to a 2D simulation of a glider learning to soar in a wind field 
containing a thermal updraft and a wind shear region. The objective 
function used normalises both the state-action value and information 
value and combined the two using a dynamic weighting factor,

0 1
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tt
t t

t t

t
t t t

max
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max |Q | max | I |

Eˆ ˆJ Q max ,min , I
E

= =

  
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                                         (17)

where tE  is the current platform energy and maxE  is the maximum 
achievable platform energy (corresponding to a maximum speed at a 
maximum altitude).

Simulation results

The objective function (17) was tested as the sampling policy in the 
SARSA( λ ) learning algorithm with GP value function approximation 

for a 3D 6DOF glider simulation with a single thermal updraft in the 
wind field. It was assumed that the thermal centre location was 
known and so the learning state dimension could be reduced to 

[ ]therm therm ar , ,v ,ψ=s the relative distance to the thermal centre, the 
bearing to the thermal centre, and the glider airspeed. The action set 
dimensions were chosen as a ,a ,γφ

 =  a




 the roll rate and pitch rate. 
Finally, the rewards were based on the specific energy gain of the 
platform over each state-action transition, as well as two discrete 
event costs to cover the stall and crash conditions. The reward func-
tion is computed as :

2 2125
2

max
stall stall crash

t
t stall crash

Er % v r
m

Er stall r crash r
m

= − × = −

= + × + ×

                       (18)

Figure 9 - Progression of the average reward per step and average specific 
energy gain per step across the learning episodes.

Learning occurred over a period of 35 episodes and a nominal set 
of flight paths are shown in figure 8. As more observations are taken 
and the algorithm updates the value function, the flight trajectories 
rapidly evolve to successfully gain enough energy to exit the field via 
the upper boundary by episode 14. The energy gaining efficiency of 
the learnt policy is also seen to increase as shown by the progression 
of the average reward and average specific energy gain in figure 9.

Figure 8 - Evolution of the sampled flight trajectories as learning progresses from episode 1, which terminates when the glider exits the lateral field boundary, 
to the first instance of the glider exiting via the upper boundary in episode 14, and the final flight trajectory in episode 35.
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Soaring for UAV missions

The two previous methods looked at the soaring problem purely as 
a problem of exploring a wind field and finding the optimal actions to 
gain energy. However, in most cases there are additional goals for a 
UAV. The following sections look at methods for how a UAV should 
manage external goals with the need to capture energy in-flight. Two 
scenarios are considered : a single glider searching for a lost ground 
target, and multiple gliders tasked with a long-term surveillance mis-
sion over an area of interest.

Long-term information gathering

The first scenario uses thermal static soaring to aid long-term infor-
mation gathering, as illustrated in figure 10. A gliding UAV equipped 
with sensors is tasked with searching for a stationary lost ground 
target. Information of the target state ξ  is represented with a proba-
bilistic belief function bξ  on which UAV control actions are planned 
to increase information. Given a long-duration mission, the UAV is 
energy-constrained and must also periodically replenish energy at 
thermals. It is assumed that all thermals are known, stationary, and 
cover the search area densely enough for it to be explored. The objec-
tive is to find an optimal path plan P  that maximises information gain 
over the entire mission time.

Figure 10 - A long-duration search scenario enabled by thermal soaring. The 
underlying surface is a probabilistic belief function of a ground target’s loca-
tion; darker regions represent more information. The UAV started at the top 
of thermal A, and has planned definite path segments to thermal D (orange 
lines). Green, blue and red lines represent possible next-step trajectories of 
varying information gain and energy expenditure.

Figure 11 -  The set R of inter-thermal paths between thermals A and B, 
including the initial path r0  (green). Darker regions represent more 
information.

Path planning formulation

The target-search problem involves forward propagating UAV actions 
and applying a sensor model along the resulting paths to capture in-
formation. This results in an enormous action search space; to make 
the problem tractable, we firstly observe that any feasible plan can 
only consist of (1) information gathering path segments in between 
thermals, and (2) climbing within thermals to increase energy.

We introduced this as the informative soaring problem in [45] and 
formulated it as a discrete tree search problem by constructing a tree 
T of nodes v V∈ . Starting with an empty root 0v , a child node dv  
at depth d  is constructed by appending one inter-thermal path seg-
ment to its parent d-1v , so that any v represents a sequence of path 
segments. Each node has an associated utility J(v)  and cost C(v).
Here, J(v) is the cumulative probability of target detection defined in 
[68], and C(v) is the traversal time. A feasible plan is a leaf or terminal 
node with cost tC(v ) within some budget B > 0. An optimal plan is 
one with maximum 1tJ( v ) ≤ .

Between thermals, there exists a continuous spectrum of inter-ther-
mal path segments varying in J(.) and C(.). However, we only consi-
der a subset Q  of up to three options : 1) the maximum utility, 2) the 
minimum cost, and 3) the median utility/cost path segments. Q R⊆  
is selected from the path segments set R  generated by deforming an 
initial path 0 r  using gradient descent on the underlying belief function 
bξ shown in figure 11. Refer to [45] for equations describing the sen-
sor model and utility function.

Depth-Limited tree Search (DLS)

The optimal plan is ascertained with an exhaustive tree search ; 
however, this is computationally intractable for large time budgets B. 
A solution method that trades optimality for reduced computation is 
depth-limited (or finite-horizon) tree search (DLS). The process be-
gins by building a complete subtree up to a fixed depth. The highest 
utility leaf node is identified, and a transition to the child node 1v of 
the root v0 along this branch is executed. The child becomes the new 
root and these steps are repeated until C( v ) B≥ . DLS ideally allows 
future information gain to influence local decisions.

Monte Carlo Tree Search (MCTS)

While DLS offers computational practicality, a good search depth is 
unknown for arbitrary problem instances. DLS complexity also re-
mains exponential in the search depth d(| Q | )  such that a better 
solution at depth d+1 may just take too long to compute. Monte Carlo 
Tree Search (MCTS) is an anytime algorithm that can achieve further 
computational reductions for similarly high-quality plans to DLS by 
selectively expanding relevant tree nodes. MCTS achieves this with 
random rollouts at each node expansion to bias tree growth towards 
high-yield end states. The algorithm is simple yet powerful, and is 
well described in [9].

Cluster tree search

Interesting scenarios arise when the a-priori probabilistic belief func-
tion initbξ  is partitioned. This could be due to a series of prior uninfor-
med local-area searches, and now the search region has been broa-
dened. For long-term planning, this is problematic for state-of-theart 
search schemes, which can be too myopic for a given computational-
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limit. Results from DLS illustrate that good solutions concentrate tree 
search effort at clusters of information. We draw on this observation 
to explicitly perform local cluster searches and optimally combine the 
resulting local plans with dynamic programming (DP) based on J(v)  
and C(v)  of every node of each cluster tree [46]. Alg. 1 outlines the 
approach.

First, information clusters are identified using a Gaussian mixture 
model Gmm . They are ordered in sequence of distance from the UAV 
start position. Trees for each cluster are stored in the set T . Clus-
ter assigns time budget to the terminal state i

ts  proportionally to a 
fraction ε  greater than the belief proportion 

i

bξ  in initbξ . The DP opti-
mal plan may involve taking time from one cluster and allocating it to 
another ; ε  allows for this. Search can be any tree search algorithm 
such as DLS or MCTS. For DLS, it suffices to use near-greedy search 
depths (e.g. 2 or 3) because the search effort is already concentra-
ted at clusters. Minimum-cost path segments are used to link cluster 
plans together. Finally, Dp returns the optimal plan P .

Algorithm 1 ClusterSearchDp

1 : 
n

[ b ,b , ,b ]ξ ξ ξ… ←
1 2

initGmm( b )ξ

2 : Φ←
3 : for 1i : n=  do
4 : i

ts ←
i

initCluster ( b ,b ,B, )ξ ξ ε+
5 : iT ← i

tSearch ( s )+
6 : iT← ∪ 
7 : end for
8 : return P ← Dp ( )+ + 

Figure 12 - A complex map scenario with three clusters of belief uncertainty 
(or information) represented by the dark patches. Thermals are labelled A to H.

Figure 14 - A team of 3 gliders (G1, G2 and G3) uses the swapping approach 
to manage the thermal T, extending the mission but keeping the partitioning 
patrolling strategy.

Figure 15 - The average maximum refresh time for a scenario with two ther-
mals and four gliders, tested with different approaches : swapping or non-
swapping and just-enough, threshold or no-thermalling approaches.
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Simulation results

In the interest of space, results are only shown for one map scena-
rio although these methods have been extensively tested on complex 
target-search scenarios and have been shown to outperform current 
greedy planners [46]. This map (figure 12) has three information 
clusters and eight thermals. The UAV starts at thermal A and has a 
budget of 60 minutes to maximise information gain.

Performance results are illustrated in figure 13. As MCTS is a rando-
mised solver, we conducted 50 trials for each exploration weight {0, 
0.1, 0.2, 0.4}. A higher weight corresponds to denser tree search 
which expands more nodes at the expense of increased computa-
tion. Figure 13 suggests that 0.1 works the best here. It’s utility is 
close to that of the best DLS depth of 4. The large step in DLS utility 
between depths 3 and 4 is a result of a longer horizon directing the 
plan towards cluster 3 in figure 12. In constrast, cluster tree search 
with DLS can achieve very high utility for greedy and near-greedy 
search depths.

Persistent monitoring with multiple gliders

A natural extension of the previous work is to examine how soaring 
missions could be performed with multiple gliding vehicles. This is 
particularly applicable to large area monitoring problems where the 
advantages of long endurance and multiple vehicles are readily appa-
rent. However, multi- UAV systems present some difficult challenges 
to overcome related to coordination and distributed decision-making. 
Consider a problem where the objective is for multiple UAVs to coo-
perate to distribute the surveillance of a target in a persistent manner 
while minimising the refresh time rT  (period between consecutive 
visits) of all positions in the area. Previous work [1] considered this 
problem with powered UAVs, and the solution presented was shown 
to be robust to the failure of vehicles or the introduction of new vehi-
cles whilst maintaining coverage of the target region and minimising 
refresh time.

However, extending the problem to consider gliding UAVs that require 
regular energy resupply is non-trivial. We extend the previous problem 
to consist of a team of N  autonomous gliders tasked with monitoring 
an area S  where there are M  known thermal sources [72]. A coope-
rative patrolling strategy is required to coordinate the gliders such that 
the objectives can be optimised. A partitioning strategy is proposed 
to solve this problem because it allows consideration of communica-
tion constraints and gliders with different capabilities. The problem is 
partitioned such that each glider is in charge of patrolling a different 
non-overlapped region and thermals are associated with the regions 
in which they are located. In this case, the location and state of ther-
mal sources can be considered as resources to be shared between 
the UAVs depending on their capabilities. This can be approached as 
a dynamic resource allocation problem to assign the thermals to the 
most suitable glider, such that all gliders maintain sufficient energy for 
continuous flight.

A swapping method based on one-to-one coordination can be used 
to manage the thermals in a distributed manner ensuring that all the 
regions continue being patrolled by at least one of the gliders. The 
swapping method implies that neighbouring UAVs share information 
about the thermal sources (location, state) in their own sub-areas. 
According to this information and the glider states each pair of neigh-
bouring gliders can decide if they need to swap regions, as shown in 

figure 14. They decide according to the gliders’ current energy and 
the distance to the nearest thermals. As the gliders converge in their 
knowledge of the world, they can decide independently and obtain 
consistent solutions. In this way, each UAV can reach the nearest 
thermal resource in a known finite time if it needs to gain energy. 
This approach ensures that the information about the thermals will 
be shared between all the gliders. Then, the thermals can be dyna-
mically allocated between the gliders whilst maintaining the patrolling 
strategy. 

Finally, another relevant issue is to decide how long a glider has to 
remain in the thermal. Two general approaches are defined. A thres-
hold approach implies that the gliders go to the nearest thermal when 
they detect an energy level less than a threshold and remain in it until 
gaining the maximum possible altitude. Alternatively, a just-enough 
approach implies that when a glider reaches a thermal, it estimates 
the amount of energy that it will require to reach the next thermal, and 
remains in the thermal until gaining that estimated energy. This value 
can be estimated based on the model described in (1) and assuming 
an a priori known path to patrol the whole area. 

Early research has shown that a combined just-enough swapping 
method obtains promising results for cooperative large area moni-
toring missions with a team of autonomous gliders that exploit the 
thermal sources. Figure 15 shows the maximum average refresh time 
computed along the whole path during a mission assuming four gli-
ders and two thermals. A cooperative path partitioning strategy and 
four different thermal access approaches are considered in the test.

Aerial resupply

In the preceding sections, this paper has described recent work on 
persistent autonomous flight through the opportunistic exploitation 
of readily available atmospheric energy. A different, yet complemen-
tary approach to persistent flight is the deliberate in-flight resupply of 
energy. This is a complementary strategy when atmospheric energy 
is insufficient or unavailable, and an alternative when the platform is 
not optimised for atmospheric energy collection. In the past this has 
occurred manually with large, manned aircraft at high altitude, howe-
ver automating this process allows the pilot to be removed and much 
smaller aircraft, such as autonomous gliders to utilise the procedure.

It is generally accepted in the literature that the primary barrier to au-
tonomous in-flight resupply is the sensing and navigation challenges 
surrounding tight formation flight. This challenge is amplified in our 
work where we consider small, dynamic vehicles that are operating 
in a turbulent, low altitude environment. These conditions require an 
accurate and timely relative state estimate that is robust to a dyna-
mic environment. One method to obtain this estimate is to subtract 
one vehicle’s INS/GPS-based state estimate from the other, where 
the result is known as the raw relative estimate. This approach has 
merit during high separation formation but the accuracy, particularly 
in relative position, is in the order of metres and is not sufficiently 
accurate for close proximity formation flight. The low accuracy is not 
only attributed to the individual sensor accuracy, but also errors in 
measurement time synchronisation since absolute measurements are 
being differenced. This problem also applies to more accurate DGPS 
systems. Highly dynamic vehicles and sporadic communication dro-
pouts further amplify this effect.
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To achieve the necessary accuracy, directly observed relative mea-
surements must be used. Vision is a popular sensor selection in the 
aerial domain due to its availability, compact size and low weight. 
The downside to vision is the susceptibility to observation dropouts 
as a result of occlusion, a constrained field of view (FOV) and uncer-
tain lighting conditions. Further, incorrect observations resulting from 
clutter and false feature correspondences must be detected and ex-
cluded. To negate these shortcomings and create a resilient yet accu-
rate relative state estimator, it is important to incorporate constantly 
available, albeit absolute, information from sensors such as inertial, 
magnetic, atmospheric and GPS.

In our scenario, a leader and follower UAV are flying in formation. 
Visual markers are mounted on the leader at each wingtip, at the top 
of the tail fin and on the right of the tail plane as shown in figure 16. A 
forward facing camera is mounted on the follower and provides rela-
tive measurements to the leader’s visual markers. All onboard sensor 
data from both aircraft are available on the follower UAV in real-time 
via wireless communications. The following sections summarise the 
relative estimation framework, the vision integration and provide pre-
liminary implementation results.

Figure 16 - Leader-follower coordinate frames and the marker based vision 
system

Multi-vehicle relative navigation

The proposed relative estimator fuses vehicle-to-vehicle visual mea-
surements with information from GPS, inertial, magnetic and atmos-
pheric sensors, located on each UAV, in a tightly coupled fashion. An 
unscented Kalman filter (UKF) [26] provides the filter framework to 
estimate the position P , velocity V  and attitude quaternion q for each 
aircraft. P and V  are expressed in the local tangential frame, relative 
to a ground station.

T
l|f l l l f f fx =[ P V q P V q ] 			                 (19)
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				                  (20)

A UKF has several advantages over the traditional extended Kalman 
filter (EKF). It provides at least second-order nonlinear approximation 
as opposed to the first-order EKF ; derivation of Jacobians is not nec-
essary , the filter is more robust to initial errors and computation can 
occur in parallel. Resilience to initial error is particularly important be-
cause of the large difference in accuracy between the GPS and vision-
based measurements. A downside of the UKF is that a quaternion 
parametrisation of the attitude results in a non-unit quaternion when 
the mean is computed. A brute force normalisation can be made to 
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Camera
Navigation frameBody frame

X

Y
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work, but is undesirable. Instead, we use generalised Rodrigues pa-
rameters to represent the attitude error, as proposed in [13].

Each vehicle state is propagated using the bias corrected onboard in-
ertial measurements and the mechanization equations found in [53]. 
Details pertaining to the vehicle atmospheric, magnetic and GPS sen-
sor updates are also omitted but can be found in [19]. UKF prediction 
and update equations are well known and are provided in [26, 47, 13].

Vision integration

Relative pose estimation using vision sensors has been well re-
searched and many valid approaches exist. Our work employs a fea-
ture based method where visual markers of a known configuration are 
mounted on a leader vehicle and observed by a follower. Using the 
set of n correspondences between the 3D marker positions, l

jζ  and 
the 2D observations jδ  , as well as the camera intrinsic parameters, 
the relative pose can be calculated directly. This requires n 3≥  for a 
solution and 4n ≥  for a unique solution. A number of algorithms are 
available to solve this P Pn  problem, including POSIT [14] which is 
used as a benchmark in Section 3.3, the Lu-Hager-Mjolsness algo-
rithm [38] and an efficient approach called EP Pn  [36].

The downside to this vision only approach is that it fails with incorrect 
point matching, occlusion or a target outside the FOV. These brief or 
prolonged measurement dropouts are highly undesirable, particularly 
during close proximity operations. Alternatively, one could fuse the 
pose estimate from one of the aforementioned algorithms with the 
onboard sensor data in a loosely-coupled arrangement, however pre-
liminary results with a fixed measurement covariance displayed infe-
rior performance to the tightly-coupled equivalent. One reason may 
be that the measurement covariance is dynamic and a function of the 
relative pose, in addition to the pixel noise. Deriving an expression for 
this is difficult.

Instead, we propose a tightly-coupled approach which uses n raw 2D 
marker observations, T

j j j=[u v ] , j=1,...,n.δ  In our case n=4  and 
n 3≥  is required for observability within the UKF [66, 20]. The ex-
pected observations j , j=1,...,nδ  are calculated by first transforming 

l
jζ  from the leader’s body frame to the world frame, f

j  ζ  using (21). 
In this case the world frame is the follower’s body frame.

f f n l
j n l j l|f=C (C +P )ζ ζ  				                 (21)

Next, the vision sensor extrinsic parameters transform f
j  ζ  to the 

camera frame using (22). f|cP  and c
fC   are the translation and rotation 

from the follower’s body frame to the camera frame. c
fC  includes 

both the camera mounting orientation and the axes transformation.

1

f
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j f f|c= C P
ζ

ζ
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				                (22)

jδ is calculated using K , the camera intrinsic matrix which encapsu-
lates the camera focal length, aspect ratio, principal point and distor-
tion. The final vision measurement model is provided in (24) and the 
correction occurs sequentially.
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Tvision
1 2 nh [x, k] =   ... δ δ δ   			                 (24)

The vision-based observation model presented in this section updates 
both the relative position and orientation by assuming correct point 
matching. This is not always possible, particularly when the target is 
far and the points are difficult to distinguish from one another. Rather 
than neglecting such a measurement, a simpler observation model 
can be utilised to extract l|fP  information. Here, the vision observa-
tion becomes the average or centroid of j  , j = 1, ..., nδ  as an ap-
proximation for the target’s centre of gravity and (21) is replaced with 
(25) where m = 1. Although relative orientation and range become 
unobservable, l|fP  and l|fV  accuracy is improved.

/
f f
j j l fC Pζ = 					                 (25)

Before vision
l|fy   can be used, correspondences between the observed 

points iδ  and the projected model points jδ  must be determined. 
To do this, unique marker characteristics could be used, which may 
include colour, size, intensity and frequency. However, in our applica-
tion we have chosen to use homogeneous visual markers to simplify 
the MV task and instead use the marker model to match the points. To 
do this, we use a computationally efficient, deterministic mutual nea-
rest point procedure [42]. Before this is implemented, we eliminate 
the linear translation between the point sets by subtracting the vector 

µ µ(  - )δ δ from jδ . This eliminates errors in relative azimuth, eleva-
tion as well as follower attitude and simplifies the matching process. 
The matrix Θ  is then populated with the pixel distances between iδ  
and jδ .

1 1 1

1

( , ) ( , )

( , ) ( , )

n

m m n

d d

d d

δ δ δ δ
Θ

δ δ δ δ

 
 =  
 
 

 



  

 



			               (26)

Where d(.,.) is the linear pixel distance between points. min
colΘ and min

rowΘ
are the minimum value of each column and row ofΘ , respectively 
and index

colΘ contains the index of the minimum value in each column.
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                       (27)

For a point to be valid, it must satisfy (28), that is to say a valid point 
in Θ  must be the minimum of both its column and row. A threshold of 
validity can also be implemented to reject outliers and noise.

[ ] [ [ ]]min min index
col col coli iΘ Θ Θ= 			                (28)

		  Raw (1σ)	 POSIT (1σ)	 1l|fx ( )σ 	 Raw impr.

	 l|fP

	 N	 2.069 (0.86)	 0.353 (0.15)	 0.205 (0.23)	 90.1 %

	 E	 1.901 (0.76)	 1.017 (0.34)	 0.427 (0.24)	 77.5 %

	 D	 0.152 (0.11)	 0.123 (0.03)	 0.129 (0.07)	 15.1 %

	 l|fV

	 N	 0.203 (0.09)	 -	 0.216 (0.25)	 -6.54 %

	 E	 0.227 (0.18)	 -	 0.183 (0.18) 	 19.4 %

	 D	 0.068 (0.09)	 -	 0.052 (0.05)	 23.5 %

	 l|fQ

	 ϕ 	 1.148 (0.81)	 0.295 (0.01)	 0.173 (0.24)	 85.0 %

	 θ 	 1.095 (1.12)	 0.660 (0.02)	 0.208 (0.17)	 81.0 %

	 ψ 	 14.743 (8.90)	 0.577 (0.01)	 0.443 (0.85)	 97.0 %

Table 1 - Raw relative, POSIT and relative UKF estimate RMSE comparison 
from 100 simulations. Axes are N(orth), E(east) and D(own). Positions are 
measured in m, velocities in m/s and angles in degrees.

Implementation

The estimator was tested in a high fidelity simulated environment 
[67] where conditions are repeatable and the ground truth is known. 
The simulation was run 100 times and the results are summarised 
numerically in table 1. Compelling performance improvements were 
observed when compared to both the raw relative estimate and the 
benchmark vision-only pose estimation algorithm, POSIT. Particularly 
large improvements in horizontal position and ψ can be attributed to 
the relative inaccuracy of the GPS and magnetometers. As expected, 
the gains over POSIT are less but remain notable which is likely due to 
a smoothing effect of the vehicle inertial measurements.

The algorithm was also testing in ground based experiments on a 
dual-UAV system to isolate the relative navigation problem, and dem-
onstrate the estimation framework functioning in real-time on an em-
bedded system. This system consists of two fixed-wing UAVs, an 
autopilot and formation flight computer onboard each aircraft, LED 
markers on the leader, and a camera on the follower.

Relative position and attitude estimates from one such experiment 
are shown in figures 17a and 17b. Here, we can see good agreement 
between the vision-only POSIT algorithm and the output of the relative 
estimator. A slight bias can be observed in the east and ψ compo-
nents which indicate a slight error in the camera extrinsic calibration. 
Additionally, we see that POSIT fails between 23-29 seconds because 
less than four points are available. Here, the relative estimator is able 
to utilise information from even a single visual marker and only slowly 
degrades to the raw relative estimate when no visual measurements 
are available.
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Figure 17 - Vision based relative estimation results from the dual-UAV system

Conclusion

The work presented here is aimed at extending the flight  duration of 
fixed-wing UAVs. This paper highlighted some of the work performed 
at the University of Sydney towards reaching this goal. We examined 
the basic mechanisms of soaring flight and used these equations to 
derive utility functions for planning. This was extended to planning in 
unknown wind fields using GP regression for wind map building, and 
for use in an RL framework to develop energy gaining trajectories 
without specifying control strategies. Further, soaring was integrated 
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into target search problems multiple UAVs. The paper also looked at 
coordination for aerial refueling with small UAVs.

Future work will aim to bring some of these methods together for 
long-duration UAV missions. The focus will be on autonomy and 
decision-making, ideally for a system with multiple heterogeneous 
vehicles to perform an externally driven mission. The system should 
make decisions about the energy available for soaring and the re-
quirement for inflight refueling to allocate vehicles based on their de-
mands for energy and mission utility 
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SBXC Glider Parameters

Parameter Value Units Explanation
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Table 2 - The aerodynamic and geometric properties of the SB-XC glider model

Acronyms

DLS 	 (Depth-Limited (tree) Search)
DP 	 (Dynamic Programming)
EKF 	 (Extended Kalman Filter)
MCTS 	 (Monte Carlo Tree Search)
RL 	 (Reinforcement learning)
RMSE 	 (Root Mean Square Error)
TD 	 (Temporal difference)
UAV 	 (Unmanned Aerial Vehicle)
UKF 	 (Unscented Kalman Filter)
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Accelerometers on Quadrotors :
What do they Really Measure?

A revisited quadrotor model is proposed, including the so-called rotor drag. It differs 
from the model usually considered, even at first order, and much better explains 

the role of accelerometer feedback in control algorithms. The theoretical derivation is 
supported by experimental data.

Introduction

Quadrotor control has been an active area of investigation for several 
years. On the one hand, the quadrotor has several qualities, among 
them its very simple mechanical design, and qualifies as a viable con-
cept of mini Unmanned Aerial Vehicle (UAV) for real-life missions ; on 
the other hand, it is perceived in the control community as a very rich 
case study in theoretical and applied control. The first control objec-
tive is to ensure a stable flight at moderate velocities and, in particular, 
in hovering; this fundamental building block is then used to develop 
higher-level tasks.

However, for experiments designed to work only in the lab with an 
off-board measuring device, e.g. [1], quadrotors all rely at the heart 
on strapdown MEMS inertial sensors (gyroscopes and accelerom-
eters). These inertial sensors may be used alone (as far as horizontal 
stabilization is concerned) [2], or supplemented by other sensors, 
which usually provide some position-related information. Representa-
tive designs are: ultrasonic rangers [3]; (simple) GPS module when 
outdoors and infrared rangers when indoors [4] ; carrier phase differ-
ential GPS [5]; laser rangefinder [6]; vision system [7], [8], [9] ; laser 
rangefinder and vision system [10], [11]. Unfortunately those extra 
sensors have inherent drawbacks (low bandwidth, possible tempo-
rary unavailability, etc.), hence inertial sensors remain essential for 
basic stabilization.

Nearly all of the papers in the literature rely on the same physical 
model: only aerodynamic forces and moments proportional to the 
square of the propeller angular velocities are explicitly taken into 
account. Other aerodynamic effects are omitted and considered as 
small non-modeled disturbances to be rejected by the control law. 
The reason put forward is that these effects are proportional to the 
square of the quadrotor linear velocity, hence very small near hover-
ing. Few authors explicitly consider other aerodynamic effects : [12] 

notes the importance of flapping stability derivatives; [13] and [14] 
consider aerodynamic effects without physical motivation linear with 
respect to the quadrotor linear and angular velocities, but propose 
very small numerical values; [5] judges them to be negligible at low 
velocities, and focuses on nonlinear aspects at moderate velocities; 
[15] physically motivates the presence of effects that are nearly linear 
with respect to the quadrotor linear and angular velocities, but pro-
vides no experimental data and is concerned only with the open-loop 
system.

Figure 1 -  Our home-built quadrotor : the “Quadricopter”

On the other hand, the accelerometer measurement vector a  can be 
used in two different ways (gyros are used in both cases ; see page 4 
for more details about inertial sensors):

1) as an input, directly in the equation V g a= +


 

  if extra sensors pro-
viding position or velocity information are available, using a sensor fu-
sion algorithm that estimates the velocity and the pitch and roll angles
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2) as an output, through the approximation a g≈ −
 

. Accordingly, 
the pitch and roll angles are estimated by a sensor fusion algorithm. 
Commercial “attitude sensors”, such as the 3DM-GX1 or the MTi2, run 
exactly on this principle.

In both cases, the sensor fusion algorithm can be an Extended Kalman 
Filter (EKF), a complementary filter, linear or nonlinear, or a nonlinear 
observer; see for example [16], [17] for an account of the two cases. 
Recall that MEMS inertial sensors are not accurate enough for "true" 
Schuler-based inertial navigation, see for example [18, Chap. 5] for 
details. 

Now, a puzzling issue arises: the "conventional" physical model im-
plies that the longitudinal and lateral (in body axes) accelerometers 
should always measure zero, which clearly contradicts 2) ; as for 
1), even if no particular form of the accelerometers measurements is 
assumed, one may wonder about the interest of using measurements 
known to be zero (in addition corrupted by noise and biases). Never-
theless, many successful quadrotor flights have been reported, with 
control laws based on 1) or 2), or even both, and there is no question 
that using accelerometers is beneficial.

This paper, which largely draws on [19], proposes a "revisited" 
model containing extra aerodynamic terms proportional to the propel-
ler angular velocity times the quadrotor linear or angular velocity. In 
particular, the so-called rotor drag, though rather small, appears at 
first order and is essential to correctly account for the accelerometer 
measurements.

The paper is structured as follows: the revisited model is derived in 
next section ; its main features are experimentally validated then ; 
finally, its implications for control schemes are discussed.

A revisited quadrotor model

Model of a single propeller “near” hovering

We first consider a single propeller rotating with angular velocity i iε ω  
around its axis b ik ; ω  is positive, with 1=1ε  (resp. -1) for coun-
terclockwise (resp. clockwise) rotation. Due to the motion of the 
quadrotor, the geometric center 1A  of the propeller moves with lin-
ear velocity 

iAV


, while the rotor plane (by definition perpendicular to 
bk


) undergoes angular velocity ;Ω




 the total angular velocity of the 
propeller is thus 1 i b+ \kε ωΩ



. A lengthy derivation in the spirit of for 
example [20, in particular Chap. 5] shows that the aerodynamic ef-
forts on the propeller resolve into the force iF



 and moment iM


at iA ,

2
ii i b i 1 A 2 bF = a k (  V + ×k )ω ω λ λ⊥− − Ω

 
  

                      
ii i 3 A b 4( V ×k + )ε ω λ λ ⊥− Ω


 

		                (1)

2
i ii i b i i 1 A 2 bM = b k S ( V + k )ε ω ε ω µ µ⊥− − Ω×
 

  

                        1 i3 A b 4( V k + )ω µ µ ⊥− × Ω


 

	               	              (2)

where a,b, the i sλ ′  and ,
i

µ s are positive constants ; the projection of 
a vector U



 on the rotor plane is denoted by

( ) ( )·b b b bU k U k U U k k⊥ = × × = −
   

   

Moreover 2λ and 2µ are very small (they would be exactly zero if the 
blade axis were orthogonal to bk



). Notice that all of the force and 
moment terms orthogonal to bk



 arise from the velocity imbalance of 
the blade on a complete turn (because of the translational motion, the 
blade moves faster with respect to free air when it is advancing than 
when it is retreating).

The above relations rely on classical blade element theory, with two 
extra assumptions:

•	 the propeller is considered to be perfectly rigid, which is approxi-
mately true for most quadrotor propellers. The flapping due to 
the slight flexibility of a real propeller has only a marginal effect ;

•	 the components of the linear velocity 
iAV


 are considered small 
with respect to the propeller tip speed ; similarly the components 
of the angular velocity Ω



are considered to be small with respect 
to iω . This is valid "near" hovering, i.e., for "small" 

iAV


 and Ω


: 
typically, the tip speed is of about 150 .m s− , so that 110 .m s− can 
still be seen as a "small" velocity.

The velocities in the previous equations are of course velocities with 
respect to the air stream, not with respect to the ground. They coin-
cide when there is no wind, which we assume in the sequel.

The term 1 ii AVλω ⊥  in (1) is often called H -force or rotor drag in the 
helicopter literature. Also notice that the simplified expressions (1)-
(2), though directly based on textbook helicopter aerodynamics, do 
not seem to appear in the literature under this compact form, very 
handy for control purposes. The reason for this is probably that heli-
copter literature is primarily concerned with articulated and/or rather 
flexible propellers, operating moreover at much higher ratios of linear 
velocity to propeller tip speed.

Figure 2 - Sketch of the complete quadrotor

Complete quadrotor model  

The quadrotor consists of a rigid frame with four propellers, (directly) 
driven by electric motors, see figure 2. The structure is symmetrically 

1 www.microstrain.com
2 www.xsens.com

4F


3F


1F


2A

4A

3A

1A

2F


0k


0j


0i


bk


C

bi


bi












Issue 8 - December 2014 - Accelerometers on Quadrotors : What do they Really Measure?
	 AL08-06	 3

arranged, with one pair of facing propellers rotating clockwise and 
the other pair rotating counterclockwise. The four propellers have the 
same axis bk



.

3 1

3 1
b

A A
A A

i =



 





, 4 2

4 2
b

A A
A

j
A

=


 




 and bk



 thus form a direct coordinate frame. 

Let A  be the geometric center of the 1A's  and 3 1 2 4
1 1 ;
2 2

l A A A A= =
 

 

clearly, 4
1 ii
AA =0.

=∑


 

The whole systemB, with mass m and center of mass C, thus 
involves five rigid bodies : the frame/stator assembly 0B  and the 
four propeller/motor assemblies iB . Clearly bkCA h=

 

 for some 
(signed) length h; notice that for most quadrotor designs h  is very 
small. Resolved in the )b b b(i ,j ,k



 

 frame, the velocity of C  is written 
as C b b bV =ui +uj ivk+




 

  and the angular velocity of 0B  is written as
b b bpi qj rkΩ = + +




 

We assume that the only efforts acting on B  are the weight and the 
aerodynamic efforts created by the propellers, as described in the 
previous section. In particular, we neglect the drag created by the 
frame, which is quadratic with respect to the velocity, hence small at 
low velocities with respect to the rotor drag. Newton’s laws for the 
entire system are thus written as

4

1
C i

i
m V = m g + F

=
∑

 



 				                   (3)

4

1
C i i i

i
= CA× F + Mσ

=
∑
  





B 			                                (4)

where ( )C CM MC d Mσ µ
•

= ×∫
 

B

B
is the kinetic momentum of B . 

For each iB , we can further write

i

i b i b i iA ·k =M ·k +  σ ε Γ
 







B 				                  (5)

where ( )i

i i
iA iA M A M d M  µσ

•

= ×∫


 

B

B
 is the kinetic momentum of iB and 

iΓ  is the (positive) electromagnetic torque of the motor. For sim-
plicity, we have considered iA  as the center of mass of iB (in fact 
the two points are slightly apart). We also consider the i sΓ ′  as the 
control inputs (it is nevertheless easy to include the behavior of the 
electric motors, both for modeling and control).

We now evaluate the right-hand sides of (3)-(4). Since

iA C i C b i V =V +CA+AA V +h ×k + ×AAΩ Ω=
  

    

we have

4

4)
i3 A b

3 C b i b

3 C b 4 3 i

V ×k
= ( V +h k AA k
=  V k + ' +r AA  

λ λ Ω
λ Ω Ω λ Ω
λ λ Ω λ

⊥

⊥

⊥

+

× + × × +
×


 

 
   


 

2

2) ( )
i1 A b

1 C b i b

1 C 2 b 1 i b

V + k
= (V +(h k AA k
= V + ' +k - r AA k  

λ λ Ω

λ Ω Ω λ Ω
λ λ Ω λ

⊥

⊥ ⊥ ⊥

⊥

×

× + × + ×
×


 

 
   

 
 

where we have used the fact that i AA


 is collinear to either bi


or bj


, 
and set 1 12' hλ λ λ= + and 4 34' hλ λ λ= + . Therefore,

4 4 4
2

1 2
1 1 1

4

3 4
1

4 4

1 3
1 1

4 4
2

1 2
1 1

( ' )

( ' )

( '

i i b i C b
i i i

i i C b
i

i i b i i 
i i

i b i C b
i i

F a k V k

V k

r AA k r AA

a k V k

ω ω λ λ Ω

ε ω λ λ Ω

λ ω λ ε

ω ω λ λ Ω

⊥

= = =

⊥

=

= =

⊥

= =

   
= − − + ×   

   
 

− × + 
 

   
+ × −   

   
   

≈ − + ×   
   

∑ ∑ ∑

∑

∑ ∑

∑ ∑

 
  


 

 

 
 

)

In the last line, we have neglected small terms according to the sec-
ond extra assumption of the single properller model. Indeed, in hover-
ing CV



 and Ω


, hence 
iAV


are  zero ;  from (1)–(4) this implies that
2 2 2 2
1 2 3 4( )a mgω ω ω ω+ + + =

and 2 2 2 2 2 2 2 2
1 2 3 4 1 3 2 4 0ω ω ω ω ω ω ω ω− + − = − = − = , 

and eventually 
4i
mg

a
ω ω= = . 

As a consequence
4 4

1 1
1,i i ii i i A
l

Aε ω ω
= =∑ ∑



and
4

1
1 , i i ii

AA
l

ε ω
=∑



 
also vanish in hovering ; “near” hovering they are therefore small with 
respect to 4

1 ii
ω

=∑ .

Similar computations yield
4

1

4 4
2 2

1 1

4 4
2

1 1 1 3 4
1 1

( ' " )

ii i i i
i

i i b i i b
i i

b C b
i i

CA ×F +AA ×F  M

a AA ×k b k

r l k V ×k

ω ε ω

λ ω ω µ µ Ω

=

= =

⊥

= =

+

   
≈ − −   

   
   

− − +   
   

∑

∑ ∑

∑ ∑

 
  

  



 


where 3' 3 1=  hµ µ λ− and " ' )4 4 1 2= + h(µ µ µ λ+ .

Notice that the contributions of 3 4, λ λ  in the forces (1) and of 1 2, µ µ  
in the moments (2) (nearly) cancel out in the right-hand sides of (3)-
(4), due to the fact there are two clockwise and two counterclock-
wise-rotating propellers. 

We then evaluate the left-hand sides of (3)–(5). The approach is fairly 
standard.

1

4
1

4
1

(

O

O

i

C

i

i i i b ii

i i

= CM× d (M) 

= CM× d (M) 

+ CM×( + ) d M)

= CM×( ×CM ) d (M)

+ CM×( ×CA +( + k )×A M

CM

CM

CA A M

) dµ(M)

= CM×( ×

σ µ

µ

µ

Ω µ

Ω Ω ε ω

Ω

•

•

• •

=

+

∫

∫

∑ ∫
∫
∑ ∫

∫









 






 
 



 










B

B

B

B

B

B

B

1

4
1

4
1

4
1

(

.

(

i

i

i i i b ii

C i i bAi

b b r i i bi

CM )d (M) 

+ A M×( k ×A M ) d M)

= ( .k )

=Ipi Iqj Jr J )k

µ

ε ω µ

Ω ε ω

ε ω

=

=

=

+

+ + +

∑ ∫
∑

∑



 






 

 

B

BB

where rI; J; J  are strictly positive constants. In the last equation, in 
the computation of the inertia tensors i

iA,   BB  we have replaced 
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In (6)–(7) we have assumed 2' 2 1 = + h 0λ λ λ ≈ , which is sensible 
since 2λ  and h  are nearly 0 (notice that 2' 0λ =  can always be 
enforced by slightly shifting the center of mass). Finally, the angles 
and angular velocities are linked by

cos

= p+(q sin +r cos )tan  
=qcos r sin 

q sin +r cos =

φ φ φ φ

θ φ φ
φ φψ

θ

−



Equations (6)–(15) form the complete 13-dimensional nonlinear 
model of the quadrotor.

A further simplification is to replace 
4

1 ii
ω

=∑ by 4ω  in (6) – (12) 
since iω  remains close to w  in normal flight and moreover use the 
fact that the propeller moment of inertia rJ  is very small with respect 
to J I− ;  this yields

1

1

4 2
1

2 2
4 2 3 4
2 2
4 2 3 4

42
1 1

2
21
1

4sin

4sin cos

cos cos

( ) ( )4 ( ' " )

( ) ( )4 ( ' " )

4

4 , 1,

ii

i ii

r i i i

u qw rv g u
m

v ru pw g v
m

aw pv qu g
m

Ip J I qr a v p

Iq J I qr a u p

Jr l r

l JrJ r b i
J

ωλθ

ωλφ θ

φ θ ω

ω ω ω µ µ

ω ω ω µ µ

ωλ ε Γ

ωλω ε Γ ω

=

=

+ − = − −

+ − = − −

+ − = −

+ − = − +

+ − = − +

= − −

− = − =

∑

∑













 2,3,4

Equations (16)–(22) can be used instead of (6)–(12) with no notice-
able loss of accuracy.

Model of the inertial sensors

The quadrotor is equipped with strapdown triaxial gyroscope and ac-
celerometer. Without restriction, we assume that the sensing axes 
coincide with , , .b b bi j k



 

The gyroscope measures the angular velocity
Ω


, projected on its sensing axes, i.e., x y z(g ,g ,g )=(p, q, r),  the 

accelerometer measures the specific acceleration Pa = V g−


 

 of the 
point P  where it is located, projected on its sensing axes; see for 
example [18, Chap. 4] for details on inertial sensors. Hence, by (3) 
if the accelerometer is located at the center of mass C , which is the 
case for most quadrotors, it measures

4
1

1
C ii

a = V g= F
m =

− ∑
 

 



 

by (3), the accelerometer thus measures

1
1 2 3 4

1
1 2 3 4

2 2 2 2
1 2 3 4

. ( )

. ( )

. ( )

x b

y b

z b

a a i u
m

a a j v
m
aa a k
m

λ
ω ω ω ω

λ
ω ω ω ω

ω ω ω ω

= = − + + +

= = − + + +

= = − + + +













the actual propellers by disks with the same masses and radii, and 
taken advantage of the various symmetries ; this "averaging" approxi-
mation is justified by the fact that the propeller angles vary much 
faster than all of the other kinematic variables (besides, this approxi-
mation is already heavily used in the blade element theory used to 
derive (1)-(2)). Using the same approximation,

( )

( ) ) ( )

.( )

( )

i

i i

i

i

i

i iA

i i i b i

i i bA

r b r b r i i b

= A M A M dµ M

= A M k A M dµ M

= k

=I pi I qj J r k

σ

Ω ε ω

Ω ε ω

ε ω

×

× + ×

+

+ + +

∫
∫

 



 







 

B

B

B

B

where rI  is a strictly positive constant. Eventually,

4
1

4
1

4
1

( ).

. ( )

.

i

i

C b

C b

C b

r i iiC b

C b r i ii

C b r i ii

C

V ·i u qw ru
V . j   = v ru pw

w pu quV · k

Ip J I qr J qi

j = Iq J I pr J p

k Jr J

ε ωσ

σ ε ω

σ ε ω

σ

=

=

=

 
+ −  

   + −    + −    
 

 + − +      + − +         +   

∑
∑

∑















































B

B

B

B . ( ) 1,2,3,4b r i ik = J r iε ω+ =




To describe the orientation of the quadrotor, we use the classical
, ,φ θ Ψ Euler angles (quaternions could of course be used). The di-

rection cosine matrix , ,Rφ θ Ψ  to convert from Earth coordinates to 
aircraft coordinates is then

C C C S S
S S C C S S S S C C S C
C S C S S C S S S S C C

θ ψ θ ψ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

− 
 − + 
 + − 

so that ( sin sin cos cos cos )g g i j kθ φ θ φ θ= − + + .

Collecting the previous findings (3)–(5), we eventually have

41
1

41
1

4 2
1

4
1

42 2 ' ''
1 3 3 4 1

4
1

2 2 '
3

ii

ii

ii

r i ii

ii

r i ii

1 3

 
u+qw rv = g sin u  

m
 

v+ru pw = g sin cos v
m

a w+pv qu = g cos cos
m

Ip+(J I)qr+J q

= a( - )+( v+ p) 

Iq (J I)pr J p

=a( )+( u

λ
θ ω

λ
φ θ ω

φ θ ω

ε ω

ω ω µ µ ω

ε ω

ω ω µ

=

=

=

=

=

=

− − −

− −

− − −

−

− − −

− −

∑

∑

∑

∑
∑

∑











4''
4 1

4 4
1 1 1

2

ii

2
r i i ii i

r i i i i

q)

(J 4J )r = l

J ( r+ )= b  i=1,2,3,4

µ ω

λ ω ε Γ

ε ω Γ ω

=

= =
− − −

−

∑
∑ ∑



(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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As in the previous section we can replace (23)–(24), without a no-
ticeable loss of accuracy, by

1

1

4

4

x

y

a u
m

a v
m

ωλ

ωλ

= −

= −

This shows that x ya , a  actually measure the quadrotor longitudinal 
and lateral velocities (while za  measures the total thrust).

Linearized model

To highlight the salient features of the revisited model (6)–(15) and 
its measurements, it is enough to consider its first order approxima-
tion. Suitably putting together variables, this linearized model can be 
divided into four independent subsystems :

•	 longitudinal subsystem (states , 1 3u,  q,θ ω ω− ; input 1 3Γ Γ−

measurements 1
x

4a u
m
ωλ

≈ − and  yg q≈ )                                       

       

1

3 4 1 3

1 3 1 3 1 3

4

4 ' 4 " 2 ( )
( ) 2 ( )r

u  g u
m

q
Iq µ u q al

J b

ωλ
θ

θ
ω ω ω ω ω

ω ω Γ Γ ω ω ω

≈ − −

≈
≈ − + −

− ≈ − − −







 

•	 lateral subsystem (states , , , 4 2v   p  φ ω ω− ; input 4 2Γ Γ−  

       measurements 1
y

4a  v 
m
ωλ

≈ −  and x g p≈ )                                                 

1

1 4 4 2

4 2 4 2 4 2

4

4 ' 4 " 2 ( )
( ) 2 ( )r

v  g v
m

p
Ip µ v µ p al

J b

ωλ
φ

φ
ω ω ω ω ω ω

ω ω Γ Γ ω ω ω

≈ − −

≈
≈ − − + −

− ≈ − − −







 

•	 vertical subsystem (states 4
1i iw, ω=∑ input 4

1i iΓ=∑
       measurement 4

1
2 )z i i

aa g
m
ω ω=≈ − − ∑  

( )4
1

4 4 4
1 1 1

2 4

2

ii

r i i ii i i

aw
m

J b

ω ω ω

ω Γ ω Γ

=

= = =

≈ −

≈ −

∑

∑ ∑ ∑





•	 heading subsystem (states
4

1
;i ii

; r;ψ ε ω
=∑ input

4
1 i ii
ε Γ

=∑
measurement zg r≈ )

4
2

1
1

2 4 44 1
1

1 1

4

16
2

i i
i

r
r i i i i i ii

i i

r

Jr l r

l JJ r b w
J

ψ

ωλ ε Γ

ωλ
ε ω ε Γ ω ε

=

=
= =

≈

≈ − −

≈ + −

∑

∑ ∑ ∑







In the sequel we concentrate on the longitudinal system, where ac-
celerometer feedback is of paramount importance (the lateral subsys-
tem is the same up to a sign-reversing coordinate change). Setting 

1 3
q 1 3 q

r

  
 = ,  =  

J
Γ Γ

ω ω ω Γ
−

− and

31 4
1 2 3 4 5

4 '4 4 " 2 2( , , , , ) , , , ,( )
r

al bf f f f f
m I I I J

ωµ ωµ ω ωωλ
=

the longitudinal subsystem is thus written as

1

2 3 4

5

q

q q q

u f u g

q
q f u f q f

f

θ

θ
ω

ω Γ ω

= − −

=
= − +

= −









with measurements 1xa = f u −  and y g =q

Departure from the “conventional” model in the literature

Most authors consider a propeller model with only the bk


 terms in 
(1)-(2), i.e., with all '

i sλ ’s and '
iµ s’s equal to zero. Hence, the “conven-

tional” model is the same as the revisited one but with the '
i sλ ’s and 

'
iµ s’s equal to zero in (16)–(22) and (26)– (27).

However, there is obviously a problem with such a model : indeed

Ca V g= −


 

  is collinear with bk


, hence x ya = a = 0, which is certainly 
not very useful for feedback. This paradox is usually not acknowl-
edged and the approximation a g≈ −

 

 is used instead, i.e.,

( , , ) ( sin , sin cos , cos cos )x y za a a g g gθ φ θ φ θ≈ − −                  (32)

The reason proposed is that CV


 is small near hovering, at least in aver-
age. This is indeed true if the aircraft is stabilized by some extraneous 
means (such as a human pilot), but is a questionable assumption to 
use from a closed loop perspective. Nevertheless, many successful 
flights with controllers based on this approximation have been re-
ported. In IV-C, we suggest an explanation reconciling all of those 
facts in the light of the revisited quadrotor model.

The resulting “conventional” longitudinal subsystem is then

4

5

q

q q q

u g
q

q f

f

θ

θ
ω

ω Γ ω

= −

=
=

= −









with measurements xa  = gθ and yg  = q,  to be compared with (28)–
(31) with measurements 1xa = f u−  and g  = q,

Experimental validation

Experimental setup

To validate the model, we recorded flight data with our home-built 
“Quadricopter”, see figure 1. Due to limitations of our experimental 
setup, we could collect data to validate only the force model (28), but 
not the moment model (30); this is nevertheless the most important 
part of the model, since it accounts for the accelerometer measure-
ments. The quadrotor was fitted with a MIDG2 “GPS-aided Inertial 
Navigation System”3 and a radio data link to the ground station. The 
MIDG2 consists of a triaxial accelerometer, a triaxial gyroscope, a 
triaxial magnetometer, a GPS engine and an on-board computer. The 
raw measurements are fused by an EKF on the onboard computer to 

(28)

(29)

(30)

(31)

(26)

(27)

(33)

(34)

(35)

(36)
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provide estimates of the orientation and of the velocity vector with 
respect to the Earth axes. The MIDG2 is an “independent” device with 
no knowledge of the specific system that it is fitted on; it heavily relies 
on the GPS engine for good dynamic estimates, without using as-
sumption (32). All of the data can be issued at a pace of up to 20 ms. 
Due to the low throughput of the radio data link, only the accelerome-
ter raw measurements xm yma , a and the MIDG2-computed quantities

,m m m,  φ θ ψ and x y zV , V , V  were transmitted to the ground station, 
at the reduced pace of 40 ms.

We flew the quadrotor performing repeated back and forth transla-
tions at a (nearly) constant altitude and recorded one minute of flight 
data. Since a GPS module is used, the test was conducted outdoors, 
on a very calm day to respect the no-wind assumption.

Figure 3 -  Comparison between 
1

,xa u
f θ

and u

Figure 4 - Comparison between xa and gθ

Validation of the force model

Due to an imperfect mechanical design of our quadrotor, the MIDG2 
case is not exactly aligned with the quadrotor frame, but rather tilted 
by the unknown (small) angles ,0 0 0,φ θ ψ . The angle and acceleration 

1.5
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data must be rotated accordingly to be expressed with respect to the 
quadrotor axes (the velocity data requires no correction, since it is 
expressed relative to the Earth axes), that is

0 0 0

0 0

, ,

( , , ) ( , , )m o m m

x xm
T

y ym

z zm

a a
a R a

a a
φ θ ψ

φ θ ψ φ φ θ θ ψ ψ= − − −

  
  

=   
  

   

Dropping higher-order terms, this yields

0 0 0

0 0 0

x xm ym zm xm

y xm ym zm ym

a a a a a g

a a a a a g

ψ θ θ

ψ θ φ

≈ − + ≈ −

≈ + − ≈ −

The velocity vector in relation to the body axes is obtained by

, ,

x

y

z

Vu
v R V
w V

φ θ ψ

  
   =   

      

and is considered as the “true” reference velocity to validate our mod-
eling assumptions. 

We also wanted to compute the velocities uθ  and uφ predicted by the 
integration of the linearized force model (28)

1

1

u f u g
v f v g
θ θ

φ φ φ

θ= − −

= − +





with initial conditions (0) (0)u u  and (0) (0)v vφ =  . 

The task was then to adjust 1 0 0 0, , ,f φ θ ψ  to get a good fit between 

1
,xa u

f
−  and uθ  on the one hand, and between 

1
,ya
v

f
−

v  and vφ  on the other hand. Since the accelerometer data are quite 
noisy and requires some filtering, the same filter (5th order Bessel filter 
with 2 Hz cutoff frequency) was applied to all of the data, in order to 
preserve the transfer functions among them. 

With 0 0 0
-1

1(f , , , )=(0.25s ,1.2°,-2.4°,2°)φ θ ψ  the agreement is good 
between the “true” (i.e., MIDG2-given) velocity u, the "accelerometer-

based" velocity 
1

,xa u
f

−   and the velocity uθ "predicted" by the model

from the “true” (MIDG2-given) pitch angle, see figure 3, which rea-
sonably validates our force model. The agreement between

1, /yv a f−  and vφ not shown for lack of space, is equally good.

To test the conventional approximation (32) we also plotted( , )xa gθ , 
see figure 4. Though the trend is roughly correct, the fit is much worse ; 
the result is similar for ( , )ya gφ− .

Other validations of the force model in the literature

Since the publication of [19] several authors have experimentally con-
firmed (using a motion tracking system) the proposed force model 
[21], [22], [23].

ax

gθ
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Implications for control schemes

We now investigate the relevance of the revisited model in the 
presence of a feedback controller, with (section IV-A) and without 
(sections IV-B and IV-C) velocity measurements. We use the numeri-
cal values

2 3 4 51_(f ,f ,f  ,f ,f )=(0.25,0.76,-9.8,0.34,12.74)
1f  was determined from flight tests and 4 5,f f  were determined from 

static tests on the motor-propeller subsystems. The aerodynamic co-
efficients 2 3,f f  were derived analytically ; their values are plausible 
but nevertheless questionable.

Two-time-scale “full-state” feedback

We first assume that the entire state is known, or which turns out 
to be equivalent, that u  and q  are measured without noise so that 
they can be used in ideal Proportional-Derivative (PD) controllers. It 
is customary to design a two-time-scale control law, with a fast inner 
loop to control , qq ω  and a slow outer loop to control ,u θ .

The fast inner loop is the ideal PD controller

2 2
p pd

q r
k kkq q q
ε ε

Γ
ε

= − − +

where rq  is the desired pitch rate ; p dk ,k  are the PD gains and >0ε  
is a “small” parameter. Applying this feedback to (28)-(31) yields

1

4

4

( )
( )

q

q p d q p r

u f u g
q

q f
k q f k k q

ε ε
ε

θ
θ

ω
ωω ε

= − −
=
= +
= − − + +













O
O

where q qω εω= . From standard arguments of singular perturbation 
theory [24], the convergence of the fast variables is up to order ε
ruled by the well-known coefficient 4f  and the PD gains ; and the 
behavior of the slow variables ,u θ  is up to order ε  ruled by the slow 
approximation

1u f u gθ= − − 					                  (37)

rqθ = 						                   (38)

Hence, the role of the aerodynamic coefficients 2 3f , f  is marginal if 
the inner loop is fast enough.

The slow outer loop is the ideal PD controller

1 2 1 rrq k u k u k u= + −

where ru  is the desired velocity and 1 2k ,k  the PD gains. Applying 
this feedback to (37)-(38) yields

1u f u gθ= − −

1 1 2 2 1( ) rk f k u gk k uθ θ= − − −

with characteristic polynomial 2
1 2 1( ) .s f gk s gk+ + +  A reasonable 

closed-loop settling time is of about 1s, which requires 2
1 6gk =  and 

1 2 6 2.f gk+ =  This means that 1f =0.25 is negligible with respect 
to the effect of the controller.

We thus see that the revisited moment equation (30) does not really 
matter if the gyroscope measurements are good enough for a fast 

loop, which is usually the case in practice; nevertheless, taking into 
account 2f  and especially 3f  may help to design a better inner loop. 
As for the force model (28), it does not really matter either, provided 
that a velocity measurement is available, which agrees with [5]. The 
importance of 1f  is nevertheless paramount to account for the ac-
celerometer measurements, as will be seen in the following sections.

Conventional interpretation of accelerometer feedback

Once the inner loop is closed, the usual slow model is
u gθ= −

rqθ =

with measurement .xa gθ=  Since the velocity u  is clearly not ob-
servable, the role of the outer loop is simply to control the measured 
angleθ . In theory, the simple proportional feedback

( )x
r r

a
q k

g
θ= −

does the trick, but in practice the accelerometer measurements are 
too noisy to be used directly (not only because of the intrinsic sensor 
noise, but also because of mechanical vibrations). Instead, an “angle 
estimator” is often used, based on the model qθ =  with measure-
ments xa =gθ and yg =q.  A more elaborate estimator, for example an 
EKF or a nonlinear observer, can also be used, see the references in 
the introduction; it is then based on the nonlinear kinematic equations 
(13)–(15) and relies on the approximation (32). Whatever the filter, 
the first-order approximation is essentially the linear observer
ˆ ˆ( )x

y
ag l
g

θ θ= + −

it can also be seen as a complementary filter, since its transfer 

function is ˆ
xq a

s l
s l s l

θ θ θ= +
+ +

 where q
q
s

θ = is the pitch angle 

obtained from gyro integration and
x

x
a

a
g

θ =  is the pitch angle given 
by the accelero.

The outer loop is thus the controller-observer
ˆ( )r rq k θ θ= − 					                 (39)

ˆ ˆ( )xaq l
g

θ θ= + −

				                 (40)

Applied to the usual model and defining the observation error 
ˆeθ θ θ= −  it yields the closed-loop system

u gθ= −

( )rk eθθ θ θ= − −

e leθ θ= −

For rθ  constant, the last two equations have the unique steady state 
( , ) ( ,0).reθθ θ=  The characteristic polynomial is 0 ( )( ),s k s l∆ = + +
and the closed-loop transfer functions are

r
k

s k
θ θ=

+
					                 (41)

( ) r
gku

s s k
θ−

=
+

					                  (42)

Provided that k,l>0  we have as desired ( , ) ( ,0),reθθ θ→  while u  
grows linearly unbounded. For robustness, a good tuning of (39)- 
(40) requires that the controller and observer act in distinct time 
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scales (Loop Transfer Recovery), i.e., l >> k or k>>l . We consider 
in the sequel a “slow” observer, which is representative of commer-
cial "angle sensors" such as the 3DM-GX, and a "fast" controller ; for 
a settling time of about .1s, we choose for example 1/ 0.3k =  and

1/12l =

We tested this control scheme experimentally, with a rather satisfying 
result : the angle θ reaches the desired ,rθ  though the dynamics are 
somewhat more sluggish than expected. The usual analysis could 
thus be considered as reasonably justified. Nevertheless, it does not 
account for the following experimental observations already visible to 
the naked eye :

•	 when pushed away from hovering, the quadrotor returns to hov-
ering (of course at a different position)

•	 when flying at a constant velocity u , the angle θ  is not zero, but 
rather approximately proportional to u

•	 in response to a constant ,r uθ  does not grow unbounded, but 
rather reaches a value approximately proportional to rθ .

Though these experimental facts are well-known to people in the field, 
they do not seem to be reported in the literature. The discrepancy is 
usually attributed to the neglected second order aerodynamical drag 
and the inevitably imperfect experimental conditions. Another more 
subtle discrepancy is that the observer gain l must be smaller than 
that predicted by the theory, in order to avoid a badly damped tran-
sient (e.g., l=1/3  does not work well in practice).

As will be seen in the following section, these experimental facts can 
be explained by the revisited model.

Figure 5 - Comparison between control schemes (simulation)

Revisited interpretation of accelerometer feedback

We now apply the controller-observer (39)-(40) to the revisited longi-
tudinal model. The closed-loop system is now

1u f u gθ= − −

( )rk eθθ θ θ= − −

1( )fe l u e
gθ θθ= − + +

with ˆ .eθ θ θ= −  For rθ  constant, the only steady state is 

1
( , , ) ( , ,0);r r

gu e
fθθ θ θ= −  the characteristic polynomial is

3 2
1 1 1( ) ( )s k l f s f k l s f kl∆ = + + + + + +

If 2
1 1, ( )( )k l s k s f s f l∆>> + + + so that the closed-loop system is 

stable as soon as k,l>0. Hence rθ θ→  as desired, and 0eθ →  as 
expected from the observer ; u  now tends to the finite value 

1
r

g
f
θ−  

which is more consistent with experimental tests. If moreover 1,l f<<

1 1 0( )( )( ) ( )s f s k s l s f∆ ∆≈ + + + = +

As a consequence, the closed-loop transfer functions are

1( )( )
r r

k s f s l k
s k

θ θ θ
∆

+ +
= ≈

+

1

( )
( )( )r r

gk s l gku
s f s k

θ θ
∆

− + −
= ≈

+ +

to be compared with (41)-(42) : the angle dynamics is near-
ly the same as that given by the usual interpretation, while 
the velocity dynamics is dominated by the rotor drag time 
constant 11/ f . Defining the reference velocity 1/u g fr rθ= − we see 
that the usual control scheme, designed as an angle controller, is in 
fact a velocity controller!

The behavior experienced in practice is qualitatively and quantitatively 
well predicted by the revisited model, see figure 5 (“usual design”), 
the time response to a 1.5°−  step in rθ  (i.e. a 1 m/s step in ur ).

From this analysis, we see that the importance of the coefficient 1f  
is paramount : the usual scheme works reasonably well only because 

1f  is positive and not too small.

A better control law

The performance of the usual control scheme is limited by the rotor 
drag time constant 11/ f  . Better performance can be achieved by 

considering a controller-observer based on the revisited model,

1 2
1 2 1

ˆˆ ( )r r
f kq k u k k u
g

θ= − − + −

1 1 1
ˆˆ ˆ ˆ( )xu f u g l a f uθ= − − + +

2 1
ˆ ˆ( )y xg l a f uθ = + +

where ru  is the velocity reference, 1 2k ,k  are the controller gains and 
1 2l ,l  are the observer gains. Figure 5 shows simulation results for 

the same scenario as before (1 m/s reference step in velocity). Two 
different tunings were used: in the first case (“New Design #1”) the 
controller is tuned for a settling time of about 12 s and the observer 
is tuned for about 48 s, so that the angle and velocity have initial 
transients similar to the tuning used previously for the usual design 

1
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(and with a similar control effort); in the second case (“New Design 
#2”) the controller is made four times faster.  

Both designs were successfully implemented, resulting in a quadrotor 
that is much easier to fly than with the usual scheme. In practice, it 
was difficult to accelerate the time responses much further, probably 
mainly due to accelerometer noise.

Conclusion

We have proposed and experimentally verified a revisited model of the 
quadrotor. It is different, even at first-order, from the model usually 
considered in the literature. It gives a different interpretation of ac-
celerometer measurements and explains why control schemes based 
on the conventional model nevertheless behave reasonably well 

Acronyms

EKF	 (Extended Kalman Filter)
GPS	 (Global positioning system)
MEMS	 (Micro Electro Mechanical Systems)
UAV 	 (Unmannned Aerial Vehicle) 
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Control and Estimation Algorithms 
for the Stabilization of VTOL UAVs 

from Mono-Camera Measurements
This paper concerns the control of Vertical Take-Off and Landing (VTOL) Unmanned 

Aerial Vehicles (UAVs) based on exteroceptive measurements obtained from a 
mono-camera vision system. By assuming the existence of a locally planar structure 
in the field of view of the UAV’s videocamera, the so-called homography matrix can be 
used to represent the vehicle’s motion between two views of the structure. In this paper 
we report recent results on both the problem of homography estimation from the fusion 
of visual and inertial data and the problem of VTOL UAV feedback stabilization from 
homography measurements

Introduction 

Obtaining a precise estimation of the vehicle’s position is a major is-
sue in aerial robotics. The GPS is a very popular sensor in this context 
and it has been used extensively with VTOL UAVs, especially for navi-
gation via waypoints. Despite recent progress of this technology, es-
pecially in terms of precision, many applications cannot be addressed 
with the GPS as the only position sensor. First, GPS is not available 
indoors and it can also be masked in some outdoor environments. 
Then, most inspection applications require a relative localization with 
respect to the environment, rather than an absolute localization as 
provided by the GPS. Finally, evolving in dynamic environments also 
requires relative localization capabilities. For all of these reasons, it is 
important to develop control strategies based on exteroceptive sen-
sors that can provide relative position information with respect to the 
local environment. Examples of such sensors are provided by cam-
eras, lasers, radars, etc. Cameras are interesting sensors to use with 
small UAVs, because they are light, low cost and provide rich infor-
mation about the environment at a relatively high frequency. Precise 
3D relative position information is best obtained from a stereo vision 
system with a “long” baseline (i.e., interdistance between the optical 
centers of the cameras). In this case, available feedback controllers 
that require position errors as inputs can be used. Using a mono-
camera system is more challenging, because the depth-information 
cannot be recovered instantaneously (i.e., based on a single mea-
surement). Nevertheless, a mono-camera system may be preferred 
in some applications, due to its compacity, or because the distance 
between the camera and the environment is large so that even a ste-
reo-system would provide poor depth-information.

This paper concerns the control of VTOL UAVs from mono-camera 
measurements. We assume the existence of a locally planar structure 
in the environment. This assumption is restrictive, but it is relevant 
in practice because i) many man-made buildings are locally planar 

and ii) when the distance between the camera and the environment is 
large, the planarity assumption can be satisfied locally as a first ap-
proximation, despite the environment not being perfectly planar (e.g., 
as in the case of ground observation at a relatively high altitude). 
Based on two camera views of this planar structure, it is well known 
in computer vision that one can compute the so-called homography 
matrix, which embeds all of the displacement information between 
these two views [15]. This matrix can be estimated without any spe-
cific knowledge regarding the planar structure (such as its size or 
orientation). Therefore, it is suitable for the control of UAVs operating 
in unknown environments. Homography-based stabilization of VTOL 
UAVs raises two important issues. The first is the estimation of the 
homography matrix itself. Several algorithms have been developed 
within the computer vision community to obtain such an estimation 
(see, for example, [15, 1]). Recently, IMU-aided fusion algorithms 
have been proposed to cope with noise and robustness limitations 
associated with homography estimation algorithms based on vision 
data only [16, 9]. The second issue concerns the design of stabiliz-
ing feedback laws. The homography associated with two views of a 
planar scene is directly related to the Cartesian displacement (in both 
position and orientation) between these two views, but this relation 
depends on unknown parameters (normal and distance to the scene). 
Such uncertainties significantly complicate the design and stability 
analysis of feedback controllers. This is all the more true since VTOL 
UAVs are usually underactuated systems, with high-order dynamic 
relations between the vehicle’s position and the control input. For ex-
ample, horizontal displacement is related to the roll and pitch control 
torque through fourth-order systems. For this reason, most existing 
control strategies based on homography measurements make addi-
tional assumptions regarding the environment, i.e., the knowledge of 
the normal to the planar scene [20, 21, 18, 14]. This simplifies the 
control design and stability analysis since, in this case, the vehicle’s 
Cartesian displacement (rotation and position up to an unknown scale 
factor) can be extracted from the homography measurement.
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This paper reports recent results by the authors and co-authors on 
both the problem of homography estimation via the fusion of inertial 
and vision data [16, 9] and the design of feedback controllers based 
on homography measurements [5, 7]. The paper is organized as 
follows : Preliminary background and notation are given in § "Back-
ground". Feedback control algorithms are presented in § “Feedback 
Control Design” and homography estimation algorithms in § “Homog-
raphy estimation”. Finally, some implementation issues are discussed 
in § “Computational aspects”.

Background

In this section, we review background on both the dynamics of VTOL 
UAVs and the homography matrix associated with two camera im-
ages of a planar scene. Let us start by defining the control problem 
addressed in this paper.

Control problem

Figure 1 illustrates the visual servoing problem addressed in this pa-
per. A VTOL UAV is equipped with a mono-camera. A reference image 
of a planar scene T , which was obtained with the UAV located in a 
reference frame ∗R , is available. From this reference image and the 
current image, obtained from the current UAV location (frame R ), 
the objective is to design a control law that can asymptotically stabi-
lize R  to ∗R . Note that asymptotic stabilization is possible only 
if ∗R  corresponds to a possible equilibrium, i.e., in the absence of 
wind the thrust direction associated with ∗R  must be vertical.

Dynamics of VTOL UAVs

We consider the class of thrust-propelled underactuated vehicles 
consisting of rigid bodies moving in 3D-space under the action of one 
body-fixed force control and full torque actuation [13]. This class con-
tains most VTOL UAVs (quadrotors, ducted fans, helicopters, etc.). 
Being essentially interested here in hovering stabilization, through-
out the paper we neglect aerodynamic forces acting on the vehicle’s 
main body. Assuming that ∗R is a NED (North-East- Down) frame 
(see figure 1), the dynamics of these systems is described by the 
following well-known equations : 

3 3

( )

mp TRb mgb

R RS
J J

ω
ω ω ω Γ

= − +


=
 = × +







                                                                (1)

where p is the position vector of the vehicle’s center of mass, ex-
pressed in ∗R , R  is the rotation matrix from R  to ∗R , ω  is 
the angular velocity vector of R  with respect to ∗R  expressed 
in R , S(.) is the matrix-valued function associated with the cross 
product, i.e., 3( ) , , ,S x y x y x y m= × ∀ ∈ is the mass, T is the 
thrust control input, 3 (0,0,1) ,Tb J=  is the inertia matrix,Γ  the 
torque control input and g is the gravity constant.

Figure 1 - Problem scheme

Homography matrix and monocular vision

With the notation of figure 1, consider a point P∈T and denote by 
*X  the coordinates of this point in ∗R . In ∗R , the plane T is 

defined as { }* 3 T *X ;n* X = d*∈  where n* are the coordinates in 
∗R  of the unit vector normal to T  and d* is the distance between 

the origin of ∗R  and the plane. Let us now denote as X  the coor-
dinates of P  in the current frame . One has *X RX p= +  and 
therefore,

*

* * *
*

* *
*

*

1[ ]

1( )

T T

T T T

T T T

X R X R p

X R X R p n X
d

R R pn X
d

HX

= −

= −

= −

=

                                                      (2)

where

*
*

1T T TH R R pn
d

= −                                                                  (3)

The matrix H  could be determined by matching 3D-coordinates 
in the reference and current camera planes of points of the planar 
scene. The cameras do not provide these 3D-coordinates, however, 
since only the 2D-projective coordinates of P on the respective image 
planes are available. More precisely, the 2D-projective coordinates of 
P in the reference and current camera planes are respectively given 
by

                              

*
*

*
X X  K K

zz
µ µ= =

where z* and z denote the third coordinate of X* and X respectively 
(i.e., the coordinate along the camera optical axis), and K is the cali-
bration matrix of the camera. It follows from (2) and (4) that

                                                    *Gµ µ=                                                                  (4)

with                             1G KHK −∝

where ∝ denotes equality up to a positive scalar factor. The matrix 
3 3G ×∈ , defined up to a scale factor, is called the uncalibrated ho-

mography matrix. It can be computed by matching projections onto 

*y
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y
x
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the reference and current camera planes of points of the planar scene. 
If the camera calibration matrix K is known, then the matrix H  can 
be deduced from G, up to a scale factor, i.e., 1K GK Hα− = . As a 
matter of fact, the scale factor αcorresponds to the mean singular 
value of the matrix 1 1

2: ( )K GK K GKα σ− −= (see, for example, [15, 
page 135]). Therefore, α can be computed together with the matrix
H . Another interesting matrix is

1
3( )H det H H Hη

−

= = 				                 (5)

Indeed, det ( )H 1=  so that H belongs to the Special Linear Group 
SL(3) . As we will see further on, this property can be used for ho-
mography filtering and estimation purposes. Let us finally remark that 

*
3 d

d
η =  

Feedback Control Design

In this section, we present two classes of feedback control laws for 
the asymptotic stabilization of VTOL UAVs based on homography 
measurements of the form H  defined by (3). The first class consists 
of control laws that are affine with respect to the homography matrix 
components. These control laws ensure local asymptotic stabilization 
under very mild assumptions regarding the observed scene. The sec-
ond class consists of nonlinear control laws that ensure large stability 
domains under stronger assumptions regarding the scene.

Linear control

The main difficulty in homography-based stabilization comes from 
the mixing of position and orientation information in the homography 
matrix components, as shown by relation (3). If the normal vector 
n*  is known, then one can easily extract from H the rotation matrix 
and the position vector up to the scale factor 1/d* . When n*  is un-
known, however, this extraction is no longer possible and this mixing 
of information must be dealt with. The control laws presented here 
rely on the possibility of extracting partially decoupled position and 
rotation information from H . This is shown by the following result, 
first proposed in [6].

Proposition 1
Let e = Me  with

*
3

*
3

2 ( )
,

( )
pI S m e

M e
eS m I Θ

   
= =    −   

			                 (6)

and
*

*
3

( ) , ( )

(0,0,1)

T
p

T

e I H m e vex H H

m b
Θ= − = −

= =
                                                (7)

where vex(.) is the inverse of the S(.) operator : vex
3 T(S(x)) = x ; x . Let = ( ; ; )Θ φ θ ψ∀ ∈  denote any parameter-

ization of the rotation matrix R such that 3R  I  + S( )Θ≈  around 
3R  I≈ (e.g., Euler angles). Then,

	 1. (p,R) e→  defines a local diffeomorphism around 
3(p,R)= (0, I ) . In particular, e = 0  if and only if 3(p,R)= (0, I ).

	 2. In a neighborhood of 3(p,R)= (0, I ),

           2 0
( , ) p

p

Lp
e L O p L

L LΘ Θ
Θ

Θ
  

= + =   
   

                                     (8)
 

with T
pL = S(( *;  ; 0) )Θ α β ,

        

* *

* *

*

0 1 0 0
0 0 1 0

0 0 20 0 2
p

c

L c L

c
Θ

α

β

      = =          
where *α and *β  are the (unknown) constant scalars defined by 

* * * * * *
*

1( , , ) ,Tn d c c
X

α β= =
‖ ‖

 and 2O  terms of order two at least.  

Eq. (8) shows the rationale behind the definition of e : at first order, 
components 1 2 3e , e , e contain information on the translation vector p 
only, while components 4 5 6e , e , e  contain decoupled information on 
the orientation (i.e., LΘ  is diagonal), corrupted by components of the 
translation vector. Although the decoupling of position and orientation 
information in the components of e is not complete, it is sufficient to 
define asymptotically stabilizing control laws, as shown below.

Let 3
pe ∈  (respectively 3eΘ ∈ ) denote the first (respectively 

last) three components of e, i.e., T T T
 pe = (e  , e )  Θ . The control design 

relies on a dynamic extension of the state vector defined as follows :

		  7 pK eξ ξ= − − 	                                              (9)

where 7K is a diagonal gain matrix. The variable ν  copes with the 
lack of measurements of e . The control design is presented through 
the following theorem.

Theorem 1 
Assume that the target is not vertical and that the camera frame is 
identical to R  (as shown in figure 1). Let

	
( )

( )
1 3 2 3

3
d

T m g k e k

JK

ξ

Γ ω ω

 = + +


= − −

			                (10)

with								      

	 ( )4
3

5 6

d d

d
p

K ge b
g

K e K

Θω γ

γ ξ

 = − + ×

 = − −

                                     (11)

Then,

	 1. Given any upper-bound *
M c  > 0 , there exist diagonal gain 

matrices i
i jK  = Diag(k ) i = 3,..., 7; j = 1, 2, 3  and scalar gains 

1 2k , k , such that the control law (10) makes the equilibrium 
3(p, R, v , , ) = (0, I , 0, 0, 0)ω ξ  of the closed-loop System (1)-(9)-

(10)-(11) locally exponentially stable for any value of * * )Mc  (0, c∈ .

	 2. If the diagonal gain matrices iK   and scalar gains make the 
closed-loop system locally exponentially stable for * *

Mc = c , then lo-
cal exponential stability is guaranteed for any value of

* * )Mc  (0, c∈ .

This result calls for several remarks.
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1) The control calculation only requires the knowledge of H  (via e ) 
andω . Thus, it can be implemented with a very minimal sensor suite 
consisting of a mono-camera and gyrometers only.

2) This result does not address the case of a vertical target. This case 
can also be addressed with the same kind of technique and stability 
result. Such an extension can be found in [7], together with several 
other generalizations of Theorem 1.

3) Since * *c = 1/ X and * *X d≥ , a sufficient condition for
( )* *

Mc 0, c∈  is that * *
Md 1/c≥ . Thus, 

Property 1) ensures that stabilizing control gains can be found given 
any lower bound on the distance between the reference pose and the 
observed planar target. This is a very weak requirement from an ap-
plication point of view. 
Property 2) is also a very strong result, since it implies that in order to 
find stabilizing control gains for any ( )* *

Mc 0, c∈ , it is sufficient to 
find stabilizing control gains for * *

Mc  = c . This is a much easier task, 
which can be achieved with classical linear control tools. In particular, 
by using the Routh-Hurwitz criterion, explicit stability conditions on 
the control gains can be derived (see [7] for more details).

Nonlinear control laws

Theorem 1 shows that homography-based stabilizing control laws 
can be designed from very limited a priori information (essentially, a 
lower bound on the distance to the scene at the desired configuration 
and the scene planarity property). A weakness of this stability result, 
however, is the lack of knowledge regarding the size of the stability 
domain. Under some assumptions regarding the scene orientation, it 
is possible to derive stabilizing control laws with explicit (and large) 
stability domains. A first case of interest in practice is when the target 
is horizontal. In this case, the normal vector to the scene is known 
and the extraction of the orientation and position up to a scale factor, 
from H , allows available nonlinear control laws with large stability 
domains to be used. Another interesting scenario for applications 
is when the target is vertical. This case is more challenging, since 
knowing that the scene is vertical does not completely specify its 
orientation. We present below a nonlinear feedback control to address 
this case. 

First, let us remark that *
3n  = 0  when the scene is vertical. Indeed, 

the normal vector to the scene is horizontal and the reference frame 
∗R  is associated with an equilibrium configuration so that its third 

basis vector is vertical (pointing downward). Then, it follows from 
(3) that

*

2 3 1 *

3 3

( )T

T

nHb Hb Hb R M p
d

gHb gR b

σ

γ

= ×


− =

= =






                                       (12)

with 1 3 2 3M( ) = I  + S( b )τ τ τ . These relations show that decoupled 
information can be extracted from H in terms of position and orien-
tation. Compared to the result given in proposition 1, this result is 
stronger, since the decoupling is complete and it holds without any 
approximation. On the other hand, it is limited to a vertical scene. 
Note that γ  corresponds to the components of the gravity vector 
in the body frame. This vector, which is used in conventional control 
schemes based on Cartesian measurements, is typically estimated 
from accelerometer and gyrometer measurements of an IMU, assum-
ing small accelerations of the UAV [17].

Eq. (12) leads us to address the asymptotic stabilization of UAVs from 
pose measurements of the form 3,T TR Mp gR bσ γ= =  where M is 
an unknown positive definite matrix. We further assume that the ve-
locity measurements ω  and T = R  pυ   are also available. The vari-
able υ  can be estimated, for example, via optical flow algorithms [10, 
11, 9]. In most studies on feedback control of underactuated UAVs, 
M is assumed to be the identity matrix, so that the relation between 
the measurement function and the cartesian coordinates is perfectly 
known. Several control design methods ensuring semi-global stability 
of the origin of system (1) have been proposed in this case (see, for 
example, [19, 13]). We show below that similar stability properties 
can be guaranteed in the case of uncertainties regarding the matrix 
M. To this end, let us introduce some notations.

For any square matrix ( )T
sM, M  = M+M /2 and ( )T

aM  = M-M /2 
respectively denote the symmetric and antisymmetric part of M. Giv-
en a smooth function f defined on an open set of  , its derivative 
is denoted as 'f . Given with [ ],m Mδ δ δ=  with 0 m Mδ δ< < , we 
introduce the saturating function

( )
( )

2

2
2

1

( )

2

m

M mM
m

M m

if

sat
ifδ

τ δ

τ δ δδ
τ δ

τ τ τ δ δ

 ≤
= − − > + −

	             (13)

Note that ( )2satδτ τ τ→ defines a classical saturation function, in the 
sense that it is the identity function on [ ]0, mδ and it is upper-bounded 
by Mδ .

We can now state the main result of this section (See [5] for more de-
tails, generalizations and proof). By a standard time separation argu-
ment commonly used for VTOL UAVs, we assume that the orientation 
control variable is the angular velocity ω  instead of the torque 1Γ  
(i.e., once a desired angular velocity dω   has been defined, a torque 
control input Γ  that ensures convergence of ω  to dω  is typically 
computed through a high gain controller).

Theorem 2 
Let satδ  and satδ denote two saturating functions. Assume that M  is 
positive definite and consider any gain values 1 2k , k  > 0 such that

2
2

2

1 2

( )min s

m

M

k M
C

k
k k

λ

δ
δ

 >




>
 + <



  
( )

1

1

|| |||| ||
( ) 2 | ' ( ) |

ak M M C
sup sat sat
k
g

τ δ δτ τ τ+
                     (14)

Define a dynamic augmentation :

3 3( ) , 0k kξ ξ ω ξ σ= × − − >                                                     (15)

together with the control (T, )ω such that:

1

2

T

ω

ω


=


 =


=

( )

( )

4 2
12 2

3

4 1
22 2

3

3

| | 1 ( )
| || |

| | 1 ( )
| || |

T T

T T

k S b R

k S b R

m

µ µ
µ µ

µµ µ
µ µ

µ µ
µµ µ

µ

− −
+

−
+





                             (16)
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where ,µ µ and the feedforward term TR µ are given by

( ) ( )

( )

( )

2 2
1 2

2 2
1 3 3

2 2
2 3 3

| | | |

(| | ) 2 (| | )

(| | ) 2 (| | )

T T

T

k sat k sat v v

R

R k k sat I sat

k sat v I sat v vv ub

δ δ

δ δ

δ δ

µ γ ξ ξ

µ µ

µ ξ ξ ξξ ξ σ

γ

′

′

= + +

=

 = − + − 
 + + − 



Then,

	 i) there exists 3,m k > 0  such that, for any 3 3mk  > k , the equi-
librium 3( , p, p, ) = (0, 0, 0, gb ) ξ γ  of the closed-loop system (1)-
(15)-(16) is asymptotically stable and locally exponentially stable with 
convergence domain given by{ }3( , , , )(0); (0) (0)p p bξ γ µ µ≠ − .

	 ii) if sM and aM commute, the same conclusion holds for the  
first inequality in (14) replaced by :

( )
2
2 1( )

( ) 2 | ' ( ) |
min s a

a s

k M k M

M sup sat M sup satτ δ τ δ

λ

τ τ τ

>

+

‖ ‖

‖ ‖ ‖ ‖  
	             (17)

Let us comment on the above result. It follows from (14) that

( ) ( )2 2
1 2 1 2| | | | | | | |Mk sat k sat v v k k gδ δξ ξ δ γ+ ≤ + < =

This guarantees that 3(0) | (0) | bµ µ≠ −  whenever
		  3 3 1 2(0) ( )T

Mgb R b k k δ> − +  
Consequently, the only limitation on the convergence domain con-
cerns the initial orientation error and there is no limitation on the ini-
tial position/velocity errors. Note also that the limitation on the initial 
orientation error is not very strong. Note that 3ω , which controls the 
yaw dynamics, is not involved in this objective. Thus, it can be freely 
chosen. In practice, however, some choices are better than others 
(see below for more details).

Application to the visual servoing problem

From (12), Theorem 2 applies directly with

		

* **
1 2

3 3* * *( )
n nnM M I S b

d d d
 

= = + 
   

In this case, one verifies that the stability conditions (14)-(17) are 
equivalent to the following :

*
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                                                      (18)

Note that the first condition, which ensures that M is positive 
definite, essentially means that the camera is “facing” the tar-
get at the reference pose. This is a very natural assumption from 
an application point of view. When (loose) bounds are known for 

* * *
min max 1 1min:d d d d and n n≤ ≤ ≥ , and recalling that *| | 1n = , the 

last condition of equation (18) can be replaced by :

2
1min min 2 1

21
3 3

n d k k  
> + 

 
				                (19)

The yaw degree of freedom is not involved in the stabilization objec-
tive. On the other hand, it matters to keep the target inside the field 
of view of the camera. We propose to use the following control law :

3 5 21k Hω = 					                 (20)

Upon convergence of the position, velocity, roll and pitch angles due 
to the other controls, the yaw dynamics will be close to ( )5k sinψ ψ≈ − , 
thus ensuring the convergence of ψ  to zero unless is initially equal 
toπ (case contradictory to the visibility assumption). Another nice 
feature of this yaw control is that it vanishes when 21 0H = , i.e., when 
the target is seen, from the yaw prospective, as it should be at the 
end of the control task. This means that the controller tries to reduce 
the yaw angle only when the position/velocity errors have been sig-
nificantly reduced.

Homography estimation

Obtaining a good estimate of the homography matrix in real-time is a 
key issue for the implementation of the stabilization algorithms pre-
sented earlier. In this section, we first briefly review existing computer 
vision algorithms to obtain an estimate of the homography matrix. 
Then, we focus on the use of inertial measurements to improve and 
speed-up the estimation process.

Computer vision methods

There are two main classes of vision algorithms for computing the 
homography matrix between two images of the same planar scene:

1. Interest point based methods

2. Intensity based methods

In the first case, the homography matrix is recovered from point cor-
respondence between the two images in a purely geometrical way. A 
first step consists in the detection of interest points. These correspon-
dences can be estimated by matching (with interest point detection 
and descriptor) or KLT tracking (based on intensity). The homogra-
phy matrix is recovered from this correspondence with algorithms 
such as DLT [12], which are most of the time coupled with robust 
estimation techniques like RANSAC or M-estimator, in order to avoid 
false matching. For more details on interest point based methods, the 
reader is also referred to [12].

In the second case, the homography matrix is estimated by striving 
to align two images (the reference image or “template” T  and the 
current image I). This is done, for example, by defining a transfor-
mation (usually called “warping”) from the reference image to the 
current image * *: ( )w q q w qρ ρ→ = , where *q  denotes a pixel in 
the reference image, q denotes a pixel in the current image and ρ  is 
a parameterization of the homography matrix, for example a param-
eterization of the Lie algebra of SL(3). This definition leads to an opti-
mization problem that is solved numerically. The problem consists in 
minimizing with respect to ρ a measurement of the distance between 
the reference image *{ ( )}T T q=  and the transform of the image I 
by the warping : *{ ( ( ))}I w qρ . The cost function of the optimization 
problem varies with the proposed method, but most of the time it es-
sentially boil downs to a sum over the image’s pixels of the distance 
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between the pixel intensities in the two images. Usually, the optimi-
zation process only provides the optimal solution locally, i.e., pro-
vided that the distance between the two images is small enough. One 
way to improve the convergence of this type of method is to rely on 
Gaussian pyramids [4]. In this case, the template image is smoothed 
by a Gaussian and recursively down-sampled by a factor two to form 
a pyramid of images, with the template image at the bottom and the 
smallest image at the top. The visual method is then successively 
applied at each level of the pyramid, from top to bottom. Thus, large 
movements are kept small in pixel space and the convergence do-
main of the method is improved.

In this paper we focus on two estimation algorithms of this sec-
ond class of methods : the ESM algorithm (Efficient Second order 
Minimization) [3], and the IC algorithm (Inverse Compositional) [2]. 
Table 5.2 summarizes the main features of both methods. The main 
interest of the IC method is that it allows a great amount of pre-com-
putation to be performed based on the reference image. Indeed, the 
Jacobian matrix J of the cost function is computed from the template 
image, i.e., it depends neither on the current image nor on the ho-
mography parameterization ρ. Thus, the inverse of TJ J  can also be 
pre-computed. Only the computation of the intensity error and matrix 
multiplication are needed for each iteration. By contrast, the ESM is a 
second order method that uses both the current image gradient and 
template image to find the best quadratic estimation of the cost func-
tion. Therefore, each iteration of the optimization algorithm is longer 
than for the IC method. As a counterpart, the convergence rate of the 
method is faster.

IMU-aided homography estimation

Cameras and IMUs are complementary sensors. In particular, the 
camera frame rate is relatively low (around 30Hz) and, in addition, 
vision data processing can take a significant amount of time, espe-
cially on small UAVs with limited computation power. By contrast, 
IMUs provide data at a high frequency and this information can be 
processed quickly. Since IMUs are always present on UAVs for con-
trol purposes, it is thus natural to make use of them to improve the 
homography estimation process. In this section we present nonlinear 
observers recently proposed in [16] to fuse a vision-based homog-
raphy estimate with IMU data. This fusion process is carried out on 
the Special Linear Lie Group SL(3) associated with the homography 
representation (5), i.e., det (H) = 1. This allows the Lie group invari-
ance properties to be made use of in the observer design. We focus 
on two specific observers.

The first observer considered is based on the general form of the 
kinematics on SL(3):
H X H= − 					                      (21)
where H SL∈ (3) and X sl∈ (3). The observer is given by

( )( )
( )

1 3

2 3

ˆ ˆ ˆ( )

ˆ ( )

HH Ad X k H I H H

X k H I H

= − −
 −

 − − =






 



 





			             	
						                  (22)

where Ĥ SL∈ (3), X sl∈ (3) and 1ˆH HH −= . It is shown in [16] that 
this observer ensures almost global asymptotic stability of 3(I , 0) for 
the estimation error 1ˆ ˆ( ; ) ( ; )H X HH X X−= −   (i.e., asymptotic con-
vergence of the estimates to the original variables) provided that X 
is constant (see [16, Th. 3.2] for details). Although this condition is 

seldom satisfied in practice, this observer provides a simple solution 
to the problem of filtering homography measurements. Finally, note 
that this observer uses homography measurements only.

A second observer, which explicitly takes into account the kinemat-
ics of the camera motion, is proposed in [16]. With the notation of 
Section 3, recall that the kinematics of the camera frame is given by

		  ( )R RS
p Rv

ω =


=





 			              (23)

With this notation, the group velocity X in (21) can be shown to be 
given by

		
3

3

( )
3

( ) ( )

T Tvn vnX S I
d d

S M

ω

ω η

= + −

= + 
		              

with *

TvnY
d

= 					                 (24)

The following observer of H and Y is proposed in [16] :

( )( )
( )

3
1 3

3
2 3

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ( ) ( )

HH Ad S Y k H I H H

Y YS k H I H

ω η

ω η

 = − + − −

 = − −





 



 

 


 	             (25)

where Ĥ SL∈ (3); 3 3Ŷ ×∈  and 1ˆH HH −= .

Conditions under which the estimates ˆ ˆ( , )H Y almost globally con-
verge to ( , )H Y  are given in [16, Cor. 5.5]. These conditions are es-
sentially reduced to the following: i) ω  is persistently exciting, and ii) 
υ is constant. The hypothesis of persistent excitation on the angular 
velocity is used to demonstrate the convergence of Ŷ  to Y . In the 
case of lack of persistent excitation, Ŷ converges only to 3Y+a(t)I  
where a(t)∈ , but the convergence of Ĥ  to H still holds. The hy-
pothesis of υ  constant is a strong assumption. Asymptotic stability 
of the observer for υ constant, however, guarantees that the observer 
can provide accurate estimates when υ  is slowly time varying with 
respect to the filter dynamics. This will be illustrated later in the paper 
and verified experimentally.

Architecture and data synchronization

Implementation of the above observers from IMU and camera data 
is done via a classical prediction/ correction estimation scheme. The 
quality of this implementation requires careful handling of data ac-
quisition and communication. Synchronization and/or time-stamping 
of the two sensor data are instrumental in obtaining high-quality es-
timates. If the two sensors are synchronized, time-stamping may be 
ignored provided that the communication delay is short enough and 
that no data loss occurs. Discrete-time implementation of the observ-
ers can then be done with a fixed sampling rate. If the sensors are not 
synchronized, it is necessary to timestamp the data as close to the 
sensor output as possible and deal with possibly variable sampling 
rates.

Figure 2 gives a possible architecture of the interactions between es-
timator and sensors (Vision and IMU). Homography prediction ob-
tained from IMU data is used to initialize the vision algorithm. Once 
a new image has been processed, the vision estimate obtained, con-
sidered as a measurement, is used to correct the filter’s homography 
estimate. Due to the significant duration of the vision processing with 
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respect to the IMU sampling rate, this usually requires the prediction 
process to be reapplied via IMU data from the moment of the image 
acquisition. This leads us to maintain two states of the same esti-
mator (see figure 2) : the real-time estimator, obtained from the last 
homography measurement and IMU data, and a post-processed es-
timator that is able to correct a posteriori the homography estimates 
from the time of the last vision data acquisition to the time when this 
data was processed.

Experimental setup

We make use of a sensor consisting of an xSens MTiG IMU working 
at a frequency of 200 Hz and an AVT Stingray 125B camera that pro-
vides 40 images with a resolution of 800 x 600 pixels per second. The 
camera and the IMU are synchronized. The camera uses wide-angle 
lenses (focal 1.28 mm). The target is placed over a surface parallel 
to the ground and is printed out on a 376 x 282 mm sheet of paper to 
serve as a reference for the visual system. The reference image has 
a resolution of 320 x 240 pixels. Thus, the distance *d  can be deter-
mined as 0.527 m. The processed video sequence presented in the 
accompanying video is 1321 frames long and presents high velocity 
motion (rotations of up to 5 rad/s, translations, scaling change) and 
occlusions. In particular, a complete occlusion of the pattern occurs 
slightly after t = 10 (s).

Figure 2  - Visuo-Inertial method scheme and sensor measurement 
processing timeline

Four images of the sequence are presented in figure 3. A “ground 
truth” of the correct homography for each frame of the sequence has 
been computed using a global estimation of the homography by SIFT, 
followed by the ESM algorithm. If the pattern is lost, we reset the 
algorithm with the ground-truth homography. The sequence is used 
at different sampling rates to obtain more challenging sequences and 
evaluate the performance of the proposed filters.

For both filters (22) and (25), the estimation gains have been chosen 
as 1k  = 25  and 2k  = 250 . Following the notation of the description 
available at http://esm.gforge.inria.fr/ESM.html, the ESM algorithm is 
used with the following parameter values : prec = 2, iter = 50.

Tracking quality

In this section we measure the quantitative performance of the dif-
ferent estimators. This performance is reflected by the number of 
frames for which the homography is correctly estimated. We use the 
correlation score computed by the visual method to discriminate be-
tween well and badly estimated frames. A first tracking quality indica-
tor is the percentage of well-estimated frames. This indicator will be 
labeled as “%track”. Another related criterion concerns the number 
of time-sequences for which the estimation is successful. For this, 
we define a track as a continuous time-sequence during which the 
pattern is correctly tracked. We provide the number of tracks in the 
sequence (label “nb track”) and also the mean and maximum track 
length. Table 1 presents the results obtained for the full sequence at 
various sampling rates (40 Hz, 20 Hz and 10 Hz).

The ESMonly estimator works well at 40 Hz since 95% of the se-
quence is correctly tracked, but performance rapidly decreases as 
the distance between images increases (72% at 20 Hz and only 35% 
at 10 Hz). It must be noted that the ESM estimator parameters are 
tuned for speed and not for performance, with real-time applications 
in mind.

Figure 3 - Four images of the sequence at 20 Hz : pattern position at previ-
ous frame (green), vision estimate (blue) and prediction of the filterIMU (red)

The filternoIMU estimator outperforms the ESMOnly filter on the se-
quence at 40 Hz. Tracks are on average twice as long and many pat-
tern losses are avoided (11 tracks versus 19 for ESMonly). At 20 Hz, 
the performance is even better, but the difference between these two 
solutions becomes smaller. At 10 Hz, the filter degrades performance.

The filterIMU tracks almost all of the sequence at both 40 Hz and 
20 Hz. There is just one tracking failure, which occurs around time 
t = 10 s due to the occlusion of the visual target. The improvement 
provided by the IMU is clearly shown. At 10 Hz, the performance sig-
nificantly deteriorates, but this filter still outperforms the other ones.
Let us finally remark that these performances are obtained despite the 
fact that the assumption of constant velocity in the body frame (upon 
which the filter stability was established) is violated.

Visuo-inertial method

Visual method
Estimator

Prost -processing

Estimator

Real-time

Image
IMU
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Udapte

State
Udapte
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Image
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1

ˆ
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t

t

IMU
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Ĥ Real-time
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Frame 
rate

Method % track nb track
Track length

mean max

40 Hz
1321 img

ESMonly
FilternoIMU
FilterIMU

94.31
97.74
98.78

19
11
2

65.36
114.27
646.5

463
607
915

20 Hz
660 img

ESMonly
FilternoIMU
FilterIMU

72.38
80.5

97.42

59
52
2

8.0
10.17
321.5

89
94

456

10 Hz
330 img

ESMonly
FilternoIMU
FilterIMU

38.79
32.36
58.66

46
58
59

2.78
1.72
3.27

27
4

27

Table 1 - Good track rate for various frame-rates and methods : percentage 
of well estimated frames, number of tracks, mean and maximum track 
length on the sequence

Computational aspects

Implementing vision algorithms on small UAVs is still a challenge 
today. Computational optimization is often necessary, in order to 
achieve real-time implementation (e.g., vision processing at about 10 
- 20 Hz). In this section, we discuss some possible approaches to 
speed up the vision processing for the homography estimation prob-
lem considered here.

Computational optimization

Two types of optimization can be considered. The first one concerns 
the optimal use of the computing power. It consists, for example, in 
computation parallelization (SIMD instructions, GPU, multiproces-
sor/core), fix-point computation, or cache optimization. This type of 
optimization does not affect the vision algorithm accuracy. Another 
type of optimization concerns the vision algorithm itself and the pos-
sibilities of lowering its computational cost. This may affect the ac-
curacy of the vision algorithm output. These two types of optimization 
have been utilized here: SIMD (Single Instruction Multiple Data) for 
computing power optimization and pixel selection for vision algorithm 
optimization.

SIMD instructions allow the data to be processed by packets. In SSE 
(x86 processor) and NEON (arm processor), it is possible to pro-
cess four items of floating point data with one instruction. Thus, using 
this instruction with careful data alignment can theoretically improve 
performance by a factor of four. This theoretical figure is limited by 
load/store operation and memory (cache) transfer issues. This opti-
mization is only done on computation intensive parts of the program, 
such as intensity gradient computation, image warping, or Jacobian 
estimation.

One approach to speed up dense vision algorithms is to use only the 
pixels that provide effective information for the minimization process. 
Indeed, the lower the number of pixels, the lower the computation 
cost. There are many ways to select good pixels for the pixel intensity 
minimization between two images ([8]). One approach consists in 
using only pixels with a strong gradient, since intensity errors provide 

Machine ESM IC

Without SIMD With SIMD Without SIMD With SIMD

Pixel
Selection

No PC 60.0 (94) 20.0 (94) 73.0 (81) 29.5 (81)

Yes PC 27.0 (86) 15.0 (86) 7.5 (72) 4.4 (72)

No Odroid 347 (94) 202 (94) 409 (81) 314 (81)

Yes Odroid 165 (85) 140 (86) 53 (72) 45 (73)

Table 2 - Visual method performance : time (in ms) and accuracy (in %) for the different combination of optimization and platform

Method ESM IC

Minimization objective
*

2*min ( ) ( ( ))
q

T q I w qρρ
 − ∑

Step minimization objective ( )
*

2* *
( )min ( ) ( ( )

q
T q I w q

ρ
ρ

ρ δδ +−∑
*

* * 2min ( ( ( )) ( ( )))
q

T w q I w q
ρ

ρ
δ ρδ

−∑

Effective computation ( ) 1 * *( ( ) ( ( )))T TJ J J T q I w qρ ρδ
−

= −

Jocobian J ( )1
2

wT I
ρ

∆ ∆
ρ
∂

+
∂ 0

wT∆
ρ
∂
∂

Use current image gradient ( )I∆ Yes No

Use template gradient ( )T∆ Yes Yes

Table 3 - Visual method summary
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position/orientation information contrary to image parts with no in-
tensity gradient. In the experimental results reported below, we used 
the best 2500 pixels.

Evaluation

In this section, we report experimental results obtained with both the 
ESM and IC methods. For each method, we used the same stop cri-
teria for the optimization: the maximal number of steps per scale is
30 and the stop error is 1e-3. The number of scales in the pyramid 
is four.

Table 2 provides the mean frame time (in ms) and mean performance 
(percentage of correctly estimated homographies) of the various 
combinations of optimization and methods on the sequence at 40 Hz 
(see experimental setup). The computation is performed on a desktop 
PC (Intel(R) Core(TM) i7-2600K CPU @ 3.40 GHz) and the same 
result is provided for an embedded platform (Odroid U2) based on an 
Exynos4412 Prime 1.7 Ghz ARM Cortex-A9 Quad processor.

With SIMD, the performance gain is from 3.0 x to 1.7 x on x 86 and 
1.7 x to 1.17 x on the arm. With pixel selection the gain is better, from 
1.3 to 2.1 for ESM and from 1.3 x to 9 x for IC.

Finally, the ratio between the fastest and the slowest is 13.6 x with a 
loss of 22% of correctly tracked frames.

Conclusion

We have presented recent stabilization and estimation algorithms 
for the stabilization of VTOL UAVs based on mono-camera and IMU 
measurements. The main objective is to rely on a minimal sensor 
suite, while requiring the least amount of information on the envi-
ronment possible. Estimation algorithms have already been evaluated 
experimentally. The next step is to conduct full experiments on a UAV 
with both stabilization and estimation algorithms running on-board. 
This work is currently in progress. Possible extensions of the current 
work are multiple, such as for example the use of accelerometers to 
improve the homography estimation and/or the stabilization, or the 
extension of this work to possibly non-planar scenes 
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Acronyms

VTOL	 (Vertical Take-Off and Landing)
UAV 	 (Unmanned Aerial Vehicle)
GPS 	 (Global Positioning System)
3D 	 (three-dimensionnal)
IMU 	 (Inertial Measurement Unit)
NED 	 (North-East-Down)
KLT 	 (Kanade-Lucas-Tomasi (feature tracker))

DLT 	 (Direct Linear Transformation)
RANSAC (RANdom SAmple Consensus)
ESM 	 (Efficient Second-order Minimization)
IC 	 (Inverse Compositional)
SIFT 	 (Scale-Invariant Feature Transform)
SIMD 	 (Single Instruction Multiple Data)
GPU 	 (Graphics Processing Unit)
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Aerial Robotics

Nonlinear Feedback Control 
of VTOL UAVs

This paper addresses the nonlinear feedback control of Unmanned Aerial 
Vehicles (UAVs) with Ver tical Take-Off and Landing (VTOL) capacities, such 

as multi-copters, ducted fans, helicopters, conver tible UAVs, etc. First, dynamic 
models of these systems are recalled and discussed. Then, a nonlinear feedback 
control approach is presented. It applies to a large class of VTOL UAVs and aims 
at ensuring large stability domains and robustness with respect to unmodeled 
dynamics. This approach addresses most control objectives encountered in 
practice, for both remotely operated and fully autonomous flight.

Introduction

Like other engineering fields, flight control makes extensive use of 
linear control techniques [43]. One reason for this is the existence 
of numerous tools to assess the robustness properties of a linear 
feedback controller [38] (gain margin, phase margin, 2H , H∞  or LMI 
techniques, etc.). Another reason is that flight control techniques have 
been developed primarily for full-size commercial airplanes, which 
are designed and optimized to fly along very specific trajectories 
(trim trajectories with a very narrow range of angles of attack). 
Control design is then typically achieved from the linearized equations 
of motion along desired trajectories and this makes linear control 
especially suitable. Some aerial vehicles are required to fly in very 
diverse conditions, however, with large and rapid variations of the angle 
of attack. Examples are given by fighter aircraft, convertible aircraft, or 
small UAVs operating in windy environments. In such cases, ensuring 
large stability domains matters, and nonlinear feedback designs can 
be useful for this purpose.

Nonlinear feedback control of aircraft can be traced back to the early 
eighties. Following [41], control laws based on the dynamic inversion 
technique have been proposed to extend the flight envelope of military 
aircraft (see, e.g., [45] and the references therein). The control 
design strongly relies on tabulated models of aerodynamic forces and 
moments, like the High-Incidence Research Model (HIRM) of the Group 
for Aeronautical Research and Technology in Europe (GARTEUR) [26]. 
Compared to linear techniques, this type of approach allows the flight 
domain to be extended without involving gain scheduling strategies. 
The angle of attack is assumed to remain away from the stall zone, 
however, and should this assumption be violated the behavior of the 
system is unpredictable. Comparatively, nonlinear feedback control of 
VTOLs is more recent, but it has been addressed with a larger variety of 

techniques. Dynamic inversion has been used as well [10], but many 
other techniques have also been investigated, such as the Lyapunov-
based design [25, 16], Backstepping [4], Sliding modes [4, 46], or 
Predictive control [20, 3]. A more complete bibliography on this topic 
can be found in [13]. Most of these studies address the stabilization 
of hover flight or low-velocity trajectories and therefore little attention 
is paid to aerodynamic effects. These are typically either ignored or 
modeled as a simple additive perturbation, the effect of which has 
to be compensated for by the feedback action. In highly dynamic 
flight conditions or harsh wind conditions, however, aerodynamic 
effects become important. This raises several questions, which are 
little addressed in the control or robotics communities, such as, for 
example, which models of aerodynamic effects should be considered 
for the control design? Or which feedback control solutions can be 
inferred from these models so as to ensure large stability domains 
and robustness?

This paper presents a nonlinear feedback control approach for VTOL 
UAVs, which aims at ensuring large stability domains together with 
good robustness properties with respect to additive perturbations. 
The control design covers several control objectives associated with 
different autonomy levels (teleoperation with thrust direction and thrust 
intensity reference signals, teleoperation with linear velocity reference 
signals, fully autonomous flight with position reference signals). The 
approach, which explicitly takes into account aerodynamic forces in the 
control design, is particularly well suited to aerial vehicles submitted 
to small lift forces (e.g., classical multi-copters, or helicopters) or to 
vehicles with shape symmetry properties with respect to the thrust 
axis (rockets, missiles, or airplanes with annular wings). The control 
methodology has been developed by the authors for several years [14, 
12, 36, 37] and this paper provides a summary of these developments 
together with perspectives.
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The paper is organized as follows. In § "Dynamics of aircraft motions", 
dynamical equations of VTOL UAVs are recalled and the various 
forces affecting the flight dynamics are discussed. § "Preliminaries 
on control design" provides some preliminaries on the feedback 
control design and a discussion of the merits of nonlinear feedback 
control. In § "Symmetric bodies and spherical equivalence", we show 
that for a class of symmetric bodies, the dynamical equations can be 
transformed into a simpler form (the so-called "spherical case"). This 
transformation is then used in § "Control design" to propose a feedback 
control design method applicable to several vehicles of interest.

Dynamics of aircraft motion

Aircraft dynamics are described by a set of differential equations 
that characterize the state of the aircraft in terms of the vehicle’s 
orientation, position, and angular and linear velocities. These variables 
are measured with respect to some reference frames.

Let { }0 0 0; , ,O i j k=


 

  denote a fixed inertial frame with respect to 
(w.r.t.) which the vehicle’s absolute pose is measured. This frame is 
chosen as the NED frame (North-East-Down) with 0i



 pointing to the 
North, 0j



 pointing to the East, and 0k


 pointing to the center of the 
earth. Let { }; , ,G i j k=



 

  be a frame attached to the body, with G the 
body’s center of mass. The linear and angular velocities v  and ω  of 
the body frame   are then defined by

dv OG
dt

=


 ,    ( , , ) ( , , )d i j k i j k
dt

ω= ×
 

   



(1)

where, here and throughout the paper, the time-derivative is taken w.r.t. 
the inertial frame I.

T

G

0

0j


0i


0k


k


j


υ

ω

i


Figure 1 – Notation

Equations of motion for a flat earth

Let F


 and M


 denote respectively the resultant of the external forces 
acting on a rigid body of mass m and the moment of these forces 
about the body’s center of mass G. Newton’s and Euler’s theorems of 
mechanics state that

d p F
dt

=




         
d h M
dt

=




(2)

with

p mv=
 

           
 

( ) .
P body

h GP GP dm Jω ω
′∈

′ ′= − × × =∫
  

 

(3)

where 


J  denotes the inertia operator at G. Throughout this paper 
aircraft are modeled as rigid bodies of constant mass m and we focus 

on the class of vehicles controlled via four control inputs: the thrust 
intensity T ∈  of a body-fixed thrust force T Tk= −




 and the three 
components (in body-frame) of a control torque vector GΓ



. This 
class of systems contains (modulo an adequate choice of control 
inputs) most aerial vehicles of interest, like multicopters, helicopters, 
convertibles UAVs, or even conventional airplanes. The torque 
actuation can be obtained in different ways, for example, control 
surfaces (fixed-wing aircraft), propellers (multi-copters), swash-plate 
mechanism and tail-rotor (helicopters). By neglecting round-earth 
effects and buoyancy forces1, the external forces and moments on the 
aircraft are commonly modeled as follows [8, Ch. 2], [12], [42], [43]:

a bF = mg + F -Tk + F


  



a GM = GP× F +Tk ×G +GΘ
   

(4)

where 0g gk=




 is the gravity acceleration vector with g the gravity 
constant, ( , )aF P



 is the resultant of the aerodynamic forces and its 
application point2, and Θ  is the application point of the thrust force. 
In eq. (4) we assume that the gyroscopic torque (usually associated 
with rotor craft) is negligible or that it has already been compensated 
via a preliminary torque control action. The force bF



 is referred to as 
a body force. It is induced by the control torque vector GΓ



 and thus 
represents the effect of the control torque actuation on the position 
dynamics. Conversely, the term Tk G× Θ



 in (4) represents the effect 
of the control force actuation on the orientation dynamics.

Besides the gravity force, eq. (4) allows three types of forces (and 
torques) to be identified: 

•	body forces, which represent couplings between thrust and 
torque actuations; 

•	control forces; 
•	aerodynamic forces. 

This decomposition is based on a separation principle that is only valid 
in first approximation (this issue will be detailed later on). Nevertheless, 
identifying the dominant effects of dynamics is useful from a control 
point of view, since it allows generic control strategies to be worked 
out, which can be refined case by case for specific classes of vehicles. 
We now discuss the modeling of these three types of forces in more 
detail.

Body forces

2 0Γ >1 0Γ >

3 0Γ >

Lj


i


k


Figure 2 – Ducted-fan tail-sitter HoverEye of Bertin Technologies

1 The aircraft is assumed to be much heavier than air.
2 The point P is the so called body’s center of pressure. This point depends on 
several variables such as the vehicle’s velocity and environmental conditions. 
As a consequence, its determination is as complex as that of the aerodynamic 
forces aF



, and is beyond the scope of this paper.
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α
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G
av

Figure 3 – Classic definition of (α, β) angles for a flat wing

The influence of the torque control inputs on the translational dynamics 
via the body force bF



 depends on the torque generation mechanism. 
More specifically, this coupling term is negligible for quadrotors [9], 
[32], [6], but it can be significant for helicopters because of the 
swashplate mechanism [11, Ch.1], [7], [22], [24], [28, Ch. 5] and for 
ducted-fan tail-sitters because of the rudder system [29, Ch. 3], [31]. 
Thus, the relevance of this body force must be discussed in relation to 
the specific application [31] [29, Ch. 3] [13]. Let us remark, however, 
that the body force bF



 is typically small compared to either the gravity, 
the aerodynamic force, or the thrust force. Similarly, the term Tk G× Θ



 
in (4), which represents the influence of the thrust control input on the 
rotational dynamics, is usually small because Θ is close to the axis 
( , )G k



. These body forces will be omitted from now on, since they can 
be either neglected, or compensated by the control action.

Control forces

The model (4) should be complemented by a modeling of the actuators 
that generate the inputs T and GΓ



. By assuming that the dynamics of 
these actuators are (sufficiently) faster than the vehicle’s dynamics, 
they can be neglected in the first approximation. The effects of the 
vehicle’s motion and/or wind on the actuation efficiency are another 
aspect that cannot be neglected if a precise modeling is required. For 
example, blade flapping is a well-known phenomenon that highlights 
the difficulty in making the control force and torque completely 
independent of external aerodynamic conditions for aerial vehicles 
actuated by propellers. For the sake of simplicity and genericity, we 
will assume in the paper that it is possible to completely decouple 
the control action from the vehicle’s motion and wind. We are aware, 
however, that this can be an important issue in practice.

Aerodynamic forces

The modeling of aerodynamic forces and torques aF


 and 
a aM GP F= ×


 

 acting on the vehicle remains one of the major 
problems in the modeling process. Results on this topic can be found 
in [1] [42, Ch. 2] [43, Ch. 2] for fixed-wing aircraft, in [32] [15] [6] 
for quadrotors, in [17] [21] [29, Ch. 3] [30] for ducted-fan tail-sitters 
and in [27], [33], [44] for helicopters. As explained above, we assume 
that the actuators (e.g., propellers) are not affected by environmental 
conditions and, therefore, we focus hereafter on the modeling of 
aerodynamic forces acting on the vehicle’s main body.

A well-accepted general expression of aerodynamic forces and moments 
can be deduced by applying the so-called Buckingham π theorem [1, p. 34] 

[5]. More precisely, we denote with av  the air velocity, which is defined as 
the difference between v  and the wind velocity wv , i.e., a wv v v= −

  

. The 
lift force LF



 is the aerodynamic force component along a perpendicular to 
the air velocity and the drag force DF



 is the aerodynamic force component 
in the direction of the air velocity. Now, consider a (any) pair of angles (α, 
β) characterizing the orientation of av  with respect to the body frame (e.g., 
figure 3). Combining the Buckingham π−theorem [1, p. 34] with the knowledge 
that the intensity of the steady aerodynamic force varies approximately as 
the square of the air speed | |av  yields the existence of two dimensionless 
functions (·)LC  and (·)DC  depending on the Reynolds number Re, the 
Mach number M, and (α, β), and such that

( ) ( ), , , , ,

| | ( , , , )

a L D

L a a L e a a

a a e a

a

D D

a

F F F

F k v C R M r v v

F k v C R M v
r.v r
k = /

= 0       =
2

1

α β α β

α β

ρ

= +

= ×

= −

Σ

  



   



 

  

(5)

where ρ is the free stream air density, Σ  is an area germane to 
the given body shape, (·)r  is a unit vector-valued function, and 

( )DC +∈ and ( )LC ∈  are the aerodynamic characteristics of 
the body, i.e., the drag coefficient and lift coefficient, respectively. 
By using the above representation of the aerodynamic force –  first 
introduced in [37] – the lift direction is independent from the 
aerodynamic coefficients, which in turn characterize the aerodynamic 
force intensity 2 2 2(| | | | )a a a L DF k v C C= +



 , while the lift direction is 
fully characterized by the unit vector (·)r , which only depends on 
(α, β) and the air velocity magnitude | |av . We will see that geometric 
symmetries of the vehicle’s shape imply precise expressions of the 
vector (·)r .

The main assumption under which the model (5) holds, is that the effects 
of the vehicle’s rotational and unsteady motions on its surrounding 
airflow pattern are not preponderant [42, p. 199]. For instance, a 
constant angular velocity flight generates a different airflow pattern 
from that in steady cruise, which means that the aerodynamic forces 
and moments in general depend also on the vehicle’s angular velocity. 
In addition, the aircraft translational and rotational accelerations also 
perturb the airflow pattern, which in turn causes transient effects 
that should be taken into account for precise aerodynamic modeling. 
These effects will be neglected here, which leads us to assume (5) as 
the model of the aerodynamic forces.

Preliminaries on control design

From the assumptions and simplifications made in § "Dynamics of 
aircraft motions", the control model reduces to

a

a G

ma = mg + F Tk
d (i, j,k)= ×(i, j,k)
dt
d ( J. )= GP× F +
dt

ω

ω

−

Γ




 

 

   



 
 



(6)

where 
dva
dt

=




 is the linear acceleration of the vehicle. To develop 

general control principles applicable to a large number of aerial 
vehicles, it is necessary to become free of actuation specificities and 
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concentrate on the vehicle’s governing dynamics. In agreement with a 
large number of works on VTOL control (see [13] for a survey) we 
assume that the torque control GΓ



 allows us to modify the body’s 
instantaneous angular velocity ω  at will. Consequently, the angular 
velocity ω  can be considered as an intermediate control input. The 
above consideration implicitly means that the torque calculation and 
the ways of producing this torque can be decoupled from high-level 
control objectives, at least in the first design stage. The corresponding 
physical assumption is that “almost” any desired angular velocity can 
be obtained within a short amount of time. In the language of Automatic 
Control, this is a typical “backstepping” assumption. Once it is made, 
the vehicle’s actuation consists of four input variables, namely, the 
thrust intensity and the three components of ω



. The control model (6) 
then reduces to

ama = mg + F Tk
d (i, j,k)= ×(i, j,k)
dt

ω

−




 

 

   



(7)

where T and ω  are the system’s control inputs.

Basics of control design

The control model (7) highlights the role of the gravity force mg  and 
aerodynamic force aF



 in obtaining the body’s linear acceleration 
vector a . It shows, for instance, that to move with a constant 
reference velocity the controlled thrust vector Tk



 must be equal to 
the resultant external force

ext aF mg F= +
 



When aF


 does not depend on the vehicle’s orientation, as in the 
case of spherical bodies subjected to orientation-independent drag 
forces only, the resultant external force does not depend on this 
orientation either (see figure 4 for an illustration). The control strategy 
then basically consists in aligning the thrust direction k



 with the 
direction of extF



 (orientation control with ω


) and in opposing the 
thrust magnitude to the intensity of extF



 (thrust control with T). In 
other words, the desired thrust direction and magnitude are defined by

   | |
| |
Fk T F
F

= ± = ±







(8)

where

extF F=
 

Now, to ensure asymptotic stabilization of the reference velocity, it is 
necessary to incorporate feedback terms in the velocity dynamics. 
This can easily be done by changing the definition of F



 in (8). More 
precisely, the first equation in (7) can also be written as

( , )dvma m F Tk m v t
dt

ξ= = − +





 

with

aF = mg + F m (v,t)ξ−
 

 

(9)

and where ( , )v tξ   is some stabilizing control, which contains typically 
both feedback and feedforward terms. It then follows from (8) that

( , )dv v t
dt

ξ=




Figure 4 – A physical illustration of the spherical model

When aerodynamic forces depend on the vehicle’s orientation, as is 
the case of most aerial vehicles, the above control strategy raises 
important issues. In particular, the resultant force extF



 being now 
orientation-dependent, the existence and uniqueness of the equilibrium 
in terms of the vehicle’s orientation is no longer systematic, since the 
right-hand side of the first equality in (8) may also depend on k



. Even 
when such an equilibrium solution is well defined and locally unique, 
its stabilization can be very sensitive to thrust orientation variations. As 
a matter of fact, the capacity of calculating the direction and intensity 
of aF


 at every time-instant – already a quite demanding requirement – 
is not sufficient to design a control law capable of performing well 
in (almost) all situations. Knowing how this force changes when the 
vehicle’s orientation varies is necessary, but is still not sufficient. In the 
following section we point out the existence of a set of aerodynamic 
models that allow the control problem to be recast into that of 
controlling a spherical body. Of course, the underlying assumptions 
are that these models reflect the physical reality sufficiently well and 
that the corresponding aerodynamic forces can be either measured or 
estimated on-line with sufficient accuracy.

Nonlinear versus linear feedback control

Good stability properties can be obtained with linear feedback control 
for some operating conditions, such as, for example, hover flight with 
moderate wind, cruising flight at constant or slowly varying linear 
velocity, etc. In very windy environments or for very aggressive flight, 
however, several reasons advocate for the use of nonlinear feedback. 
Let us mention some of them.

•	As explained above, the basic principle of aerial vehicle control 
is to align the thrust direction with the direction of external forces. 
This orientation control problem can be solved locally, via a local 
parameterization of the orientation error (e.g., Euler angles). It is well 
known that this kind of parameterization introduces singularities and 
artificially limits the stability domain. This is a problem in the case of 
strong perturbations that can temporarily destabilize the vehicle’s 
attitude. In order to ensure large stability domains, it is necessary to 
design the feedback law directly on the underlying manifold (unit sphere 
for thrust direction control, or special orthogonal group for the control of 
the full orientation). Linear feedback is not best suited to the control on 
such compact manifolds.

•	From (8), the thrust direction control is well defined only if F


 does 
not vanish. This is not a problem around the hover flight configuration, 
since extF F mg≈ ≈

 



. For large initial errors or demanding reference 
trajectories, however, F



 may vanish due to the control ξ (see (9)). In 
this case again, instead of a linear feedback it is better to use a bounded 
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nonlinear one (with norm smaller than the gravity constant), so as to limit 
the risk of F



 vanishing.

•	Although this problem is not specifically addressed in this paper, 
control limitations in both magnitude and rate can be problematic in 
practice. For example, linearizing the model (6) around the hover flight 
configuration yields two second-order linear systems (yaw and vertical 
dynamics) and two fourth-order linear systems (horizontal dynamics). 
While saturating the input of a Hurwitz-stable second-order linear system 
does not destroy its global asymptotic stability property, this is no longer 
true for linear systems of higher order (three or more). This also advocates 
for the use of nonlinear feedback solutions to address these control 
limitation issues (see for example [2], [18] for results on this topic).

Symmetric bodies and spherical equivalence

We have briefly explained in the previous section the basics of feedback 
control design for a spherical body (i.e., subjected to aerodynamic 
forces independent of the vehicle’s orientation). For most vehicles 
encountered in practice, however, aerodynamic forces depend on 
the vehicle’s orientation. We show in this section that for a class of 
such systems, a preliminary feedback transformation on the input 
allows the dynamics to be rewritten in the same form as in the case 
of a spherical body. This will be instrumental for the control design 
methodology described further on.

The expression (5) of the aerodynamic forces holds independently of 
the body’s shape. As has already been shown in [37], [35], in the 
case of shape symmetries, aerodynamic properties that simplify the 
associated control problem can be pointed out.

G G

k


k


j


j


i
 i



Figure 5 – Symmetric and bisymmetric shapes

α

β

av

G

k


i


j


Figure 6 – The (α, β) angles

More specifically, if the body’s shape is symmetric3 around the thrust 
axis k



, then the unit vector (·)r  in (5) is given by

cos( ) sin( ) .r iβ β= −


 

 (10)

This allows us to decompose the aerodynamic force aF


 as follows 
[37] [35]:

| | ( , , ) ( , , ) cot( )

( , , )
                                               | |

sin( )

( )a a a D e L e a

L e
a

F k v C R M C R M v

C R M
v k

α α α

α
α

= − +


+ 




 





(11)

where [0, ]α π∈  is defined as the angle of attack between k−


 and 
av , and ( , ]β π π∈ −  as the angle between the unit frame vector i



and the projection of av  on the plane { }; ,G i j
 

 (see figure 6), i.e.,

3

2 1

1cos   atan2( , )
| |

a
a a

a

v
v v

v
α β−  
= − = 

 


(12)

Note that

1

2

3

| | sin( ) cos( )

| | sin( )sin( )

| | cos( )

a a

a a

a a

v v

v v

v v

α β

α β

α

=

=

= −







(13)

where ( )1,2,3
ia iυ =  denote the coordinates of av in the body-fixed 

frame. Note also that the above choice for the angles (α, β) renders the 
aerodynamic coefficients in (11) independent of the angle β.

For constant Reynolds and Mach numbers, the aerodynamic 
coefficients depend only on α. By using the relation (11), it is a simple 
matter to establish the following result.

Proposition 1 ([37], [35]) Consider a symmetric thrust-propelled 
vehicle. Assume that the aerodynamic forces are given by (5)  - (10) 
and that the aerodynamic coefficients satisfy the following relation

0
( ) ( ) cot( )D L DC C Cα α α+ = (14)

where 
0DC  denotes a constant number. Then, the body’s dynamic 

equation (7) can also be written as

p pma = mg + F T k−




 

(15)

with

0

2 ( )
| |

sin( )
| |

L
p a a

p a D a a

CT T k v

F k C v v

α
α

= +

= −





 

(16)

The interest of this proposition is to point out the possibility of 
viewing a symmetric body subjected to both drag and lift forces as 
a sphere subjected to the drag force pF



 and powered by the thrust 
force p pT T k= −




. The main condition is that the relation (14) must 
be satisfied. Obviously, this condition is compatible with an infinite 
number of functions CD and CL. Let us point out a particular set of 
simple functions that also satisfy the π-periodicity property with 
respect to the angle of attack α associated with bisymmetric bodies.

3 See [37], [35] for a precise definition of shape symmetry and bisymmetry.



Issue 8 - December 2014 - Nonlinear Feedback Control of VTOL UAVs
	 AL08-08	 6

Proposition 2 The functions CD and CL defined by
2

0 1

1

( ) 2 sin ( ),
( ) sin(2 )

D

L

C c c
C c

α α
α α

= +
=

(17)

where c0 and c1 are two real numbers, satisfy the condition (14) with 

0 0 12DC c c= + . The equivalent drag force and thrust intensity are 
then given by

0

2
1

| |

2 | | cos( )
p a D a a

p a a

F k C v v

T T c k v α

= −

= +



 



(18)

A particular bisymmetric body is the sphere whose aerodynamic 
characteristics (zero lift and constant drag coefficient) are obtained by 
setting c1 = 0 in (17). Elliptic-shaped bodies are also symmetric but, 
in contrast with the sphere, they do generate lift in addition to drag. 
The process of approximating measured aerodynamic characteristics 
with functions given by (17) is illustrated by the figure 7a, where we 
have used experimental data borrowed from [19, p.19] for an elliptic-
shaped body with Mach and Reynolds numbers equal to M = 6 and 
Re = 7.96 .106 respectively. For this example, the identified coefficients 
are c0 = 0.43 and c1 = 0.462. Since missile-like devices are “almost” 
bisymmetric, approximating their aerodynamic coefficients with such 
functions can also be attempted. For instance, the approximation shown 
in figure 7b has been obtained by using experimental data taken from 
[40, p.54] for a missile moving at M = 0.7. In this case, the identified 
coefficients are c0 = 0.1 and c1 = 11.55. In both cases, the match 
between experimental data and the approximating functions, although 
far from perfect, should be sufficient for feedback control purposes.
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Figure 7 – Aerodynamic coefficients of: (a1,2) elliptic bodies; (b1,2) missile-like 
bodies

Control design

In this section, we propose nonlinear feedback laws for various control 
objectives. The first objective is the thrust direction control, which is 
essential for the control of VTOL UAVs. It is useful by itself, since the 
basic teleoperation mode for a VTOL UAV relies on thrust direction and 
thrust intensity reference inputs. Thrust direction control is also the 
cornerstone for higher-level (semi-)autonomous flight modes, such 
as, for example, velocity control, position control, or vision-based 
control. The second objective considered in this section is velocity 
control. After thrust direction control, velocity control is the next step 
in increasing the system’s autonomy. Since the velocity dynamics 
is involved, the role of aerodynamic forces becomes predominant. 
This will be an opportunity to show the interest of the transformation 

proposed in § "Symmetric bodies and spherical equivalence". Once 
the velocity control level has been defined, the control design can be 
developed further to address, for example, disturbance rejection and/or 
position control. These topics are also briefly discussed in this section.

Thrust direction control

Consider a time-varying reference thrust (unit) direction rk


. It is 

assumed that rk


 varies smoothly with time, so that ( )rdk t
dt



 is well 

defined for any time t. The following result provides control expressions 
for the angular velocity control input ω  yielding a large stability domain.

Proposition 3 The feedback law

0
2

( · )
(1 · ) r r r

r

k
k k k k k

k k
ω ω ω λ= × + − +

+

    

  

  (19)

with 0,r
r r

dkk k
dt

ω = ×







 a positive real number, and λ any real number 

(not necessarily constant), ensures exponential stability of the 
equilibrium rk k=

 

 with domain of attraction { (0) : (0)· (0) 1}rk k k ≠ −
  

.
The limitation on the stability domain is related to the topology of the 
unit sphere, which prevents the existence of smooth autonomous 
feedback controllers yielding global asymptotic stability. The first term 
on the right-hand side of (19) is a nonlinear feedback term on the error 
between k



 and rk


 (here defined from the cross product). The second 
and third terms are feedforward terms. In practice, these terms are 

often neglected because the vector rdk
dt



 (and thus rω
 ) is unknown. 

For example, if rk


 corresponds to a reference thrust direction provided 

by a pilot via a joystick, rdk
dt



 is not available. Omitting these feedforward 

terms does not prevent good results from being obtained, provided that 
0k  is chosen sufficiently large and/or rk



 does not vary too rapidly. 
Finally, the last term on the right-hand side of (19) is associated with 
the rotation about the axis k



 (yaw degree of freedom). It does not 

affect the thrust direction dynamics, since dk k
dt

ω= ×






.

Velocity control for vehicles with symmetric body shapes

Let us thus consider a symmetric vehicle and its velocity dynamics 
given by (15). The problem is to asymptotically stabilize a reference 
velocity rv . We follow the control strategy briefly sketched in 
§  "Preliminaries on control design". Let us define the velocity error 

rv v v= −


 

  and the reference acceleration r r
da
dt
υ=



. It follows from 

(15) that

p r p
dvm = F + m(g a ) T k
dt

− −






 

The above equation can be written as

( )p
dvm F T k m v
dt

ξ= − +


 





(20)
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with

( ( ))p rF F m g a vξ= + − −
 

 



(21)

and where ( )vξ


  is some feedback term. If ( )vξ


  is chosen as a 

stabilizing feedback law for the dynamics dv
dt

ξ=


 , Eq. (20) suggests 

setting | |pT F=


 and then applying the angular velocity control law of 
Proposition 3 with rk



 defined as the unit vector characterizing the 
direction of F



, i.e.,

| |r
Fk
F

=






The conditions under which this strategy ensures the asymptotic 
stability of 0v =



  are specified in the following proposition.

Proposition 4 Assume that F


 does not vanish along the reference 
trajectory rv . Then, the feedback law defined by | |pT F=



 and ω


 
given by (19) with

2
1 0 22

( ) , | |
1 | |

vv k k k F
v

ξ = − =
+



 









k1,2 two positive real numbers and λ any real number (not necessarily 
constant), ensures local exponential stability of the equilibrium
( , ) ( , )r rv k v k=
 

 

.

This proposition is established by showing that the candidate Lyapunov 
function

2| | 1 1 (1 · )rV v k kα= + − + −
 



with 
1 2

1
mk k

α > , is strictly decreasing along the solutions of the 

controlled system. It is important to note at this point that this property 
holds true as long as | |F



 is not zero (so that the control law is well 
defined). Thus, the limitation on the stability domain only comes from 
the possibility of F



 vanishing. Recall from (16) and (21) that

0
| | ( ( ))a D a a rF k C v v m g a vξ= − + − −



   



Since ( )vξ


  is bounded in norm by k1, it is easy to impose 
conditions on k1 and the reference acceleration ra  such that the term 

( ( ))rm g a vξ− −


 


does not vanish whatever the tracking error v . This 

is not sufficient to ensure that F


 never vanishes, however, since the 
term 0

| |a D a ak C v v 

 can take arbitrary values, depending on the value 
of v . If F



 does not vanish along the reference trajectory rv , then 
local stability is guaranteed and, using the fact that V is decreasing 
along the solutions of the controlled system, (possibly conservative) 
stability domains can be specified.

Note that, in view of (21), the independence of pF


 with respect to 
the vehicle’s orientation in turn implies that F



, and thus rk


, are also 
independent of the vehicle’s orientation. Therefore, the time-derivative 
of rk


 does not depend on the vehicle’s angular velocity ω  either and 
the expression of ω



 in (19) is well defined. The interest of the invoked 
transformation, combined with (14), lies precisely there.

In practice, the control law must be complemented with integral 
correction terms to compensate for almost constant unknown additive 

perturbations. With rx  denoting the reference position of the center 
of mass in the inertial frame, the solution proposed in [12] involves 
the position error rx x x= −



 

 expressed in the inertial frame, which is 
an integral of the velocity error v



 . To further impose a bound on the 
integral correction action, a smooth bounded strictly positive function 
h defined on [0,+∞) and that satisfies the following properties ([12, 
Sec. III.C]) for some positive constant numbers η, μ can be introduced:

2, | ( ) |s h s s η∀ ∈ <  and 20 ( ( ) )h s s
s

µ∂
< <
∂

An example of such a function is ( )
1

h s
s

η
=

+
, with η > 0. It then 

suffices to replace the definition of F


 in (21) by

2( ( ) (| | ) )p rF F m g a v h x xξ= + − − +
   

 

   (22)

with the feedback control law still defined by | |pT F=


 and ω


 given 
by (19), to obtain a control law that includes an integral correction 
action and yields strong stability and convergence properties.

The above integral correction is, in fact, suited to the case when the 
control objective of tracking the desired velocity rv  is complemented 
with that of rendering the position error | |x





 small, with the vehicle’s 
absolute position x  being measured or estimated on-line. Otherwise, 
it is better to calculate and use a saturated integral of the velocity 
error. Such an integral 

vI


 is, for instance, obtained as the (numerical) 
solution to the following equation [23] [39]

sat       (0) 0v I v I v v
I

d vI k I k I I
dt k

δ  
= − + + = 

 



   

 (23)

where kI  is a (not necessarily constant) positive number characterizing 
the desaturation rate, δ > 0 is the upper bound of | |vI



 and satδ is the 

classical saturation function defined by sat ( ) min 1,
| |

x x
x

δ δ 
=  

 

 



. A 

discrete-time version of this saturated integral is

( ) if  | ( ) |
( )

( ) otherwise
| ( ) |

v vI j I j
I j

I j
I j

 ∆ ∆ ≤


∆ = 



 

(24)

where j∈, ∆ is the sampling time period and 

( ) (( 1) ) ( )v vI j I j v j∆ = − ∆ + ∆




  for j ≥ 1. Setting, for instance, 

,0
| |

I I
vk k
δ

= +




 where kI,0 > 0, the definition of F


 only has to be 

replaced by

( ( ) )p r v vF F m g a v k Iξ= + − − +
  

 

 (25)

where kυ  is a positive gain, to obtain control yielding stability results 
similar to those obtained with the previous controllers.

Remark 1 As in the case of velocity control, the position controller 
presented previously can also be modified to include an integral 
action that will improve its convergence properties when slowly 
varying unmodeled additive terms act on the system. The reader is 
referred to [12] for complementary details about this modification.
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Conclusion and perspectives

This paper has reviewed basic principles of the modeling and control of 
VTOL UAVs and a nonlinear control approach for a class of vehicles with 
symmetric body shapes has been proposed. Application examples are 
given, for example, by rockets and aerial vehicles using annular wings 
for the production of lift. Specific aerodynamic properties associated 
with these particular shapes allow for the design of nonlinear feedback 
controllers yielding asymptotic stability in a very large flight envelope.  

Exploiting the aerodynamic characteristics for the design of feedback 
controllers with large flight envelopes remains a very open research 
domain. For example, extending the present approach to vehicles with 
non-symmetric body shapes (e.g., conventional airplanes) is an open 
topic. A better understanding of the control limitations induced by the 
stall phenomenon is also necessary (see for example [34] for a study 
on this topic). Finally, it is very important to take into account the effect 
of magnitude (and rate) input saturations on the system’s stability n

Acknowledgements

P. Morin has been supported by “Chaire d’excellence en Robotique RTE-UPMC”

References

[1] J.D. Anderson – Fundamentals of Aerodynamics. McGraw Hill Series in Aeronautical and Aerospace Engineering, 5th edition, 2010.
[2] J. R. Azinheira and A. Moutinho – Hovering Control of an Uav with Backtepping Design Including Input Saturations. IEEE Trans. on Control Systems 
Technology, 16(3):517–526, 2008.
[3] S. Bertrand, H. Piet-Lahanier and T. Hamel – Contractive Model Predictive Control of an Unmanned Aerial Vehicle Model. 17th IFAC Symp. on Automatic 
Control in Aerospace, Volume 17, 2007.
[4] S. Bouabdallah and R. Siegwart – Backstepping and Sliding-Mode Techniques Applied to an Indoor Micro Quadrotor. IEEE International Conference on 
Robotics and Automation, 2005.
[5] P. W. Bridgman – Dimensional Analysis. Encyclopedia Britannica (Wm. Haley, Editor-in-Chief ), 7:439–449, 1969.
[6] P.J. Bristeau, P. Martin and E. Salaun – The Role of Propeller Aerodynamics in the Model of a Quadrotor Uav. European Control Conference, pp. 683–688, 2009.
[7] A. Dzul, T. Hamel and R. Lozano – Modeling and Nonlinear Control for a Coaxial Helicopter. IEEE Conf. on Systems, Man and Cybernetics, Vol. 6, 2002.
[8] T. I. Fossen – Guidance and Control of Ocean Vehicles. John Wiley and Sons, 1994.
[9] T. Hamel, R. Mahony, R. Lozano and J. Ostrowski – Dynamic Modelling and Configuration Stabilization for an X4-Flyer. IFAC World Congress, pp. 200–212, 2002.
[10] J. Hauser, S. Sastry and G. Meyer – Nonlinear Control Design for Slightly Non-Minimum Phase Systems: Application to V/Stol. Automatica, 28:651–670, 1992.
[11] M.-D. Hua – Contributions to the Automatic Control of Aerial Vehicles. PhD thesis, http://hal.archives-ouvertes.fr/tel-00460801, Université de Nice-Sophia 
Antipolis, 2009.
[12] M.-D. Hua, T. Hamel, P. Morin and C. Samson – A Control Approach for Thrust-Propelled Underactuated Vehicles and its Application to Vtol Drones. 
IEEE Trans. on Automatic Control, 54(8):1837–1853, 2009.
[13] M.-D. Hua, T. Hamel, P. Morin and C. Samson – Introduction to Feedback Control of Underactuated Vtol Vehicles. IEEE Control Systems Magazine, 
pp. 61–75, 2013.
[14] M.-D. Hua, P. Morin and C. Samson – Balanced-Force-Control for Underactuated Thrust-Propelled Vehicles. IEEE Conf. on Decision and Control, pp. 6435–
6441, 2007.
[15] H. Huang, G. M. Hoffmann, S. L. Waslander and C. J. Tomlin – Aerodynamics and Control of Autonomous Quadrotor Helicopters in Aggressive 
Maneuvering. IEEE Conf. on Robotics and Automation, pp. 3277– 3282, 2009.
[16] A. Isidori, L. Marconi and A. Serrani – Robust Autonomous Guidance: an Internal-Model Based Approach. Springer Verlag, 2003.
[17] E. N. Johnson and M. A. Turbe – Modeling, Control and Flight Testing of a Small Ducted Fan Aircraft. Journal of Guidance, Control, and Dynamics, 
29(4):769–779, 2006.
[18] F. Kendoul, D. Lara, I. Fantoni and R. Lozano – Nonlinear Control for Systems with Bounded Inputs: Real-Time Embedded Control Applied to Uavs. 
IEEE Conf. on Decision and Control, pp. 5888–5893, 2006.
[19] J. W. Keyes – Aerodynamic Characteristics of Lenticular and Elliptic Shaped Configurations at a Mach Number of 6. Technical Report NASA-TN-D-2606, NASA, 1965.
[20] H. J. Kim, D. H. Shim and S. Sastry – Nonlinear Model Predictive Tracking Control for Rotorcraft-Based Unmanned Aerial Vehicles. American Control 
Conference, pp. 3576–3581, 2002.
[21] A. Ko, O. J. Ohanian and P. Gelhausen – Ducted Fan Uav Modeling and Simulation in Preliminary Design. AIAA Modeling and Simulation Technologies 
Conference and Exhibit, n° 2007–6375, 2007.
[22] T. J. Koo and S. Sastry – Output Tracking Control Design for a Helicopter Model Based on Approximate Linearization. IEEE Conf. on Decision and Control, 
pp. 3635–3640, 1998.
[23] C. Samson and M.-D. Hua  – Time Sub-Optimal Nonlinear Pi and Pid Controllers Applied to Longitudinal Headway Car Control. Int. J. of Control, 84-10:1717–1728, 2011.
[24] R. Mahony, T. Hamel and A. Dzul – Hover Control via an Approximate Lyapunov Control for a Model Helicopter. IEEE Conf. on Decision and Control, pp. 3490–3495, 1999.
[25] L. Marconi, A. Isidori and A. Serrani – Autonomous Vertical Landing on an Oscillating Platform: an Internal Model Based Approach. Automatica, 38:21–32, 2002.
[26] E. Muir – Robust Flight Control Design Challenge Problem Formulation and Manual: the High Incidence Research Model (Hirm). Robust Flight Control, A 
Design Challenge (GARTEUR), Vol. 224 of Lecture Notes in Control and Information Sciences, pp. 419–443, Springer Verlag, 1997.
[27] R. Naldi – Prototyping, Modeling and Control of a Class of Vtol Aerial Robots. PhD thesis, University of Bologna, 2008.
[28] R. Olfati-Saber – Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles. PhD thesis, Massachusetts 
Institute of Technology, 2001.
[29] J.-M. Pflimlin – Commande d’un minidrone à hélice carénée : de la stabilisation dans le vent à la navigation autonome. PhD thesis, Ecole Doctorale 
Systèmes de Toulouse, 2006.
[30] J.-M. Pflimlin, P. Binetti, P. Souères, T. Hamel and D. Trouchet – Modeling and Attitude Control Analysis of a Ducted-Fan Micro Aerial Vehicle. Control 
Engineering Practice, pp. 209–218, 2010.



Issue 8 - December 2014 - Nonlinear Feedback Control of VTOL UAVs
	 AL08-08	 9

[31] J.-M. Pflimlin, P. Souères and T. Hamel – Hovering Flight Stabilization in Wind Gusts for Ducted Fan Uav. IEEE Conf. on Decision and Control, pp. 3491–3496, 2004.
[32] P. Pounds, R. Mahony and P. Corke – Modelling and Control of a Large Quadrotor Robot. Control Engineering Practice, pp. 691–699, 2010.
[33] R.W. Prouty – Helicopter Performance, Stability and Control. Krieger, 2005.
[34] D. Pucci – Flight Dynamics and Control in Relation to Stall. American Control Conf. (ACC), pp. 118–124, 2012.
[35] D. Pucci – Towards a Unified Approach for the Control of Aerial Vehicles. PhD thesis, Université de Nice-Sophia Antipolis and “Sapienza” Universita di Roma, 2013.
[36] D. Pucci, T. Hamel, P. Morin and C. Samson – Nonlinear Control of Pvtol Vehicles Subjected to Drag and Lift. IEEE Conf. on Decision and Control (CDC), 
pp. 6177 – 6183, 2011.
[37] D. Pucci, T. Hamel, P. Morin and C. Samson – Modeling for Control of Symmetric Aerial Vehicles Subjected to Aerodynamic Forces. arXiv, 2012.
[38] C. Roos, C. Döll and J.-M. Biannic – Flight Control Laws: Recent Advances in the Evaluation of their Robustness Properties. Aerospace Lab, Issue 4, 2012.
[39] H. Khalil and S. Seshagiri – Robust Output Feedback Regulation of Minimum-Phase Nonlinear Systems Using Conditional Integrators. Automatica, 
41:43–54, 2005.
[40] B. F. Saffel, M. L. Howard and E. N. Brooks – A Method for Predicting the Static Aerodynamic Characteristics of Typical Missile Configurations for Angles 
of Attack to 180 Degrees. Technical Report AD0729009, Department of the navy naval ship research and development center, 1971.
[41] S. N. Singh and A. Schy – Output Feedback Nonlinear Decoupled Control Synthesis and Observer Design for Maneuvering Aircraft. International Journal 
of Control, 31(31):781–806, 1980.
[42] R. F. Stengel – Flight Dynamics. Princeton University Press, 2004.
[43] B. L. Stevens and F. L. Lewis – Aircraft Control and Simulation. Wiley-Interscience, 2nd edition, 2003.
[44] J. C. A. Vilchis, B. Brogliato, A. Dzul and R. Lozano – Nonlinear Modelling and Control of Helicopters. Automatica, 39:1583–1596, 2003.
[45] Q. Wang and R.F. Stengel – Robust Nonlinear Flight Control of High-Performance Aircraft. IEEE Transactions on Control Systems Technology, 13(1):15–26, 2005.
[46] R. Xu and U. Ozguner – Sliding Mode Control of a Class of Underactuated Systems. Automatica, 44:233–241, 2008.

Daniele Pucci received the bachelor and master degrees in 
Control Engineering with highest honors from "Sapienza", 
University of Rome, in 2007 and 2009, respectively. He 
received the PhD title in Information and Communication 
Technologies from University of Nice Sophia Antipolis, and in 
Control Engineering, from “Sapienza” University of Rome, in 

2013. Since then, he is a post-doctoral fellow at the Italian Institute of Technology. 
His research interests include control of nonlinear systems and its applications 
to aerial vehicles and robotics.

Minh-Duc Hua graduated from Ecole Polytechnique, France, 
in 2006, and received his Ph.D. from the University of Nice-
Sophia Antipolis, France, in 2009. He spent two years as a 
postdoctoral researcher at I3S UNS-CNRS, France. He is 
currently researcher of the French National Centre for 
Scientific Research (CNRS) at the ISIR laboratory of the 

University Pierre and Marie Curie (UPMC), France. His research interests 
include nonlinear control theory, estimation and teleoperation with applications 
to autonomous mobile robots such as UAVs and AUVs.

Tarek Hamel is Professor at the University of Nice Sophia 
Antipolis since 2003. He conducted his Ph.D. research at the 
University of Technologie of Compiègne (UTC), France, and 
received his doctorate degree in Robotics from the UTC in 
1996. After two years as a research assistant at the (UTC), 
he joined the Centre d'Etudes de Mécanique d'Ile de France in 

1997 as an associate professor. His research interests include nonlinear 
control theory, estimation and vision-based control with applications to 
Unmanned Aerial Vehicles. He is currently Associate Editor for IEEE 
Transactions on Robotics and for Control Engineering Practice.

Pascal Morin received the Maîtrise degree from Université 
Paris-Dauphine in 1990, and the Diplôme d'Ingénieur and 
Ph.D. degrees from Ecole des Mines de Paris in 1992 and 
1996 respectively. He spent one year as a post-doctoral 
fellow in the Control and Dynamical Systems Department at 
the California Institute of Technology. He was Chargé de 

Recherche at INRIA, France, from 1997 to 2011. He is currently in charge of 
the ``Chaire RTE-UPMC Mini-drones autonomes'' at the ISIR lab of University  
Pierre et Marie Curie (UPMC) in Paris. His research interests include 
stabilization and estimation problems for nonlinear systems, and applications 
to mechanical systems such as nonholonomic vehicles or UAVs.

Claude Samson graduated from the Ecole Supérieure 
d'Electricité in 1977, and received his Docteur-Ingénieur and 
Docteur d'Etat degrees from the University of Rennes, in 
1980 and 1983, respectively. He joined INRIA in 1981, where 
he is presently Directeur de Recherche. His research interests 
are in control theory and its applications to the control of 

mechanical systems. Dr. Samson is the coauthor, with M. Leborgne and B. 
Espiau, of the book Robot Control. The Task-Function Approach (Oxford 
University Press, 1991).

AUTHORS

Acronyms

GARTEUR	(Group for Aeronautical Research and Technology in Europe)
HIRM	 (High-Incidence Research Model)
LMI	 (Linear Matrix Inequality)
NED	 (North-East-Down)
UAV	 (Unmanned Aerial Vehicle) 
VTOL	 (Vertical Take-Off and Landing)



Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 1

Aerial Robotics

3DSCAN: Online Ego-Localization 
and Environment Mapping 

for Micro Aerial Vehicles

M. Sanfourche, A. Plyer, 
A. Bernard-Brunel, G. Le Besnerais
(Onera)

E-mail: martial.sanfourche@onera.fr

DOI : 10.12762/2014.AL08-09

We present 3DSCAN (3D Scene Characterization for Autonomous Navigation), a 
software application for state estimation and environment modeling using low-

cost 3D sensors, such as a stereorig and RGBD cameras. For state estimation, we 
describe an original keyframe-based stereoscopic visual odometry technique, which 
can run at more than 20Hz on a lightweight computer. This so-called ‘efficient Visual 
Odometry’ (eVO) has been evaluated on several datasets and provides accurate results 
and limited drift, even for indoor/outdoor trajectories. Environment modeling aggre-
gates instantaneous depthmaps in a volumetric Octomap [15] representation. Stereos-
copic depthmaps are computed by a very fast dense matching algorithm derived from 
eFolki, an optical flow code implemented on GPU. These developments are combined 
in the 3DSCAN software, which is successfully demonstrated on our MAV (Micro 
Aerial Vehicle) system, following indoor, outdoor or mixed trajectories.

Introduction

From an automation point of view, navigation consists in computing 
a safe and achievable trajectory and in controlling its execution. It 
requires a precise knowledge of both the dynamic state of the vehicle 
(position, attitude, speed) and of the 3D structure of the environment.

These prerequisites are very difficult to meet for a Micro Aerial Vehi-
cles (MAV) flying low through a cluttered environment. The first dif-
ficulty arises from the partial knowledge of the environment. Despite 
the spread of available georeferenced information (images and maps), 
they still cannot be considered to be of sufficient accuracy and den-
sity for a mission in an unprepared environment such as flying around 
a building, avoiding unmapped obstacles, such as trees or parked 
cars, and entering through an open window. In this context, the vehi-
cle should be able to build online a representation of its environment 
using embedded exteroceptive sensors.

The second difficulty is, of course, the very limited payload of MAV. 
Since 2005, demonstrations of on-line mapping have been done 
using heavy UAV (helicopter with weight > 25 kg) [1, 42] equipped 
with 3D vision sensors, such as lidar. However, a high resolution 
(HR) inertial measurement unit (IMU) and high grade differential GPS 
receiver were used to localize the vehicle. The very limited payload 
and power of MAV precludes the embedding of lidar and HR IMU. 

As a result, most current demonstrations of MAV use external re-
sources, in particular external systems, for the estimation of the MAV 
state, such as multi-camera localization systems.

In this paper, we present a solution for state estimation and envi-
ronment modeling based on low-cost 3D sensors, compatible 
with indoor and outdoor environments. There are now several 
solutions for these 3D sensors, which allow fast mapping of 
obstacles and lead to a well-behaved ego-localization problem, 
compared to solutions based on monocular 2D sensors subject 
to scale ambiguity and its drift. We first describe ego-localization 
using a stereoscopic visual odometer and then on-line modeling 
of the environment, the combination of the two functions being 
called 3DSCAN 3D Scene Characterization for Autonomous 
Navigation. This 3DSCAN system is demonstrated on publicly 
available data Kitti [12] and through several experiments perfor-
med at Onera using our MAV. In the latter demos, only the first 
function of 3DSCAN (ego-localization) runs on-board, but the 
proposed modeling solution is already compatible with recent 
embedded architectures.

Related Works and Contributions

Localization and mapping are active research fields since more than 
twenty years and an enormous amount of literature exists. In the fol-
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lowing, we review some relevant references on these two topics and 
discuss our contribution.

Ego-localization

Vision-based ego-localization has reached a high level of maturity 
over the last decade. For example, NASA’s two Mars Exploration 
Rovers (Spirit and Opportunity) have been successfully using stereo 
visual odometry since 2003. From a methodological point of view, 
two approaches are often opposed despite recent convergent trends: 
Visual Odometry (VO) and Visual Simultaneous Localization and Map-
ping (V-SLAM). These approaches are briefly summarized below. For 
a much more detailed review, we advise the reading of the recent two-
part tutorial by D. Scaramuzza and F. Fraundorfer [40, 11].

	 • Basically, VO estimates the relative motion of the camera 
between tk and tk+1 by the camera pose at tk+1 with regard to 3D 
reference data, for instance a cloud of 3D points, recorded in the 
camera frame at tk. VO can be distinguished based on 2D-3D as-
sociations [33, 14, 29], 3D-3D associations [20], 2D associations 
through 3 views using the trifocal constraint [18], or through 4 views 
using the quadrifocal constraint [6]. From relative motion information, 
the full trajectory can be estimated by simple dead-reckoning [14, 29] 
(Dead-Reckoning Visual Odometry, DRVO), or by fusion with inertial 
measurements; see [22, 3, 38] in the aerial context.

	 • V-SLAM addresses the problem of self-localization by construc-
ting a globally-consistent map of the environment. This map is usually 
a sparse representation made of a limited number of landmarks, often 
3D points. State variables (i.e., ego-localization and speed) and po-
sitions of 3D landmarks are estimated according to a joint criterion 
based on a 2D projection error. This can be done by filtering tech-
niques like Extended Kalman Filter (EKF) or by multi-view optimization 
methods like Bundle Adjustment (BA). It is interesting to note that 
these approaches differ in the frequency of map updating operations. 
Filtering approaches [7, 2] update the map at each new frame, so as 
to maintain the consistency of the linearization, which requires the 
map to be limited to a few hundred landmarks. In contrast, optimiza-
tion methods [28, 19, 39, 17, 32] wait until the baseline is sufficiently 
large to allow good localization of 3D landmarks. The latter approach 
leads to the notion of “keyframes”, i.e., the frames used to update the 
map. Though the selection of keyframes is generally done by consi-
dering statistics over the feature tracking, [47] proposes a criterion 
based on image projection error.

The proposed method, denoted by eVO (efficient Visual Odometer) 
combines characteristics of both approaches, while being oriented 
towards low computational cost rather than optimality [31]. There-
fore, as in VO, the 3D points of the reference map are estimated at 
one time instant and are not refined using others views. The notion of 
keyframe is also used, as in optimization approaches of V-SLAM: the 
3D map is computed only at keyframe instants. Cameras are localized 
by pose estimation with regard to the current map, using a 2D-3D 
association strategy. We show that this keyframe strategy not only 
reduces the cost of the algorithm, but also significantly reduces the 
drift of the estimation error with respect to DRVO. As a result, the 

proposed eVO is able to run at video frame rates (15 to 25 Hz) on the 
limited computer available on our MAV.

Note that Nister et al. have proposed in ref. [33] a VO approach with 
keyframes (they called them reference frames) for ground vehicle ap-
plications. More recently, the Pixhawk team [10] have reported scene 
modeling using a MAV with a stereo sensor and on-board VO; howe-
ver, there are very few details regarding the odometry in their paper, 
while we present here a parametric study of the performance of the 
algorithm on various datasets. In particular, eVO has been success-
fully tested on the online Kitti benchmark and ranks at the 6th position, 
and 4th among methods based on stereo data [12]1

Environment modeling

Let us first discuss 3D sensors. In the proposed solution, we use two 
concurrent 3D sensors: a stereorig and an active Asus Xtion RGBD 
camera, a type of sensor made popular by Microsoft’s Kinect device. 
They have complementary characteristics, the RGBD camera being 
very efficient indoors, but blind in outdoor situations, where the grea-
ter amount of natural textures allow a good stereovision performance. 
For stereo matching, we use a very fast dense algorithm eFolki, a 
dense Lucas-Kanade (LK) algorithm published in [4] and recently 
implemented on GPU (Graphic Processing Unit) architectures [34]. It 
allows dense and reliable 3D maps to be obtained at video rate on a 
lightweight laptop with a GT650M GPU.

Environment modeling amounts to aggregating noisy 3D point clouds 
into a consistent and compact 3D model. Note that the model should 
include not only the occupied areas, but also the free space and 
the unvisited areas. This data is required for trajectory planning and 
replanning. Proposed in the seminal work of Elfes [8], occupancy 
grids have become the standard for 2D and 3D environment models 
in mobile robotics [30, 1, 15]. In case of 3D modeling, a standard 
approach consists in subdividing the workspace into cubic volume 
elements of equal size called voxels [30].

This simplistic representation presents two disadvantages: (1) the 
maximal extension of the explored area must be known in advance; 
(2) the memory occupation becomes rapidly intractable for large 
scale environments. In [1], the authors propose a two-layer model, 
combining a local representation using standard voxel grid and a glo-
bal rough polygonal model organized by height slices. This model 
is successfully used for automatic navigation in urban canyons, but 
appears not easily scalable. In [16], the model consists in a 2D re-
gular grid, where each cell stores a list of parallelepipedic volumes 
corresponding to occupied or free areas. Memory efficient, this solu-
tion avoids sampling artifacts in the vertical direction but requires the 
knowledge of the horizontal workspace extension. In [15], occupied 
and free areas are also explicitly represented, but using a multi-resolu-
tion occupancy grid organized as an octree structure (hence its name: 
‘Octomap’). Such a structure offers a useful flexibility for modeling 
unknown areas. By adding levels to the tree, the spatial resolution can 
be adapted to the local 3D structure of the scene, or the global size 
of the workspace can be expanded easily. For these reasons, we use 
Octomap, thanks to the freely distributed C++ library2.

1Please refer to the Kitti benchmark at http://www.cvlibs.net/datasets/kitti/eval_odometry.php.
2Please refer to the website http://octomap.github.io/
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Organization of the paper

This paper is organized as follows. The overall architecture of 3DS-
CAN is presented in § " System overview". The description and perfor-
mance evaluation of the ego-localization module eVO are presented in 
§ " Efficient visual odometry (eVO)". § " Environment modeling" pre-
sents the 3D modeling module (stereo processing and aggregation). 
Reconstructions from Kitti data or from data obtained during test 
flights with our MAV are presented in § " 3DSCAN results". Finally,  
we conclude and propose some directions for future work.

System overview

Software architecture

Given image and depth data provided by sensors or read from files, 
the 3DSCAN processing chain builds a 3D environment model as an 
Octomap grid. Three processing modules, working as an individual 
thread at different frequencies, are combined: (1) the eVO module 
computes the camera pose at video rate, (2) the eFolki module com-
putes the depthmap from a rectified and equalized stereo pair provi-
ded by eVO and (3) the Octomap module uses the estimated pose and 
depthmap to aggregate relative 3D data into a global model. These 
components communicate using ROS (Robot Operating System, 
www.ros.org). ROS also provides interface modules to obtain images 
from sensors, or from files and visualization modules.

Figure 1 depicts the implemented software architecture and data ex-
changes through the module network. In this organization, eVO, the 
stereo odometry module, plays a central role. In addition to calcula-
ting the camera position, the module geometrically and radiometri-
cally rectifies a stereo pair and achieves a temporal sub-sampling 
of the sequence by automatically selecting keyframes. Note that the 
camera poses are saved by the Transform-Frame server (ROS/TF 
server) for further usage. When eVO selects a stereo pair as a new 
keyframe, the rectified stereo pair is processed by eFolki in order to 
compute a depthmap, which is converted into a relative-to-sensor 3D 
point cloud. In parallel to the stereo process, the RGBD sensor node 
emits depthmaps at 3Hz. The ‘3D data source selector’ selects the 

most appropriate sensor (stereo or RGBD camera) depending on the 
density of the RGBD depthmap and transmits a point cloud to the Oc-
tomap server for aggregation in the environment model. This involves 
searching in the pose database stored in the module TF server for the 
sensor pose at the date indicated in the point cloud message.

Since ROS performs an abstraction of the hardware layer, the 3DS-
CAN chain has been deployed on various hardware units: PC works-
tation, laptop, MAV + ground station. The implementation on a MAV 
and its ground station (e.g., a MAV system) is described in the fol-
lowing section.

Implementation on a MAV system

We have deployed 3DSCAN on a real MAV system composed of a 
mid-range laptop used as a ground station and the Ascending Tech-
nologies Pelican3 quadrotor depicted in figure 2.

Fig. 2 - Our AscTec Pelican MAV on its landing pad. The visual sensors 
- stereorig and RGBD camera - are located at the top of the vehicle. 
The vehicle has a total take-off weight of 2 kg (including the LiPo Battery).

3Please refer to the manufacturer website for details: http://www.asctec.de/uav-applications/research/products.

Fig. 1 - The 3DSCAN software architecture. Boxes correspond to ROS nodes. Boxes with a name beginning by ‘ROS/’ indicate a module provided in the 
standard ROS library. Solid unidirectional arrows indicate data exchanges in streaming mode, while dot dashed bidirectional arrows indicate exchanges 
in client/server mode.
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The MAV equipment includes a MEMS-based IMU, a low grade GPS recei-
ver and a 3D magnetometer. These sensors are connected to the autopilot 
providing a standard stabilization mode and waypoint-based navigation. 
We have added an Asus Xtion RGBD camera and a stereorig composed of 
two electronically synchronized USB cameras separated by a 28 cm long 
baseline equipped with a 5.5 mm S-mount lens. This configuration provi-
ded a usable range of 10 meters for environment modelling4. The cameras 
are two IDS-Imaging UI-1241LE based on a 1.3 MegaPixel global-shutte-
red CMOS from e2V. Since the native resolution is too large for onboard 
processing, the binning mode is activated to capture VGA frames without 
field of view reduction. These sensors are connected to an embedded PC 
animated by an Intel dual-core Core2Duo 1.86 GHz.

The limited computational performance of the on-board PC and the 
requirement of a Cuda Compliant GPU for dense stereo matching by 
eFolki have led to the full processing chain being dispatched on two 
computers. The ego-localization by eVO runs onboard, while the en-
tire environment modeling task is done on the ground station: a light 
macbook laptop equipped with a mid-range Nvidia GT 650M GPU. 
The datalink between the two computers is provided by Wifi-N. Since 
the transmission of all video streams is impracticable through the 
datalink, temporal subsampling is performed. For the RGBD camera, 
the ROS module permits constant subsampling and we have set the 
output frequency to 3Hz. For the stereo pairs, the subsampling is 
done by the mechanism selecting keyframe in eVO. This aspect will 
be discussed in the following section.

Efficient visual odometry (eVO)

Algorithm overview

As already mentioned in the introduction, eVO builds a map updated 
in a keyframe scheme as in ref. [28, 19]. In the monocular SLAM 
case, the keyframe structure is mainly motivated by the need for a 
minimal baseline to localize new 3D landmarks. With our stereo set-
ting, landmarks are instantaneously localized in 3D. Improving the 
accuracy of a landmark localization requires the stereorig to get subs-
tantially closer to the landmark or to displace the sensor lengthways 
more than the baseline. Hence, in the case of a smooth motion of the 
stereorig (with respect to the rate of odometry), updating the map at 
each frame is useless and the keyframe scheme is a better choice.

In contrast to other keyframe-based SLAM, our system differs by the 
way in which the map is updated. In standard approaches, the posi-
tions of visible landmarks are refined at each keyframe by minimizing 
a multi-view re-projection criterion with bundle adjustment methods. 
Here, we skip this step because of the limited computational capacity 
of the embedded PC. In practice, landmarks are then localized once 
- the first time they are seen - in the global frame using the current 
estimated pose.

Direct combination of noisy measurements - camera pose and land-
mark position - brings eVO closer to DRVO, i.e. dead-reckoning 
methods. However, using the keyframe approach, this update is done 
at a lower rate in eVO than in DRVO, with the advantage of a reduced 
drift. A comparison between these two approaches on real datasets 
is presented in § "Tuning and advantage of the Keyframe Scheme".

Finally, the other advantage of this structure concerns the computatio-
nal cost. Indeed, 3D localization by a stereorig is not computationally 
free. Combining a keyframe scheme with a pose computation algo-
rithm using 2D-3D associations avoids computing the 3D structure 
at each new stereo frame. More interesting still, this approach allows 
the global process to be divided into one monocular task, the Tracking 
and Pose computation, executed for each left image acquired, and 
one stereo task, (Mapping) executed on demand.

Fig. 3 - Temporal sequencing of the eVO module. The P-box, E-box, K-box 
and M-box stand respectively for the Image Pre-processing module, the Ego-
motion module, the Keyframe selector module and the Mapping module.

The eVO process can be described in four modules working sequen-
tially, as depicted in figure 3:
	 •Image pre-processing: preliminary image warping and 
equalization;
	 •Egomotion: estimation of the position and the attitude of 
the stereorig in the reference frame;
	 •Keyframe selection: deciding whether a new keyframe is 
necessary;
	 •Mapping: stereo pair processing so as to update the landmark 
map.

Each module is described in the following section; here we briefly 
describe the eVO process. The algorithm starts by calling the Mapping 
module, which initializes 3D landmarks. The next available stereo pair 
is processed by the Egomotion module, which yields the current pose 
and indicates how many landmarks are still visible. This indicator is 
used by the keyframe selection module to decide that the current ste-
reo pair is a new keyframe. In figure 3, this loop is repeated until the 
13th stereo pair (denoted S12), which is selected as a keyframe. At 
this point, the mapping module is called to update the map: it adds 
new landmarks and prunes older ones.

Description of the eVO components 

Here we give a detailed description of the eVO components, in the 
order in which they appear in figure 3.

Image pre-processing Module

The two images are stereo-rectified using the knowledge of the 
intrinsic parameters. In order to deal with indoor to outdoor (or vice 
versa) transitions, which lead to locally large illumination changes, 
two adjustments were necessary. The first one concerns the 
hardware: the cameras are set to automatically adapt their expo-
sure time, in order to reach a specified intensity average under the 
constraint that the exposure time cannot exceed a maximal value. 
The second adjustment consists in equalizing image histograms to 
avoid dark images.

4Under the assumption of a mean disparity error of 0.5 pixels; the usable range is defined as the maximal distance before the precision of 3D localization exceeds the half-width of 

a voxel (20 to 30 centimeters).

S0 S1

Initialisation

New Keyframe

New Keyframe

S2 S3 S4 S12 S13 S14 Sk-1 Sk Sk+1
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Mapping Module

This module is called when the current stereo-pair is declared as a 
new keyframe. It uses a stereorectified pair of images to generate an 
initial map and to update it if necessary by extracting and matching 
new interest points. The synoptic diagram of this module is shown in 
figure 4.

Fig. 4 - Mapping Module structure

The first operation consists in extracting Nf (between 250 and 350 for 
VGA images) interest points in the left image. This process is done 
under two geometrical constraints: (i) a minimal separation distance 
between two features; (ii) a maximal dispersion of the features over 
the image plane. The former constraint is generally included in feature 
extractors (like those in OpenCV), while the latter is enforced by a 
classical bucketing strategy. The image support is subdivided into 
Nr non-overlapping regions (8X6 regions for VGA images) and the 
Nf / Nr more relevant features within each region are kept. In order to 
deal with regions that do not have enough texture, a relaxation tech-
nique is used to increment the tolerated amount of features by region. 
Note that the extraction accounts for mapped landmarks successfully 
tracked from the previous keyframe, so as to detect only the correct 
number of new features and maintain Nf features per keyframe.

Two feature detectors have been evaluated: the Harris detector (Shi-
Tomasi [43]) and the FAST detector [36]. As expected, the FAST 
detector is faster than the Harris detector and allows a keyframe (VGA 
format) to be processed in 55 milliseconds on average (see table 2). 
On the tested sequence, the choice of the detector has a very limited 
impact on the estimated trajectories.

In the second step, the features newly detected in the left images are 
matched in the right image. Based on dense stereovision algorithms, 
feature stereo matching is done by means of exhaustive searches along 
the epipolar lines. In practice, the Zero-mean Normalized Cross-Cor-
relation (ZNCC) is used as the image similarity criterion and we test 
a range of disparities corresponding to 3D points located at least 70 
centimeters away from the stereorig. In order to reduce the processing 
time, we adopt a coarse-to-fine multi-scale approach, with a two-level 
image pyramid. At the lowest resolution, the image is reduced by a 
factor of 4 in each direction and the size of the ZNCC window is set to 
3X3 pixels. The match is then propagated to the full resolution level and 
refined by a local search within a region with a radius of 6 pixels, using 
a 9X9 ZNCC window. In practice, the number of tested disparity hy-
potheses is largely reduced. In our configuration (focal distance = 5.5 
mm and depth greater than 70 cm), this approach allows the number of 
tested hypotheses to be reduced from 220 to less than 70. Finally, the 
ZNCC scores are thresholded to prune ambiguous associations

At this point, feature positions, disparities, stereorig parameters and 
the current pose estimation are used to localize the new landmarks 
in the reference frame by triangulation. Finally, new landmarks and 

their image signature are inserted into the map, while the untracked 
landmarks are removed.

Egomotion Module

As soon as some landmarks have been localized in 3D, the egomo-
tion module estimates the position and the attitude of the left camera 
frame, by tracking the landmarks in the successive images acquired 
by the left camera. Figure 5 shows the internal mechanism and the 
module inputs/outputs.

Fig. 5 - Egomotion Module. This module uses the left image only.

As in [23], the features are tracked through the video sequence acqui-
red by the left camera using KLT [43]. In order to pre-emptively prune 
wrong temporal matchings, the fundamental matrix is robustly esti-
mated using a Least Median of Squares scheme (LMedS) [37]; this 
operation is henceforth referred to as ‘Fcheck’. Since this estimation 
can be unstable in the case of small relative motion, it is automatically 
disabled when the motion of features is less than a threshold.

We have also evaluated an active search process, where the search 
for temporal matches is guided by a prediction of the motion. Without 
inertial data, as for instance in the KITTI datasets, we use a simplis-
tic motion prediction model based on constant linear and angular 
speeds. The motion estimated between the two previous frames is 
then used for motion prediction. If inertial data is available (as for 
instance in the MAV experiments), we only compensate for a global 
rotation of the image. Both methods help to reduce the search area 
for temporal matching. 

Features SHI-TOMASI [43] FAST [36]

Frame type Keyframe Standard Keyframe Standard

Average (ms)

Std (ms)

Min (ms)

Max (ms)

74.2

4.6

62.3

99.9

12.4

3.6

5.8

32.8

56.1

5.6

40.8

72.7

12.4

3.6

5.6

31.5

Table 1 - eVO processing time for one 672_480 stereo pair on a Core2Duo 
1.86GHz. Measurements obtained by averaging over 10 Monte-Carlo runs.

From the temporal matchings provided by KLT, associations are esta-
blished between 3D landmarks stored in the map and current image 
features. Given these 2D-3D matches, the camera pose (position and 
attitude) is robustly estimated within a RANSAC procedure [9]. In 
practice, we have implemented our own RANSAC framework with an 

Current pose

Disparity 3D
points

Left
rectified
image

Feature
detection

Stereo-
matching

Triangu-
lation

Map
managment

Right rectified image
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online adaptation of the number of iterations, as proposed by Peter 
Kovesi [21]. For each random sample, the pose is estimated with the 
Perspective-3-Point (P3P) algorithm [9, 45]. A bucketing strategy is 
used to enforce a minimal separation distance between the image 
features selected in the triplet given to the P3P algorithm. The P3P 
method often produces multiple solutions (up to 4): in such a case, 
all of the solutions are considered as random samples in the RANSAC 
voting process.

The RANSAC procedure returns an initial pose solution and a set of 
inliers. The pose is refined by minimizing the re-projection error of 
inlier matches. This non-linear least-squares optimization is solved 
using the motion-only optimization functions provided in the Lourakis 
SBA code [24].

Keyframe selection Module

As proposed in [28], a new keyframe is initialized as soon as the ratio 
between the number of successfully tracked features and the num-
ber of 3D points visible on the last keyframe drop under a threshold, 
denoted by t and set by default to t = 0:8. We discuss the algorithm 
sensitivity to parameter t in § "Tuning and advantage of the Keyframe 
Scheme".

Implementation and processing time

The implementation of eVO uses two well-known open-source tools: 
OpenCV and ROS (Robot Operating System, www.ros.org). Most of 
the low level image processing — image warping, tracking, feature 
extraction and template matching — is based on the OpenCV library. 
This library is optimized for the SIMD instruction set of the on-board 
CPU (Intel SSE). At the system scale, eVO works on ROS to deal 
with the physical sensors and share the trajectory estimation with the 
environment modeling part of 3DSCAN.

In table 1 we present the processing times measured on the em-
bedded computer of our MAV: Ascending Technologies Mastermind 
Intel Core 2 Duo 1.86 GHz working on Ubuntu 12.04 32bits. Figure 
6 shows how the computational time is distributed over the various 
components of the processing chain. These results demonstrate the 
great difference between keyframe and standard frame processing 
time, due to the fact that the 3D landmark generation is bypassed for 
the latter.

Fig. 6 - Relative computing time of eVO components. Measurements made 
by averaging over 10 Monte-Carlo runs, using a FAST feature detector [36].

As a consequence, the overall computational performance of eVO 
depends on the ratio between standard frame and keyframe numbers. 
In our implementation, this ratio is not fixed but varies with the suc-
cess rate of the tracking, which itself depends on the vehicle dyna-

mics. However, as discussed later in § "Tuning and advantage of the 
Keyframe Scheme", the best tuning of the keyframe selector leads to 
an average keyframe ratio of less than 30%. This means that the ave-
rage computing time is less than 25 ms/frame. We can also note that 
the monocular egolocalization process (i.e., processing of a standard 
frame) could be run at a very high frame rate (up to 80hz) on one core 
of the embedded PC if the bandwidth of the USB-bus allowed it.

Evaluation

Datasets and performance measurements

Our system has been evaluated on multiple and varied data. Some of 
it was acquired using our own stereorig, either hand-held or carried 
by the MAV. No ground-truth state is available for this data, but we 
have followed loop trajectories in order to use the drift between the 
first and last frames as a performance indicator. An example of an 
outdoor experiment with a 60m-long loop is presented in figure 7, 
showing a drift of approximately 1% of the trajectory length.

We have also used the KITTI odometry dataset [12] composed of 
22 video sequences acquired by a car equipped with several sen-
sors (Velodyne R lidar, high resolution IMU and GPS-RTK, stereorig). 
The video collection covers a large range of environments (highway, 
suburban or town center) and trajectory profiles (loops, road sec-
tions) from one hundred meters to a few kilometers. The first half 
of the collection is supplied with ground-truth in order to adjust the 
algorithm parameters. The second half of the collection is used to 
benchmark algorithms.

The KITTI Team also provides some performance metrics, together 
with a tool to compute them on the estimated trajectories. These 
metrics are: a translational drift expressed as a percentage of the total 
traveled distance and a rotational drift expressed in degrees by trave-
led meter. Scores are averaged over all possible sub-sequences of 
variable lengths, from 100 m to 800 m.

Since our system includes a random sampling scheme (RANSAC), 
we have performed Monte-Carlo simulations and measured statistical 
indicators (average performance, standard deviation, median, min-
max values).

Figure 8 presents the estimated trajectories obtained after 25 
Monte-Carlo runs on Sequence 08 of the KITTI odometry dataset. 
This trajectory in a suburban environment is 2 kilometers long 
and comprises many moving objects (vehicles, pedestrians and 
cyclists). On average, the estimated trajectory in the horizontal 
plane (XZ) is well estimated with a drift of only 4 meters. As usual 
in odometry, large angular errors occur at each important turn 
change. The estimation along the third dimension shows a bias at 
the beginning, which is probably due to an error in the ground truth 
and a significant variance at the end. We could constrain the eVO 
estimator to maintain a constant height above the ground, but we 
choose not to do so, since we intend to use the same algorithm 
for MAV data.

In the following section, we study the advantage of the keyframe 
scheme and discuss the tuning of the parameters of the Keyframe 
selection module, before presenting the global evaluation of eVO on 
the KITTI benchmark.
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Add features
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Fig. 7 - Trajectory estimated by eVO from the sequence 20120727.3 acquired during an outdoor flight of the MAV. 
(a) 4 frames of the video sequence (the 1st, 509th, 913th and last image). 
(b) Estimated trajectory. The red and black arrows indicate the attitude of our MAV (red: the front of the MAV, black: its right). 
(c) Estimated attitude. The measurements provided by the embedded AHRS are not precise enough to serve as ground truth. 
(d) Estimated height profile (the Y axis points downward). Note that the actual starting point is approximately 80 cm above the 
landing pad; hence, the total drift is less than 50 centimeters.
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Fig. 8 - Result of eVO on the“08” sequence of the KITTI odometry dataset. 
(a) Four images of the sequence. 
(b) Trajectories on the XZ plane (red: ground truth, blue: estimated). Shown in red: the ground truth. Shown in blue: 
25 trajectories obtained after as many Monte-Carlo runs. 
(c) Average angular errors (in radians). 
(d) Trajectories in the 3rd dimension.
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Tuning and advantage of the Keyframe Scheme

Here, we discuss the advantages provided by the keyframe scheme 
in regard to the ego-localization performance, beyond its computatio-
nal efficiency discussed previously. First, we compare our algorithm 
with a classical dead-reckoning visual odometer (DRVO) built with the 
same software components. Then, we investigate the influence of two 
parameters controlling the keyframe generation, the threshold t defi-
ned earlier and the activation of the Fcheck module. All of the results 
obtained on MAV-representative sequences are summarized in table 
2, while results on the KITTI dataset are shown in table 3.

eVO vs. DRVO. As expected, the keyframe scheme allows the locali-
zation drift of eVO to be reduced compared to DRVO, even for settings 
that favor the generation of new keyframes. This is the case when 
choosing t = 1:0, which means generating a new keyframe as soon 
as one landmark is lost by the tracking process. The gain is parti-
cularly important with MAV data, as shown by comparing the total 
localization error presented in the two first rows of tables in table 2. 
On the KITTI dataset, the advantage is less important but significant, 
with a 10%-reduction of the drift, see table 3. This can be explained 
by the fact that, due to the car’s speed, KITTI sequences exhibit larger 
inter-frame motion, reducing the interest of the keyframe scheme.

Parameters controlling the key-frame selection. We first study how the 
drift varies with respect to the ratio t, while the Fcheck module (which 
checks for the consistency of matches with the epipolar constraint) is 
activated. On the MAV sequences (table 2) the lower the parameter t, 
the lower the average localization error, but the higher the dispersion 
of the results. On the Kitti dataset (table 3) we observe that the choice 
t = 0.6 leads to larger errors. This is due to a lower frame rate and 
a higher vehicle speed, which means that the odometry uses trac-
ked features that are farther from the camera and are badly localized. 
Finally, we choose t = 0.8 as a good trade-off.

The Fcheck procedure also has a significant influence on the num-
ber of keyframes. If this validation step is bypassed, the number of 
keyframes is reduced by half in all processed sequences (for the same 
ratio t). In the majority of our tests, this entails an error growth, par-
ticularly on the KITTI dataset, where the translational drift increases 
from 1.46 to 1.63. In practice, we choose to enable Fcheck by default.

Result on the KITTI Odometry Benchmark

Table 4 presents the average scores of eVO on the KITTI evaluation 
dataset, compared to other published methods. eVO obtains a very 
good performance, with an average translation drift of 1.76% and an 
angular error of 0.0036°/m. As on the date of its first submission to 
the IROS conference (March 2013), this performance allowed eVO to 
rank first. One year later, it is still 4th among methods that use only 
stereo data - note that methods using lidar data have been recently 
introduced in the KITTI table and have taken the two first positions.

Environment modeling

In the previous section, we have described how the stereo data is 
processed in order to estimate the pose of the system during its dis-
placement. These estimated poses are used to fuse ‘instantaneous’ 
3D data into a 3D model of the visited environment. 3D data can be 
depth measurements provided by an active RGBD sensor or stereo 

depthmaps. The latter are provided here by a fast and dense stereo-
matching code on GPU, which is described in § "Dense stereo-mat-
ching". The chosen environment modeling framework is presented in 
§ "Dense stereo-matching".

Dense stereo-matching

Classically, dense stereo-matching algorithms are based on systema-
tic exploration in the disparity space, to evaluate radiometric similarities 
between pixels of the two images. Here, dense disparity maps are com-
puted using a dense Lucas-Kanade (LK) algorithm [26] derived from 
an original optical flow algorithm eFolki, described in [35]. The resulting 
code is remarkably fast on a massively parallel architecture such as GPU. 
In the following sections, we recall the equations of the algorithm, first pu-
blished in [4], discuss its implementation on GPU, describe some adap-
tations made to increase the robustness of the estimated disparity on real 
stereo images, and finally present a local indicator of the consistency.

All evaluations are performed on data provided in the KITTI bench-
mark [12].

Efficient dense matching by the LK algorithm

The basic problem of the dense LK algorithm is to register local win-
dows centered around each image pixel x by minimizing a SSD (Sum 
of Squared Difference) criterion over a 2D motion vector u(x):

( ) ( ) ( )( )( )21 2w I I
′

′ ′ ′− − +∑
x

x x x x u x 	 (1)

where w is a separable weighting function, uniform or Gaussian, of 
limited support W, typically a square window parameterized by its ra-
dius r. Since we consider here dense matching of rectified stereo data, 
where epipolar lines are aligned with the horizontal axis of the images, 
the motion vector is reduced to a scalar disparity: u(x) = [d(x);0].

The minimization of criterion 1 is done by an iterative Gauss-Newton 
coarse-to-fine pyramidal strategy, as in classical implementations of 
LK. However, using the first order expansion described in [25], an 
iteration can be completed with only one image interpolation per pixel, 
while the well-known PyramLK algorithm [5] requires several image 
interpolations per pixel. An iteration of this convergent dense mat-
ching strategy, denoted eFolki, consists in:
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where d(k) is the previous disparity guess, x is the image gradient 
operator in the x-direction and operator ⊗(respectively ∅) is the com-
ponent-wise multiplication (respectively division). One can readily 
observe that eFolki is ideally suited for GPU implementation, because 
each iteration requires only very regular operations on the images: 
separable convolutions, pixelwise operations and image interpo-
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Table 2 - Localization error at the end of two closed trajectories acquired with the stereorig of our MAV and ratio of keyframes for different algorithms or algorithm settings.

Table 3 - Angular and translation drift indicators measured on the KITTI Odometry dataset for various algorithms or algorithm settings.

Table 4 - Kitti Odometry benchmark chart at 2014-02-03. Please note that only stereo-based algorithms are presented; however, the ranks are those of the 
published Kitti, where lidar-based methods occupy the two first places. The eVO result is obtained by tracking at the most 500 Shi-Tomasi interest points 
extracted from 20 x 8 regions. The tracking is initialized with the previous motion. The ransac threshold is set to 1.0, while the parameter  is equal to 0.8.

Sequence Method Error X (m) Error Y (m) Error Z (m) Keyframe ratio

Name: 2010727.2
Image Number: 2039
Trajectory length: 150 m
hand-held

DRVO -2.4
±0.04

-0.5
±0.05

2.0
±0.04

100%

EVO
=1.0

-1.28
±0.08

-0.17
±0.11

1.20
±0.08

96%

EVO
=0.8

-0.95
±0.18

-0.30
±0.11

1.01
±0.14

36%

EVO
=0.6

-0.73
±0.21

-0.06
±0.25

0.83
±0.18

19%

Name: 20120724.3
Image Number: 1675
Trajectory length: 70 m
Acquired by MAV

DRVO -6.8
±0.4

2.05
±0.2

4.7
±0.4

100%

EVO
=1.0

-0.8
±0.2

0.23
±0.24

0.45
±0.12

91%

EVO
=0.8

-0.61
±0.34

0.23
±0.35

0.4
±0.17

27%

EVO
=0.6

-0.33
±0.60

0.35
±0.47

0.21
±0.3

13%

Sequence Method Translational drift (%) Rotational drift (deg/m) Keyframe ratio

Name: Kitti Benchmark
Training SDataset
Acquired by a car

DRVO 1.56
±0.007

0.00166
±0.00008

100%

EVO
=1.0

1.45
±0.015

0.00145
±0.0001

99.8%

EVO
=0.8

1.46
±0.014

0.00144
±0.0002

79.6%

EVO
=0.6

1.53
±0.017

0.00151
±0.0002

37.8%

Rank Method Setting Translation Rotation Runtime Environment

3
4
5
6
7
8
9

10
11
12

MFI
VoBa

SSLAM
eVO
SOVI

D6DVO
MICP_VO

SSLAM-HR
VIS02-S

GT_VO3pt

st
st
st
st
st
st
st
st
st
st

1.30%
1.46%
1.57%
1.76%
1.80%
2.04%
2.13%
2.14%
2.44%
2.54%

0.0030 [deg/m]
0.0030 [deg/m]
0.0044 [deg/m]
0.0036 [deg/m]
0.0079 [deg/m]
0.0051 [deg/m]
0.0065 [deg/m]
0.0059 [deg/m]
0.0114 [deg/m]
0.0078 [deg/m]

0.1 s
0.1 s
0.5 s
0.05 s
0.1 s

0.03 s
0.01 s
0.5 s

0.05 s
1.26 s

4 cores @ 2.5 Ghz (C/C++)
1 core @ 2.0 Ghz (C/C++)
8 cores @ 3.5 Ghz (C/C++)
2 cores @ 2.0 Ghz (C/C++)
4 cores @ 2.5 Ghz (Matlab)
1 core @ 2.5 Ghz (C/C++)
1 core @ 2.5 Ghz (C++)

8 cores @ 3.5 Ghz (C/C++)
1 core @ 2.5 Ghz (C/C++)
1 core @ 2.5 Ghz (C/C++)
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lations. In 2009, we demonstrated a CUDA implementation of this 
algorithm able to compute a dense OF estimation on a full HD video 
(1920 x 1080) in less than 20 ms on a 285 GTX board [34].

Increasing robustness

As is well known, SSD is not a robust criterion and using the previous 
algorithm on a real-world image leads to inhomogeneous results, as 
illustrated in the second line of figure 9. However, following the work 
of Sun et al. for Horn-Schunk OF methods [41], we have found that 
simple modifications of the algorithm, essentially pre-filtering and 
adaptation of the coarse-to-fine strategy, can greatly improve the 
result.

The first problem is that the motion estimation greatly depends on the 
local image texture and fails in the event of illumination changes. To 
correct this, we apply a Rank -n transform [46] to the images before 
SSD minimization. Each pixel x is replaced by the number of neighbo-
ring pixels with an intensity lower than I

(x)
. This transform is fast and 

has only one parameter: the radius n of the neighborhood. Transfor-
med images have a compressed intensity range, which increases the 
robustness and homogeneity of the eFolki result.

The second issue is related to convergence: ensuring the conver-
gence of the LK iteration often requires large windows to be chosen, 
at the cost of a lower resolution of the estimated flow. The solution 
proposed here is to vary the radius of the window during the itera-
tions: we denote this strategy ‘WRA’ for Window Radius Adaptation. 
In practice, our solution consists in adding a loop at each pyramid 
level and progressively reducing the window size.

The effects of these modifications are illustrated in figure 9 on an 
image of the Kitti Stereo Dataset. The modifications lead to an esti-
mate (third line of the figure), which appears significantly more ac-
curate and reliable than the previous one. Quantitative comparative 
measures are given in table 5. The proposed modification leads to a 
reduction by a factor of 2 in the number of erroneous pixels and the 
average disparity errors. According to the current Kitti stereo bench-
mark, our algorithm ranks only at around the 40th position; howe-
ver, it is among the fastest methods. In addition, its limited accuracy 
appears sufficient for our 3D modeling task.

A local indicator of reliability

An important issue when using dense stereo-matching for environ-
ment modeling and autonomous navigation is to be able to assess 
locally the reliability (and the accuracy) of the estimated disparity. 

In particular, it is important to detect regions where disparity estima-
tion has failed, so as to avoid dangerous movements toward undetec-
ted obstacles or to plan a revisit to fill up the map.

We propose to compare depth values estimated respectively from the 
forward disparity d1←2 computed using criterion (1) and the backward 
disparity d1←1 computed by exchanging I

1
 and I

2
 in (1). More preci-

sely, for each pixel x in I
1
, we compute the error εZ defined as:

( )
( ) ( )( )( )
( ) ( )( )

1 2 2 1 1 2

1 2 2 1 1 2
Z

fb d d d

d d d
ε ← ← ←

← ← ←

− +
=

+

x x x
x

x x x

where f is the focal distance in pixels and b is the stereo baseline in 
meters. The threshold (in meters) is typically chosen equal to the 
voxel resolution of the 3D model.

Fig. 9 - Stereovision results on the 172th image of the KITTI Stereo bench-
mark. From top to bottom: the left image of the stereo pair; disparity map 
estimated with SSD minimization; disparity map estimated using the modifi-
cations (rank transform and window radius adaptation); Ground Truth acqui-
red by a Velodyne sensor.

Table 5 - Evaluations of the different variants of the eFolki dense matching technique on Kitti stereo training databases. 
‘Rank’ denotes Rank-n pre-filtering and ‘WRA’ means Window Radius Adaptation; see text. 
Columns 4 and 5 give the percentage of pixels with an error greater than 3 pixels. 
The average computing time for a mid-range GPU is shown in the last column.
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Building the 3D model of the environment

Octomap model

As discussed in the introduction, a volumetric representation of the 
3D environment can be obtained by subdividing the visited space 
with a regular 3D grid. Each elementary part is called a voxel and 
stores, for instance, the occupancy probability, as proposed in [27]. 
Occupancy probabilities are updated by ray-tracing techniques. For a 
sensor (stereo or active RGBD) delivering a depthmap in some known 
image geometry, each pixel of the depthmap defines a ray and a 3D 
point located on this ray approximately at the depth stored in the pixel. 
All of the voxels that belong to the segment linking the sensor pixel 
and the 3D point are processed, i.e., their probability of occupancy is 
updated according to some model of the 3D sensor accuracy.

In the probabilistic 3D mapping framework Octomap of [15] a multi-
resolution grid based on an octree data structure replaces the standard 
regular 3D grid. This solution permits an automatic adaptation of the 
map resolution to the local 3D geometry, with the advantage of smal-
ler memory requirement and faster data access. Moreover, the octree 
representation can be defined without a precise prior knowledge of the 
size of the visited environment. Indeed, when room is needed for new 
areas, the octree is expanded by a new level. In practice, Octomap is 
limited to 16 levels, hence to 215 voxels. Note that the Octomap fra-
mework provides labels to denote voxels that are in free space and also 
voxels that have not been explored yet, see figure 10.

Fig. 10 - Octomap model of a parking area in the basement at Onera. 
Top left: 3D occupancy model at the finer scale. Voxels with a probability 
higher than 80% are colored with a colormap related to their height above 
the reference plane, which is the horizontal plane at the starting position of 
the MAV. 
Top right: rough 3D model, which can be readily obtained from the octree 
representation. 
Bottom line: freespace voxels (fine scale) colored in transparent green.

Fig. 11 - Illustration of online 3D scene modeling, outdoor flight. 
Voxel resolution: 20 cm. 
Top: estimated stereo depthmap and left image recorded by the stereorig. 
Bottom: current estimated trajectory of the MAV (red curve), re-projected 3D map 
(graylevels) and current 3D model (voxel in colors)
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3DSCAN results

Outdoor MAV flight

Figure 11 presents a 3D reconstruction obtained on-line from 
stereo data during an outdoor flight of the MAV (sequence 
20120727.3). The estimated trajectory, shown in red in the 3D 
representation of figure 11, is presented in more detail in figure 7: 
it is a loop approximately 60 m long. We present, not the final 
reconstructed model, but images extracted from a screenshot of 
the ground station during the flight. The current frame taken by the 
left camera and the corresponding stereo depthmap are presented 
in the top part of the figure. The forward/backward consistency 
check described previously has been used to eliminate areas near 
the edges of the trees that cannot be seen in the two images. The 
instantaneous 3D map is re-projected in the 3D model with grayle-
vel texture from the current left image. The occupancy model re-
presents obstacles previously detected during the flight. The voxel 
size is 20 x 20 x 20 cm and the color is related to the height above 
the initial horizontal plane. Since this reference plane was not alig-
ned with the ground, the color level of the reconstructed ground 
is variable. Note that the shapes of the scene 3D objects are elon-

gated along the view axis of the onboard stereorig, because of the 
limited accuracy of 3D triangulation. However, this model provides 
a good localization of the obstacles that are closest to the MAV 
during its flight, which is the main objective for this exploration 
mission. A refined model could be built by getting around the 3D 
structures, as illustrated in Fig. 13 below.

Indoor MAV flight

Figure 12 presents a 3D reconstruction obtained on-line from stereo 
data during an indoor flight of the MAV in a parking area located in the 
basement of a building at Onera. The complete model of the visited 
part of the parking area was presented in figure10. The estimated tra-
jectory, shown in red in the 3D representation of figure 12 is again a 
loop approximately 30 m long. As before, we present the left image, 
the associated depthmap and the current 3D model during the final part 
of the flight. Details such as the obstacle on the ground and the pipes 
on the left wall are clearly visible in the reconstructed model. Figure 13 
shows how the post in the middle of the parking area is refined as the 
MAV flies around it: it is at first reconstructed with a large elongation 
in the viewing direction (left image) then, as the MAV gets around, its 
shape is refined and fits its actual support more precisely (right image).

Fig. 12 - Illustration of online 3D scene model, indoor flight. Voxel resolution: 20 cm. 
Top: estimated stereo depthmap and left image recorded by the stereorig.
Bottom: current estimated trajectory of the MAV (red curve), re-projected 3D map (grayle-
vels) and current 3D model (voxel in colors)
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Fig. 13 - Refining the shape of 3D objects by flying around them, see text.

Fig. 14 - 3D Model of the “Caponière”, a historical underground location at Onera. 
The thick red line denotes the MAV trajectory. The screenshots on the bottom row present 
the available data during the experiment, at 4 instants indicated by numbers on the trajec-
tory. For each instant, we present the stereo depthmap (top image in green levels), the left 
image (B/W image in the middle) and the Xtion depthmap (bottom image in graylevels).
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Indoor/outdoor trajectory

Figure 14 shows a large and complex reconstructed model of the 
“Caponière” area at Onera’s Center in Palaiseau (France). The MAV, 
which is hand-held in this experiment for security reasons, travels 
along a 200m trajectory passing through a tunnel and a wooded area 
before going inside a long gallery leading to a centenary underground 
gunpowder warehouse. The trajectory is computed online and on-
board at a 20Hz rate by eVO using stereo data. Note that the esti-
mated trajectory is smooth, despite the transitions between indoor 
and outdoor areas. The model aggregates stereo or 3D data from 
the embedded Asus Xtion RGBD camera. The default device is the 
Xtion, which is, when available, usually more accurate than stereo 
depths. However, in many situations, especially outdoors, the depth-
map delivered by the Xtion is incomplete, or even empty. When less 
than 80% of the pixels are measured by the Xtion, we use the stereo 
depthmap. Examples of data delivered by stereo and Xtion, and the 
switch between them, are presented in the lower part of figure 14. 
Essentially, stereo is used outside and Xtion inside the tunnels. Note 
however that, in some situations (see times 2 and 4 in figure 14), 
both sensors deliver useful information. Designing better fusion rules 
for both sensors during the modeling and odometry processes is the 
subject of future studies.

Conclusion

In this paper, 3DSCAN, an efficient framework for egolocalization and 
3D modeling of the environment from stereo and RGBD data, has 
been presented. First, we have demonstrated state estimation from 
stereo data at 20Hz using one core of the Core2Duo 1.86 GHz on-

board the MAV. Higher rates, typically 50Hz, could easily be obtained 
using multi-threading and with a more recent computer. This visual 
odometer, denoted eVO, has been evaluated on publicly available ste-
reo data with very good results. Second, a non-supervised 3D mo-
deling software application has been developed using the Octomap 
framework. It uses stereo data, processed by our fast dense matching 
code eFolki on GPU and 3D data obtained from an Xtion active RGBD 
sensor. On our ground station, a light laptop with a mid-range GT 
650M GPU, the depthmap computation (limited to the 1-8 m range) 
and integration into the 3D model runs in 1 to 2 s, which is sufficient 
for the dynamics of our quadrotor. In the Kitti setup, the 3D data range 
is greater (up to 30 m), the vehicle is much faster and explores larger 
areas; hence, the 3D modeling requires a powerful workstation to run 
with the same rates.

Our current work is aimed at using 3DSCAN for autonomous naviga-
tion of MAV in unknown environments, with control and planning is-
sues. Some improvements and adaptations are necessary to improve 
its robustness and to embed the system on the MAV (using a novel 
embedded CPU board). We intend to add a multi-view refinement step 
in eVO for the fusion of eVO with other sensors available onboard 
(IMU and GPS) to improve the quality, rate and reliability of state esti-
mation. In terms of perception, in the absence of GPU onboard, eFolki 
will be replaced by an efficient dense stereo-matching algorithm, 
such as SGBM [13]. We are also working on long-term modeling, 
including loop closure detection and the associated correction of the 
3D model. Finally, we also intend to make use of recent advances in 
computational photography to obtain 3D data with more compact and 
lightweight co-designed sensors, such as the 3D chromatic depth-
from-defocus camera presented in [44] 

Acronyms

CPU	 (Central Processing Unit)
eVO	 (Efficient Visual Odometer)
GPS	 (Global Positioning System)
GPS-RTK	(GPS Real-Time Kinematic)
GPU	 (Graphics Processing Unit)
IMU	 (Inertial Measurement Unit)
KITTI	 (Karlsruhe Institute of Technology 
	 and Toyota Technological Institute)
KLT	 (Kanade-Lucas-Tomasi (feature tracker))

MAV	 (Miniature Aerial Vehicle)
RANSAC	 (Random Sampling Consensus)
RGBD	 (Red, Green, Blue + Depth (4-channel cameras))
ROS	 (Robotic Operating System)
SGBM	 (Semi-Global Block Matching)
SIMD	 (Simple Instruction Multiple Data)
SSD	 (Sum of Squared Differences)
UAV	 (Unmanned Aerial Vehicle)
ZNCC	 (Zero-mean Normalized Cross-Correlation)
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Rotary Wing UAV pre-sizing : 
Past and Present Methodological 

Approaches at Onera

Thanks to their Vertical Take-Off and Landing, hover and low speed capabilities ro-
torcraft have a wide variety of applications. A very wide range of rotorcraft concepts 

have been invented and creativity is still abundantly present, especially in the field of 
Rotary Wing Uninhabited Aerial Vehicles. First, some typical past studies requiring RW-
UAV pre-sizing will be described. They were pragmatically dealt with using the means 
available at that time. The interest as well as the limits of these studies contributed 
to pushing Onera in the development of a dedicated tool for rotorcraft evaluation and 
pre-sizing with the most ad hoc models and methods. The second part of the paper will 
present the main lines of the current methodological approach built in the CREATION 
project: “Concepts of Rotorcraft Enhanced Assessment Through Integrated Optimiza-
tion Network”. Then, some evolution perspectives of this numerical platform will be 
given, to better address especially the RW-UAVs pre-sizing.

Introduction

An Uninhabited or unmanned Aircraft System (UAS) is composed of 
four main components: the air vehicle (called UAV hereafter), the pay-
load, the control station and the data link. The operators interact with 
the UAS through the data link and are usually located in the control 
station. The focus of this paper is on the vehicle itself (UAV) and more 
precisely on rotorcraft, a widespread category of air vehicles.

Indeed, rotary wing aircraft have a very wide range of applications, 
thanks to their Vertical Take-Off and Landing (VTOL), hover and low 
speed capabilities. In addition, since they do not require a runway or 
any heavy facilities, they are more often used than fixed wing aircraft 
for research in aerial robotics by universities and research institutes. 
Therefore, a very wide variety of rotorcraft concepts have been in-
vented. This creativity has been reinforced by the blossoming and 
rapid expansion of UAS projects, due to their reduced cost and risk 
of development, compared with inhabited aircraft. This paper is dedi-
cated to Rotary Wing Uninhabited Aerial Vehicles (RW-UAV).

Without claiming to present an exhaustive review of all rotorcraft con-
cepts here, a brief overview of the main categories can however be 
given.

Five main categories of rotorcraft can be distinguished :
	 1. "Tilt Blade Tip-Path-Plane": this is the most widespread case, 
the most well-known rotorcraft being the helicopter, with a main rotor 
used both for lift, propulsion and the pitch and roll controls. The blade 
TPP is tilted by using cyclic controls, changing the lift distribution 
over the rotor disc, causing different blade flapping angles.

	 2. "Tilt-Body": in this case, different rotors are used and the total 
aerodynamic force resulting from their thrust can be tilted by inclining 
the whole aircraft or the part on which the rotors are fixed.
	 3. "Tilt-Rotor": one or more rotors are tilted entirely, i.e., their shaft 
is directly oriented in the direction in which the main force must be 
produced. This can be : one TR like in the Rotoprop case, where the 
tail rotor is used in hover and low speeds like a classical anti-torque 
rotor and at higher speeds like a pusher rotor, or two tiltable coaxial 
contra-rotating rotors like in the Verticopter concept or more TR, etc.
	 4. Different Lift / Propulsion devices: in these cases, rotors are 
combined with wings, propellers or other auxiliary propulsion. The 
rotors are mainly used for producing lift at low speeds; this lifting 
function is partially or totally completed by wings at higher speeds. 
	 5. Special cases are when the rotor itself becomes fixed wings, 
for instance by stopping it at high speeds (case of stoppable rotor) or 
by retracting the blades in a circular wing, in the case of the variable 
diameter rotor.

Given the large variety of rotorcraft concepts, selecting the best suited 
concept for a certain type of application is often not straightforward. 
Indeed, even though some concepts are better suited for high speed 
flight and others for low speed flight for example, this kind of flight 
performance criteria must be supplemented by many others for a cor-
rect concept selection, including flight safety, cost, maintainability, 
environmental impact, etc.

Beyond this first difficult step of concept selection, another difficulty 
is the pre-sizing of the various design parameters typical of a certain 
rotorcraft concept: number of rotors, number of blades, radius, mean 
chord, rotational speed, etc. Hence, the design engineer has to cope 
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with a multivariable multi-objective optimization problem under con-
straints (design rules, operational constraints, airworthiness regula-
tion, etc.).

As indicated from the title, the paper is dedicated to the presenta-
tion of the evolution of Onera approaches in this field. Of course, it 
would have been interesting to include a description of the methods 
developed elsewhere, but the extent of the paper does not allow such 
a wide presentation.

First, some typical past studies requiring RW-UAV pre-sizing will be 
described. They were pragmatically dealt with using the means avail-
able at that time. The interest as well as the limits of these studies 
contributed to pushing Onera in the development of a dedicated tool 
for rotorcraft evaluation and pre-sizing, with the most ad hoc models 
and methods. The second part of the paper will present the main 
lines of this methodological approach built in the CREATION project: 
“Concepts of Rotorcraft Enhanced Assessment Through Integrated 
Optimization Network”. Then, some perspectives of the evolution of 
this numerical platform will be given to better address especially the 
RW-UAV pre-sizing.

Past : earlier studies about RW-UAV pre-sizing at Onera

Three examples of past studies dealing with RW-UAV pre-sizing will 
be briefly presented hereafter: two concern European projects (CAPE-
CON and MAVDEM); the third is an expert assessment performed by 
Onera for the French government (ExDro).

Figure 1 - Overview of the different types of rotorcraft concepts

CAPECON

CAPECON, which stands for “Civil UAV APplications & Economic Ef-
fectivity of Potential CONfiguration solutions”, is a European project 
of the 5th framework, involving 20 organizations (9 industries, 5 aero-
nautics and space institutions and 6 universities) from eight coun-
tries. The project was mainly developed from 2001 to 2005, with 
three groups working in parallel: two working on fixed wings (one on 
the High Altitude Long Endurance concept (HALE-UAV) and the other 
on Medium Altitude Long Endurance (MALE-UAV)) and the third one 
working on RW-UAVs.

From a survey of potential civil RW-UAV applications, five different 
application groups that were similar in terms of requirements were 
defined, taking into account the range, endurance, altitude, payload, 
speed, safety, all weather capability, etc. An analytical study was per-
formed based on a multi-criteria matrix method resulting in the selec-
tion of the two most promising multi-role missions: one for In-Line of 
Sight missions (local missions) and the other for Out-of-Line of Sight 
missions (broader range missions). Hence, two operational concepts 
were derived defining their respective specifications in terms of pay-
load, flight performance and other mission requirements. 

At that time, there was no tool (models and methods) for selecting the 
most suited rotorcraft concepts. Therefore, the choice was done fol-
lowing a rather conservative approach, allowing the use of the avail-
able pre-sizing means for a conventional single main rotor / single tail 
rotor helicopter on the industry side. However another “less classical” 
configuration was studied : a coaxial rotorcraft with two contra rota-
ting coaxial rotors (see figure 2).
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Figure 2 - CAPECON coaxial RW-UAV (from [1])

As described in [1], Eurocopter adapted its empty weight calcula-
tion model by adjusting the sizing laws and technological coefficients 
based on a database collected from existing RW-UAVs available at 
that time. This adaptation was of course needed to take into account 
the smaller sizes and thus lighter weights of UAVs compared with 
inhabited helicopters. The engine plays a significant role in both the 
weight breakdown and the flight performance. The choice of engine 
type (electrical, piston or turbine engine) depends primordially on the 
power demand. In the CAPECON case, the payload weighed 150 kg 
and the Maximum Take-Off Weight was of about 500 kg. Therefore, 
a piston engine was selected. A statistical engine model was derived 
from an aeronautical piston engine database for estimating its weight 
and performance in terms of available power and fuel consumption 
versus temperature and altitude.

The flight performance in terms of ceilings, range, endurance and 
speeds result from the balance between the power required by the 
rotors in steady flight conditions and the useful power provided by the 
engine (taking into account the mechanical losses and other power 
consumption by the equipment). Thus, the required power is a key 
parameter. For the coaxial configuration, Eurocopter applied its tool 
built for single main rotor helicopters and then tuned some empiri-
cal modeling parameters based on a bibliographical study of coaxial 
rotorcraft.

Among different contributions to the rotary wing group of the 
CAPECON project, Onera developed an inflow model for coaxial ro-
tors, in order to better assess the flight performance of this configu-
ration. Indeed, the induced power required by the rotors to produce 
the lifting force is the most important term in the power demand, 
especially at low speeds. Moreover, one of the most important speci-
ficities of the coaxial configuration (with respect to the single main 
rotor helicopter) is the aerodynamic interaction between the two ro-
tors. Therefore, a model was created for calculating the mean induced 
velocity through each rotor in interaction with each other. The model 
is applicable in hover, vertical climb or descent flight, as well as in 
forward flight. It takes into account the radial contraction downstream 
in the rotor wakes, as well as the fact that in forward flight the rotor 
wakes are skewed backwards, reducing the aerodynamic interaction. 
Above a certain forward speed, there are no more rotor interferences 

and the required power is then closed to the case of two isolated ro-
tors. This coaxial rotor inflow model is described in more detail in [2]. 

This model was later improved and adapted for another RW-UAV, de-
dicated to the inspection of large structures, such as dams, bridges, 
dykes, cooling towers, factory chimneys, or cliffs, etc. A flight dy-
namics model was built by Onera for the Infotron coaxial UAV, within 
the context of the ADOPIC project ("Aide au Diagnostic d’Ouvrages 
Par Imagerie Conventionnelle").

Figure 3 -  IT180-5, coaxial UAV (Infotron)

In this paper [2], three levels of analysis for assessing the RW-UAV 
steady flight performance have been presented :
	 • analytical calculation by the energy method ;
	 • flight mechanics computation, taking into account the compre-
hensive equilibrium of forces and moments resulting at the rotorcraft 
center of gravity ;
	 • overall performance assessment, in terms of the power required 
and fuel consumption on a complete mission profile, including: hover, 
climb, cruise, descent, loitering flight, etc.

Here, only the analytical calculation of the required power is recalled 
and discussed as an illustration of that previous work. At the level of 
the power balance or energy method, the CAPECON coaxial configu-
ration was compared by Onera with equivalent ones: the helicopter, 
tandem twin-rotor and tilt-rotor concepts. Here, equivalent means 
comparable. The equivalent helicopter has a single main rotor with 
four blades instead of two rotors with two blades. The tandem has 
two rotors exactly identical to those of the coaxial configuration, but 
separated. The tilt-rotor concept has two smaller rotors, but with three 
blades whose dimensions (radius and mean chord) are calculated in 
such a way that the rotor solidity is the same as in the other configu-
rations. Thus, all the four configurations have the same rotor solidity 
(ratio between the surface of blades and the rotor disc surface).

An example of a comparison between these four configurations is 
shown in figure 4, where the power required versus the forward speed 
is plotted from a hover flight to straight and steady level flights up to 
280 km/h. At low speeds, the tandem required less power than the 
others thanks to its two large separated rotors, the worst case being 
that of the tilt-rotor due to its two smaller rotors demanding more 
induced power and producing a downwash on the wings. At higher 
speeds, the trends are inverted: the tilt-rotor requires less power and 
can go faster in its airplane mode, whereas the tandem is hindered by 
the drag penalty, due to its longer fuselage and larger pylons (parts 
between the fuselage and the rotor heads). The helicopter and coaxial 
configurations are good compromises. The coaxial configuration is 
better at low speeds and more significantly at intermediate speeds 
where the required power becomes very close to that of the tandem 
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case when the two rotors have negligible aerodynamic interferences, 
whereas the helicopter is better at higher speeds, because of the drag 
penalty due to the larger rotor mast of the coaxial configuration.

In these comparisons, the arbitrary choice was made of comparing 
configurations with the same total weight and same rotor solidity. 
The goal was mainly to illustrate the effect of different rotor arrange-
ments. However, these configurations have obviously different empty 
weights. Moreover, even if the considered payload is the same, the 
fuel weight will be different, not only because the required powers 
are different, but also because the engine is more likely to be dif-
ferent. Indeed, to take advantage of the tilt-rotor configuration, the 
useful power should be higher, which means a heavier engine. This 
preliminary study highlighted the fact that, for a deeper analysis of 
their flight performance, a more detailed weight breakdown assess-
ment and the modeling of different engines (power, consumption and 
weight) are needed for a more comprehensive comparison of these 
configurations.

Figure 4 - comparison of the needed powers for the CAPECON coaxial 
configuration and the equivalent helicopter, tandem and tilt-rotor configura-
tions (extract from [2])

MAVDEM

MAVDEM (Miniature Air Vehicle DEMonstrator) is a project funded 
by the European Defense Agency. This was a four year project (from 
September 2005 to September 2009) with a consortium composed 
of French (Onera and Alcore Technologies), Spanish (SENER), Italian 
(Oto Melara and Celin Avio) and Norwegian (TellMie) partners.

The objectives of the project are to define, build and flight-test a MAV 
configuration (less than 50 cm wingspan). This MAV should be ca-
pable of hovering and economic fast cruising, in order to perform 
infantryman support missions. Examples of such missions are open-
field observation or city exploration. 

In order to perform such missions, this MAV must combine two ca-
pabilities :
	 • Hovering, in order to look inside a building through windows, for 
example;
	 • Economic fast cruise, in order to cover the maximal area in a 
minimum of time, with the maximal endurance.
Those two objectives are conflicting and require the right trade-offs 
to be made, in order to meet the requirements in terms of endurance 
and velocity, which are rather challenging :
	 • Endurance requirement : 15 minutes hovering and 30 minutes of 
economic cruise ;

	 • Velocity requirement : 20 m/s as maximum speed.

One important issue for the success of the project was to choose 
a vehicle concept able to meet the requirements. The methodology 
proposed for this choice was to look at a wide spectrum of possible 
solutions, then to detail them and at last to choose the best vehicle 
to be built. The concepts that were analyzed were either taken from 
existing state-of-the-art designs or created.

Once potential candidate vehicle configurations had been identified, 
a three-stage selection process was made. It culminated with the fi-
nal vehicle built (see figure 5). Each stage enables the design of the 
candidate configurations to be enhanced, as well as the least adapted 
ones to be discarded. This is described more in detail in the following 
paragraphs.

Figure 5 - Illustration of the vehicle configuration selection methodology

The first action of the vehicle configuration selection was to make 
a survey, as wide as possible, of the existing VTOL concepts. Dur-
ing the preparation of this survey, ideas arose and new original con-
cepts were designed within the consortium. This survey ended with 
26 candidate concepts, described by illustrative pictures, and the 
way to control them on all 3 axes. Then, a multi-criteria analysis was 
performed, in order to sort the various concepts. The selection was 
based on a limited number of criteria, divided into 4 main categories: 
performance, controllability/stability/maneuverability, complexity of 
design and safety (as shown in table 1). This analysis was not based 
on calculations, but rather on the expertise of the consortium. First a 
score was given, once per criterion, for each concept and then each 
criterion was weighted, in order to account for their relative impor-
tance, and a multi-criteria analysis was performed based on these 
values. The process, checked through alternative multi-attribute deci-
sion-making methods, ended in the selection of 5 concepts.	

Table 1 -  Criteria for top-down selection

After this first selection, the level of detail had to be improved (up to 
the preliminary design), in order to perform a second selection aimed 
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at keeping only two concepts. This design improvement required sev-
eral tasks :
	 • Identification and characterization (weight, dimensions and pow-
er consumption) of the required onboard components ;
	 • Propulsion considerations, especially in regard to battery volume 
and engine efficiency ;
	 • Aeroshape design refinement, with the associated estimated lift 
and drag ;
	 • Performance estimation.

Concerning this last point, the performance of each concept was cal-
culated using a power balance method, all implemented using the 
Matlab software application. Several types of curves resulted for each 
configuration. Figure 6 shows an example of the performance curves.

All of these tasks enabled the design of the 5 retained configurations 
to be improved. The new designs are presented hereunder (table 2).

This situation led the consortium to decide to combine the best prop-
erties of the various configurations into 2 options : a 4-rotor concept 
(Configuration A) and a double coaxial rotor concept (Configuration B).

 
Figure 7 -  Illustration of configurations A and B

Figure 6 - Performance curves for configuration 1
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Before selecting the final configuration to be built and flight tested, an-
other improvement of the configuration designs was necessary. This 
design improvement included propulsion tests, in order to calibrate 
the calculation codes with actual values of power, efficiency, torque, 
etc. Various engines and propellers were tested, in order to choose 
the best-suited solution for each configuration.
In parallel to these propulsion tests, the structure and internal ar-
rangement were more precisely defined. This design was performed 
by taking into account operational aspects, such as transport, battery 
removal and replacement, or manipulation by soldiers equipped with 
gloves.

Based on this "internal design", external fuselages were optimized to 
the least possible volume. CFD calculations have been performed to 
assess their lift and drag characteristics, as a function of the angle of 
attack (figure 8).

Figure 8 - Example of a CFD result for configurations A (left) and B (right)

A loop calculation of the estimated performance was made for both 
configurations, based on the experimental propulsion tests, the im-
proved weight budget (from the structure definition) and the aero-
dynamic analysis. This performance estimation was performed in 
terms of endurance, which is the most challenging and dimension-
ing requirement, especially regarding the propulsion. Based on a new 
multi-criteria analysis and in agreement with the whole consortium, 
the retained configuration for the MAVDEM was the 4-rotor concept 
(figure 9).

Figure 9 - Selected MAVDEM configuration (left) and partially built concept (right)

The goal of the MAVDEM project was to perform the preliminary con-
ception until the Technology Readiness Level (TRL) 4 (i.e. flight test 
demonstration). This turned out to be too ambitious with respect to 
the time frame of the project MAVDEM ended at the software inte-
gration validation test stage, even though the previous steps were 
successfully reached (including individual hardware tests, system 
integration and guidance, and navigation and flight control software 
implementation).

Some conclusions can however be drawn from the MAVDEM experi-
ence, about the methods used for concept evaluation and pre-sizing. 
First of all, the MAVDEM process was sequential, i.e., at each level of 
the selection, new tools had to be selected and updated. Furthermore, 
specific difficulties arose at each step :

	 • For the multi-criteria analysis, the criteria table was built using the 
experts involved in the project and took some times to converge.
	 • For the second selection loop, specific developments had to be 
made on the existing tools, in order to take into account the various 
designs that were selected and an agreement had to be reached be-
tween the experts on the values of the tool parameters.
	 • For the last step, the High Fidelity calculations (C.F.D. and F.E.) 
were based on the choice of the experts and not driven by the choice 
of a specific surrogate model. 

Therefore, the impact of the experts’ judgment was significant in this 
project. The need is arising for a calculation platform that is less reli-
ant on the direct involvement of discipline experts for the predesign 
and evaluation of rotorcraft concepts. Moreover, a numerical work-
shop or prototyping tool would allow these expert assessments to 
be capitalized in models and methods, as well as allowing design 
loops to be performed more systematically, with iteration rather than 
a sequential case-based process.

ExDro

Within the ExDro expert assessment (where ExDro stands for "Exper-
tises Drones", 2008-2009) performed by Onera for the French Min-
istry of Defense, a work package was dedicated to the RW-UAV for 
both the Army and Navy. A significant part of the study was aimed 
at determining the best rotorcraft to respond to the requirements in 
terms of flight performance. For this purpose, two investigations were 
carried out :
	 • the evaluation of the proposals by three industrial consortiums 
with two helicopter UAVs based on the adaptation of two manned 
helicopters (the Orka based on the Cabri-G2 and the "Unmanned Mis-
sion Enhanced Little Bird" based on the A/MH-6X) and on the Bell 
Eagle-Eye Tilt-Rotor UAV ;
	 • the selection and pre-sizing of four different rotorcraft concepts, 
as well as their evaluation and comparisons regarding the mission 
specifications.

For evident confidentiality reasons, the expert assessment of the rota-
ry wing air vehicles proposed by industry will not be discussed here. 
Moreover, the second part of this study is more relevant to the topic 
of this paper. This work on alternate rotorcraft concepts was done in 
three steps: 
	 • Step 1 : the review of the different types of rotorcraft bringing out 
their main strengths and weaknesses, and the pre-selection of four 
concepts potentially well suited for the missions of both the Army and 
Navy ;
	 • Step 2 : the pre-sizing of these four concepts up to a level of 
description, allowing the use of the available analytical tools for the 
flight performance computation;
	 • Step 3 : the evaluation and comparisons of the flight performance 
of these four rotary wing air vehicles regarding the military mission 
specification.

The four pre-selected concepts were: a helicopter capable of reducing 
the revolution speed of the main rotor in flight (as in the case of the 
Hummingbird A160 RW-UAV), a coaxial rotorcraft, a tilt-rotor tilt-wing 
concept (as in the case of the Erica concept for reducing the down-
wash of the rotors on the wings), a compound helicopter with a pair 
of wings and a vectored thrust device at the rear (as, for example, in 
the case of the Piasecki Pathfinder and X-49A Speedhawk).

z
x

z x
y

y
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Of course, the purpose here is not to go into the details of the pre-
sizing of these four RW-UAVs, but rather to sum up the main common 
points in terms of the methodological approach. 
For every pre-sizing exercise, the starting point and the ending de-
scription level must be clearly defined. In this ExDro case related to 
VTOL UAV, the pre-sizing had to be done from scratch (voluntarily 
ignoring the air vehicles proposed by industry) and the goal was to 
obtain a rough draft of the main characteristics of the aircraft allowing 
the flight performance calculation using the power balance method. 
For each concept, the input data for that kind of calculation had to be 
determined: Maximum Take-Off Weight (MTOW), engine data (weight 
and provided power with respect to the altitude and temperature), ro-
tor characteristics (radius, number of blades, mean chord, rotational 
speed, etc.), fuselage or airframe data (drag and sizes), wing data 
(for calculating their lift and drag, in the case of the tilt-rotor and com-
pound configurations).

A common starting point was obviously the payload, since all of 
these RW-UAVs had to carry the same mission payload. This was 
completed by an estimation of the weight of all of the other on-board 
equipment. Taking into account the equipment configuration with the 
highest demand in terms of weight, the maximum on-board equip-
ment weight (WPL including here the payload and all of the equipment) 
was set. From that entry, a statistical approach was applied, like the 
one presented in [4], for example.

After checking that our own rotorcraft database provided results simi-
lar to those given in [4], the following logical chain was used for the 
derivation of the main rotorcraft characteristics.

The first key parameter to be determined is the take-off gross weight 
W0. Knowing by statistics the ratio WPL/W0 for a certain type of rotor-
craft concept and WPL from the requirements, W0 can be estimated. 
As illustrated in the scheme in figure 10, from this key parameter can 
be derived: on the one hand, the take-off power, the engine and the 
main weight breakdown, as well as, on the other hand, the lifting rotor 
characteristics and the main airframe dimensions.

Figure 10 - Example of a logical chain for pre-sizing (MR for Main Rotor)

For the weights, the notation and definition are :

0 U E

0 useful_load empty-weight

payload fuel engine airframe

W =W  + W
W =(W )+(W )

=(W +W )+(W  + W )

PTO is the take-off power, from which, by using an engine database, 
a first choice of engine can be made giving its weight and specific 
consumption. The fuel weight can then be calculated knowing the 
mission requirements and typical specific consumption values. The 
payload, fuel, engine and gross weights being known, the airframe 
weight can be deduced. 

From the design gross weight 0(W ), the lifting rotor diameter (D) can 
be estimated by an analytical expression from the statistics (see fig-
ure 10). The fuselage length F(L )  and the rotorcraft over-all length 
(rotors turning LRT) can then be assessed, also by statistics. The 
disk loading is defined by : 2

0T/S=W .g/( .R )π , where R is the ro-
tor radius. By dimensioning the lifting rotor(s) for the most demand-
ing flight case (e.g., hovering at the highest take-off altitude), which 
sets a certain value of the air density ( )ρ , and with typical values 
for helicopters in terms of mean blade lift coefficient (Czm = 0.6)  
and blade tip Mach number (M = 0.6), the blade rotational tip speed 
( .R 200 m/s)Ω ≅  and the rotor solidity can be calculated :

( )2
6 1 T

Czm SR
σ

ρ Ω
=

By definition, the rotor solidity is the ratio of the surface of blades over 
the rotor disk surface:

b.c.R b.c
.R.R

= =

The rotor radius being known (R=D/2), if the number of blades (b) is 
chosen, for example for a coaxial the minimum number of blades is 
four (two by rotor), then the mean chord (c) can be calculated. Other-
wise, the blade aspect ratio can be first estimated (R/c) and then the 
number of blades can be deduced.

These main characteristics having been assessed, the power bal-
ance method can be applied for a first evaluation of the rotorcraft 
performance. This second stage may lead to the adjustment of some 
parameters and/or to another choice for the engine. Therefore, the 
pre-sizing and the flight performance assessment must be viewed in 
a loop with iterations.

Of course, this logical chain must be adapted to the rotorcraft concept 
considered. This simple approach gives a very first rough draft in a 
conservative way. That is to say, for known rotorcraft concepts with a 
significant number of examples in the database. However, a strength 
of this basic method is that the more complex trade-off requiring a 
wider scope of multidisciplinary models, as well as higher fidelity 
models, is however implicitly included. Indeed, even at this very early 
stage of the predesign, the use (in the database) of existing concrete 
flying rotorcraft, that have reached their full development, allows the 
constraints and disciplinary inter-dependences involved later in the 
preliminary conception process to be anticipated.

However, the statistical approach has the obvious drawback of being 
conservative by nature, i.e., limited to the rotorcraft concepts present 
in the database. Moreover, the validity ranges of the key parameters, 
(gross weight, sizes, etc.), are in principle limited to the maximum 
and minimum values available in the database: applying the design 



Issue 8 - December 2014 - Rotary Wing UAV Pre-Sizing
	 AL08-10	 8

trends beyond these limits entails extrapolation. Therefore, this meth-
od is not suited for the innovation of new concepts or the exploration 
of existing configurations beyond the currently known limits.

In addition to their own contributions to a specific issue and to the 
general problem of RW-UAV pre-sizing, these first studies have 
brought forward the need for a more global multidisciplinary ap-
proach and a more comprehensive analysis, including flight perfor-
mance, safety, environmental impact … They have paved the way 
toward the definition and construction of a general analysis tool for 
rotorcraft concepts.

Present : the CREATION project

Rebounding after different studies like the ones previously presented 
showing recurring needs in this field, a first attempt was made for 
setting-up methods and tools (see [5]). But definitely for going fur-
ther, the expertise of several scientific departments must be involved.

CREATION is an Onera multidepartment project launched in January 
2011 for a four years period. CREATION means “Concepts of Ro-
torcraft Enhanced Assessment Through Integrated Optimization Net-
work”. The main goal is to build a numerical platform for the analysis 
and evaluation of the flight performance and environmental impact 
(noise and air pollution) of rotorcraft concepts. 

The ambition is high, because the evaluation tool must be applicable 
to any kind of rotorcraft concept, whatever its description level. This 
last requirement means that the platform must be able to cope with 
the difficult problem of pre-sizing from scratch, that is to say, when 
only an idea of a concept has to be explored and/or when only the 
mission requirements are known.

However, the building of the platform has been scheduled in a prag-
matic way, increasing the complexity step by step with realistic mile-
stones:
	 • Milestone 1 - evaluation capability: setting up modules and 
workflows for the case of an existing helicopter,
	 • Milestone 2 - pre-sizing capability: setting up models and meth-
ods for the case of a new helicopter, to be defined from its mission 
requirements,
	 • Milestone 3 - innovation capability: generalizing the platform to 
alternate rotorcraft and applying it for an innovative concept.

Framework

The numerical platform CREATION is a computational workshop with 
models and methods. The models contain the knowledge from the 
various disciplines and they are the suitable evaluation tools for the 
available data. The methods correspond to the know-how for using 
the models together as tools for the evaluation, pre-sizing and innova-
tion purposes. 

First, the framework is presented here, i.e., the organization and im-
plementation. Then, the main features of models and methods will be 
summarized.

From the general specifications, certain important features are de-
rived for the organization of the platform. It must be composed of 

multidisciplinary modules, as well as multi-modeling levels inside 
each module.

Seven first main disciplinary modules have been identified as the 
“seven pillars”. Two are central within the tool; they can be called 
“goal modules”:
	 • Flight performance ;
	 • Environmental impact (acoustics, air pollution, etc.).

Around this bipolar structure of the tool, five “means modules” are 
present for providing the means for the flight performance and pollu-
tion evaluations:
	 • Missions & Specifications
	 • Architecture & Geometry
	 • Weights & Structures (including aeroelasticity)
	 • Aerodynamics
	 • Power Generation (engine).

The platform could be enriched later with other modules, depend-
ing on specific needs (e.g., regarding mission payload) or on other 
evaluation criteria or constraints (airworthiness regulation, economic 
viability, etc.). Safety, and in particular autorotation capability, must be 
assessed through criteria suited to the level of description of the ro-
torcraft and to its characteristics ("manned or unmanned" type, gross 
weight, etc.).

Except for the "Missions & Specifications" module, which provides 
the flight conditions with respect to the requirements and to the mis-
sion profile, several modeling levels have been implemented within 
each of the other disciplinary modules. This multi-modeling level fea-
ture is needed to adapt the "modeling granulometry" to the considered 
level of detail in the data describing the rotorcraft. Four main modeling 
levels are currently used :
	 • Level 0 : Response Surface Models (RSM) based on databases 
or simulations ;
	 • Level 1 : simple analytical models based on physics ;
	 • Level 2 : more comprehensive analytical models ;
	 • Level 3 : numerical models.

The more the model is complex, the more it is time consuming in 
terms of computational time, but also the more demanding it is in 
terms of required data inputs. The Response Surface Models or more 
generally reduced models are useful, not only for decreasing the com-
putational time, but also for reducing the amount of input data. The 
modeling complexity and the number of needed inputs vary according 
to each other.

Therefore, this vertical structure in modeling levels is also fully justi-
fied and useful in the pre-sizing process. Indeed, when a predesign 
must be done from scratch, its definition must be made from the 
lower models to the upper models, increasing the data describing 
the aircraft step by step. In the current state of the tool, for the Onera 
purposes, the starting point is the initialization of the pre-sizing with 
Level 0 models; then a first pre-sizing loop is performed at Level 1 
and the description of the rotorcraft is progressively enriched until 
Level 3 is reached. Thus, in the current state of development of this 
tool, the final definition stage of the pre-sizing is actually when all 
of the data needed for using a numerical rotorcraft flight mechanics 
code has been defined. More precisely numerical means here that 
the main rotor model is based on a blade element approach allowing 
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termined by establishing the diagram of the dependencies required 
for a certain application, depending on the available data and on the 
modeling level. Data flows between the modeling levels are also used, 
for example when an upper level model provides a reduced model to a 
lower level model, or in the bottom-up enrichment of data.

Models

A comprehensive and detailed description of the models is beyond 
the scope of this paper. First, descriptions have been given in [6] and 
[7]. Here, only the main common characteristics of these models are 
highlighted.

In each of the involved disciplines (flight mechanics, aerodynamics, 
acoustics, structures etc.), Onera has been developing for years ex-
pert models based on physics, constantly improving their fidelity by 
taking into account new results or experimental data. These high fidel-
ity models are very demanding in terms of input data. They are not 
suited for the evaluation of a rotorcraft described only by few items 
of data or for pre-sizing studies. Their computational cost is too high 
for exploring a design space. Moreover, the large amount of inputs 
required for using these complex models prohibits their application at 
an early design stage.

Therefore, in the CREATION project, the disciplinary experts were 
asked to provide simplified models corresponding to the defined 
modeling levels. This is clearly an added value of the project, to de-
velop simplified models working with few items of data and yet allow-
ing a realistic assessment of the flight performance, as well as the 
acoustic and air pollution of any rotorcraft. This is a challenging task 
and the main approaches for developing this kind of models will be 
summarized hereafter.

Note that the complexity of a model is not a guarantee of its high fidel-
ity. There are of course two kinds of uncertainties: those arising from 
the model itself (equations, formulations) and those arising from the 
input data. Using a complex expert model at an early evaluation stage 
can lead to lower fidelity results than using a simpler model with the 
few available items of data. 

Various approaches have been applied to set these simplified models. 
They can be based on databases, on simulation results and on phys-
ics. For example, a database on existing rotorcraft (about 260) has 
been gathered, but also a database on aeronautical engines (turbine, 
piston, electrical) and acoustics based on helicopter certification 
measurements. Simulation results from upper level models can be 
used to derive simpler models at lower levels. This is for example the 
case of the aerodynamic rotor model giving the blade mean drag with 
respect to the blade mean lift and advance ratio. The formulation is 
based on physics with three terms: a basic drag, a drag due to airfoil 
flow separation and stall effects, and a drag due to compressibility 
effects, completed by a factor for the Reynolds effect. A representa-
tive number of simulations with a rotor blade element model are per-
formed, from which the various parameters of the surrogate model 
are deduced.

Various mathematical techniques are used to generate these reduced 
models, such as statistical and polynomial regression, kriging, neural 
network, etc. More than the choice of mathematical method in these 
meta-modeling tasks, an important point is often to inject physics as 
far as possible into the model structure. The disciplinary expert must 

a fine description of the blade properties (geometry, aerodynamics, 
inertia, etc.).

In order to give a concrete image of this computational workshop, it 
can be seen in a 3-Dimensional space as a building (see figure 11).

NFM  : Numerical Flight Mechanics
AFM  : Analytical Flight Mechanics
BP : Balance of Power 

Figure 11 - A 3 dimensional view of the CREATION computational workshop

In its current state, the workshop has four floors corresponding to the 
modeling levels with Level 0 in its basement and seven pillars cor-
responding to the disciplinary modules. 

The approach is to begin the evaluation of a rotorcraft from the model-
ing level consistent with the available data describing it. If the rotor-
craft exists and all of the required data is known, the evaluation can be 
performed with the highest modeling level. Otherwise, the evaluation 
starts from the appropriate level and, if a more detailed evaluation is 
required, an enrichment of the data can be proceeded to, through a 
bottom-up process. On the contrary, if no data is available, an “ab 
initio” pre-sizing must be done. Level 0 provides “first guess” rough 
estimates of the main data, which are then recalculated and com-
pleted with other data in a first pre-sizing loop at Level 1. More refined 
optimizations are performed at the upper modeling levels, for improv-
ing the assessment of this data and/or for the pre-sizing of other parts 
of the rotorcraft. Macro iterations between these various pre-sizing 
loops are needed to ensure the consistency of the global optimization.

For example, in the case of the helicopter pre-sizing, Level 0 allows 
the process to be initialized based on design trends from a database. 
At Level 1, the main data describing the fuselage and the main ro-
tor is calculated within a multi-objective optimization loop. Then, at 
Level 2, the complete equilibrium of forces and moments resulting at 
the rotorcraft center of gravity can be considered with a comprehen-
sive analytical flight mechanics model allowing the pre-sizing of the 
rear components (horizontal stabilizer, fin and tail rotor). At Level 3, a 
more refined predesign of the main rotor blade (twist, airfoils, chords, 
etc.) can be performed, using a rotor blade element model. From this, 
a new rotor polar (blade mean drag versus mean lift and speed) can 
be computed, for example, therefore the results of the upper level op-
timizations can be fed back into Level 1 for a new round of optimiza-
tion up until the convergence of the whole process has been reached.

The arrows appearing in figure 11 are just to illustrate the connec-
tions between the disciplinary modules. The workflows between the 
models, in terms of data exchanges (inputs/outputs), must be de-
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be able to set the formulation to represent the most important physi-
cal effects relevant for the evaluation and consistent with the available 
data. Therefore, most of the simplified models are based on physics 
with parameters tuned by using databases obtained from experiments 
or simulations. Some models result from a hybrid approach, like in 
the weight module in which some parts are assessed based on sta-
tistics (equipment, crew and passengers, etc.) and others with mod-
els based on physics (blades, rotor, mechanical transmission, etc.). 
Some models are Response Surface Models: for the same inputs giv-
ing output values as close as possible (with a known precision) to 
the results given by one or several interacting more complex models.

These reduced models not only decrease the computational time, but 
also have a reduced set of suited inputs and outputs consistent with 
the available data at each modeling level.

Methodologies: MDO formulations and optimization techniques

The CREATION platform, like other tools aimed at designing an aerial 
vehicle, exhibits some multi-disciplinary particularities:
	 • it incorporates a large number of disciplines that are, some-
times, strongly coupled and must cope with a high number of vari-
ables;
	 • it has several levels of modeling, ranging from statistical tools 
to high-fidelity ones, thus requiring the use of reduced models;
	 • it requires a detailed exploration of the design space to be en-
abled, together with the capability to identify the global optimum of the 
entire system.

An engineering system method field, aimed at handling several disci-
plines more efficiently, has been developed to tackle those particulari-
ties: the Multidisciplinary Design Optimization (MDO). The objective of 
the MDO methods is to take advantage of the couplings and the syn-
ergies between the various disciplines, in order to achieve the global 
optimal design. The main targets of the MDO process are the quality 
of the solution found, the computation time and the robustness of the 
optimization process (i.e., the ability to converge to an optimum from 
a large initialization domain). Therefore, by solving the MDO problem 
early in the design process and taking advantage of advanced com-
putational analysis tools, designers can simultaneously improve the 
design and reduce the time and cost of the design cycle. Onera has 
been investigating this field of research since 2004, with a 4 year 
internal project called DOOM (“Démarche Outillée d’Optimisation Mul-
tidisciplinaire” or Multidisciplinary Optimization Tooled Approach) and 
has made significant studies and achievements in this domain (see 
[8] and [9]).

When talking about MDO, the first step is to overcome the analysis 
problem that one wants to solve, that is so say, to identify the disci-
plinary couplings and the computation of objectives and constraints 
as a function of the design variables. 

Once it has been done, the next step is to formulate the problem, in 
order to be able to use suitable optimization algorithms, which mean 
to select the most suitable MDO architecture. The MDO architecture 
defines both how the different models are coupled and how the overall 
optimization problem is solved. The architecture can be either mono-
lithic or distributed. In a monolithic approach, a single optimization 

problem is solved. In a distributed approach, the same problem is 
partitioned into multiple sub-problems containing small subsets of 
the variables and constraints. More information on the MDO architec-
tures can be found in [10].

Concerning the CREATION process, some monolithic approaches, 
such as MDF (MultiDiscipline Feasible) and SAND (Simultaneous 
Analysis and Design) have been evaluated. These studies have shown 
that the computational time required to reach an acceptable conver-
gence was far too high for rotorcraft concept exploration. Moreover, 
the will to use higher fidelity models, in order to introduce more 
knowledge at early stages of the design process, will increase this 
computational time. A common way to lower the computational cost 
is to make smart use of the most advanced modeling tools, using 
response surface modeling. The meta-models (or surrogate mod-
els) the most used in the engineering field aerospace systems are 
for example : polynomial regression techniques, the kriging statistical 
model, artificial networks or radial basis functions. All of these meta-
modeling techniques differ in terms of degrees of freedom, type of 
base functions and learning technique, thus leading to various areas 
of application. Within the CREATION platform, two different kinds of 
surrogate model were investigated : the kriging statistical model and 
the MOE techniques (Mixture Of Experts), combining several surro-
gate models [11]. They both enabled the computational time to be 
greatly reduced, while achieving a good accuracy in regard to the 
optimal solutions.

At the time of this paper, the CREATION workshop has been built by 
dealing with manned – inhabited rotorcraft. An example of an ap-
plication is presented in [12] for a large civil transport helicopter. For 
that case, the objectives were to minimize the required fuel weight, 
the empty weight and the noise produced on the ground during the 
landing approach. The choice of objectives is case dependent. For 
a RW-UAV this can be, for example: the required engine power, the 
empty weight and some crucial performances for the applications 
considered (endurance, range or a certain speed for best endurance, 
best range or maximal speed). For rotorcraft pre-sizing, it is often a 
question of compromise between the hover and forward flight per-
formance. This is why the objectives or criteria are generally : the 
hover efficiency (Figure of Merit, i.e., ratio between the ideal minimum 
needed power corresponding to the theoretical induced power ac-
cording to the momentum theory Pi0 and the actual required power 
for hovering, which is the sum of the induced power Pi plus the blade 
airfoil drag power Pblade) and the propulsive efficiency (equivalent lift 
over drag ratio for a lifting rotor: ratio of the weight W multiplied by the 
cruise speed V with respect to the total needed power Preq).

i0 i blade e reqFM = P  / (P  + P ) and L/D  = W.V/ P

The design parameters depend of course on the kind of rotorcraft 
concept. However, the number of rotors, as well as the radius, num-
ber of blades, mean chord and rotation speed of each rotor, are the 
main parameters to be optimized.

Moreover, some adaptations are needed, especially on the aerody-
namic and weight models, before coping with the case of the small 
scale RW-UAVs.
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Conclusion and perspectives 
Future : RW-UAS presizing

Examples of past studies regarding RW-UAVs evaluation and pre-
sizing have shown a clear need for numerical tools combining multi-
disciplinary models and multi-objective optimization methods.

An internal Onera project was launched in 2011 to respond to this 
kind of need and, more generally, to address the evaluation of any 
kind of rotorcraft concept, first and mainly from the flight perfor-
mance and environmental impact points of view. A computational 
platform called CREATION has been developed, integrating multidis-
ciplinary modules within multi-modeling levels, together with meth-
odologies to cope with problems involving multi-design variables 
(continuous or discrete), multi-objectives and constraints related to 
multi-missions, etc...

The last milestone of this project is the innovation capability. The 
differences between uninhabited and inhabited air vehicles have 
been highlighted in the reference book [13], showing that the field 
of possible solutions is wider in the UAV case. A high potential for 
innovation exists in the field of RW-UAVs. Hence, a good candidate 
as a demonstration exercise will be to deal with the pre-sizing of an 
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inhabited Aircraft System (UAS) as a whole 
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This paper presents a comprehensive framework for the cooperative guidance of a 
fleet of autonomous vehicles, relying on Model Predictive Control (MPC). Solutions 

are provided for many common problems in cooperative control, namely collision 
and obstacle avoidance, formation flying and area exploration. Cost functions of the 
MPC strategy are defined to ensure a safe collaboration between the vehicles for these 
missions. An efficient way to select the optimal cost with limited computation time is 
also provided. The performance of the proposed approach is illustrated by simulation 
results. 

Introduction

Missions such as large area surveillance or multiple target tracking 
may often prove tedious, potentially dangerous or cumbersome for 
a human operator. Using autonomous, or at least partly autono-
mous, vehicles could greatly contribute to making these missions 
feasible. However, their complexity may prove very demanding in 
terms of technological requirements for a single vehicle. Splitting the 
task into several subtasks makes it easier to fulfill the demands. It 
is thus necessary to determine how the subtasks are defined and to 
which vehicles they are attributed. Two approaches can be defended. 
The first one consists in defining subtasks that do not interfere, but 
whose collection leads to mission achievement. The second one is 
aimed at defining imbricated subtasks whose coordinated achieve-
ments would be at least equal, but possibly greater, than those of a 
complex but unique vehicle. This approach, known as cooperative 
tasking, requires coordination of the entire vehicle set to guarantee 
the satisfaction of the initial mission needs. The determination of spe-
cific control laws and estimation procedures are required to enable 
vehicles to perform cooperative tasks. This field of research has been 
very active since the 1980’s and encompasses theories from various 
domains, such as game theory, artificial intelligence or distributed 
control. The numerous existing approaches vary according to the type 
of mission and the associated requirements in terms of constraints on 
formation flying [1], [2], communication exchange [3] or allocation 
of resources [4]. Many issues must be addressed, from the mode-
ling of the cooperative set of vehicles, the definition and management 
of the allocated tasks and required information, and the definition of 
cooperative control strategies enabling the coordination and safety of 
these vehicles.

In this paper, attention is focused on the design of control laws, as-
suming that the necessary shared information is available. Various 

characteristics can be attached to cooperation control from a system-
control perspective, e. g., they can be designed as implicit or explicit, 
based on regulated or reactive control law, obtained by centralized or 
decentralized control, with equality or hierarchy among the vehicles.

Implicit cooperation describes the behavior of individuals obeying a 
set of basic rules that results in a cooperative behavior. This consti-
tutes one of the basic features of biomimetic flocking [5]. In explicit 
cooperation, mission allocation and guidance laws are defined for 
enhancing cooperative behavior (see e.g. [6]).

Reactive or regulated control laws translate into a long-term versus 
short-term design of the guidance law. A regulated control law is desi-
gned to guide the vehicles along trajectories that have been previously 
designed, e. g., using path searching procedures, such as A star or 
Dijkstra [7] or other algorithms [8]. Reactive control is achieved using 
the current and predicted states of the system, including the vehicles 
and the environments [9]. It is designed to provide a trade-off between 
the mission objective and its safety, for the current time or a limited 
time horizon. Centralized or distributed cooperative control refers to 
the location where the control takes place. It can be achieved within 
a unique control unit interacting with all vehicles [10] or computed by 
each vehicle [11]. The latter implementation presents the advantage 
of being more robust in case of failure of one of the vehicles of the 
fleet, at the cost of increasing the amount of vehicle embedded com-
putation load. The selection of centralized or distributed control is also 
linked to the definition of hierarchy among the vehicles. They can be 
considered as equal in terms of decision for allocation or objective 
making, or some vehicles can obtain a superior status providing them 
with a higher decision weight. As in centralized computation, this hie-
rarchy lightens the computational burden required for each vehicle of 
the fleet, at the cost of making the fleet more vulnerable to potential 
failure of the privileged vehicles.
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This paper focuses on the design of reactive and distributed coo-
perative control laws. It can be addressed by designing a common 
criterion reflecting the mission objectives in terms of aim, safety 
assessment and so on. This criterion is evaluated according to each 
vehicle action and result, taking also into account the interaction 
between vehicles. Control laws can be thus derived by optimization of 
this criterion, relying on approaches such as model predictive control 
(MPC). This method has been used at Onera to define cooperative 
guidance laws for safely performing various cooperative missions 
with a fleet of autonomous Unmanned Arieal Vehicles (UAVs). The 
paper is organized as follows. In the next section, basic features of 
model predictive control are recalled and their extension to coopera-
tive control is presented. Then the proposed MPC method is applied 
to the main types of cooperative missions for a fleet of autonomous 
vehicles (formation flight with obstacle avoidance, area exploration).

Model predictive control approach for UAV cooperative
 

guidance

MPC has been widely used for the guidance of UAVs in various 
contexts. UAV flocking and formation flight has been discussed in 
[9]. In distributed MPC [12]–[14], each vehicle computes its control 
inputs at each timestep as a solution of an optimization problem over 
the future predicted trajectory. For tractability reasons, finite predic-
tion and control horizon lengths, respectively denoted as Hp and Hc, 
are used.

The future control inputs and the resulting state trajectories of a vehi-
cle i are written as

(( ( )) ,( ( 1)) ,..., ( ( 1)) )

(( ( 1)) ,( ( 2)) ,..., ( ( )) )

T T T T
i i i i c

T T T T
i i i i p

k k k H

k k k H

= + + −

= + + +

U u u u

X x x x

When Hc < Hp, we assume that the control inputs are 0 after Hc 
steps. Once the optimal input sequence *iU  has been computed, 
each vehicle communicates its predicted trajectory to the rest of the 
fleet and applies the first sample of the computed optimal control 
sequence ( )*i kU . The optimization problems at time k take the fol-
lowing form:

( , )

[ 1; ], ( )

minimize 

over 

subject to  

c

i
H

i

p i i

J

t k k H t
∈

∀ ∈ + + ∈

i i

i

U X

U
x


X

	 (1)

Ji is the cost function associated with vehicle i. The constraints 
coupling the dynamics of the vehicles, such as collision avoidance, 
are taken into account by means of a penalty factor in the cost 
function. At the next timestep, each vehicle searches for its solution 
of problem (1).

The cost function Ji is composed of a sum of terms reflecting the 
objectives of the mission. These terms are detailed in the following 
sections.

Vehicle model

The N UAVs are assumed to be identical. For the sake of simplici-
ty, the UAVs are assumed to be pointwise and their trajectories are 
considered to be two dimensional, in a horizontal plane. Note that 
extension to 3D motion is straightforward.

The state and control vectors for each vehicle i are defined as:

 and 

i

i i
i i v

i i

i

x
y u
v u

ω

χ

 
    = =       
 

x u 	 (2)

where x,y is the vehicle position, v is its speed amplitude and X is its 
direction. The model dynamics are:

( 1) ( ) . ( )cos ( )
( 1) ( ) . ( )sin ( )

( 1) ( ) . ( )

( 1) ( ) . ( )

i i i i

i i i i
v

i i i

i i i

x k x k t v k k
y k y k t v k k

v k v k t u k

k k t u kω

χ
χ

χ χ

 + = + ∆


+ = + ∆


+ = + ∆
 + = + ∆

	 (3)

where Dt is the sampling timestep and ( ),v w
i iu u  are the longitudinal 

and rotational accelerations. The constraints on the dynamics (3) and 
the control inputs are:

min i max max i max
v

max i max max i max

v v v

v u v uω
ω ω ω

ω ω

≤ ≤ − ≤ ≤

−∆ ≤ ≤ ∆ −∆ ≤ ≤ ∆ 	 (4)

We summarize the dynamics and the constraints as
( 1) ( ( ), ( ))i i ik f k k+ =x x u and ( , )i i i i∈ ×x u X  . Communication 

delays and ranges are not considered here, all of the UAVs are assu-
med to have access without delay to the exact state of every vehicle 
at all times.

Costs used for all types of missions

The cost function Ji is composed of a navigation cost nav
iJ  , a safety 

cost safety
iJ  and a control cost u

iJ  :

( ) ( ) ( ) ( )nav safety u
i i i iJ k J k J k J k= + + 	 (5)

The formulation of each cost function is presented in the following 
subsections.

Navigation cost

The navigation cost nav
iJ  is aimed at regulating the speed of the vehi-

cles and controlling the way in which they navigate to way-points. It 
is divided into five cost functions:

( ) ( ) ( ) ( )
( ) ( )

, , ,

, ,

nav nav horiz nav vert nav direct
i i i i

nav final nav fleet
i i

J k J k J k J k

J k J k

= + +

+ +
	 (6)

The first two cost functions, ,nav horiz
iJ  and ,nav vert

iJ  , respectively 
defined by (7) and (8), are aimed at regulating the modulus of the 
horizontal component vh of the velocity around a nominal value vn and 
the vertical component vz of the velocity around a zero value (making 
the UAV fly at constant altitude in a 3D case).

( )  ( )
2

, ,

1

.
ck H

nav horiz nav horiz h
i i n

n k

J k W n k v
+

+

=

 − 
 

= ∑ v 	 (7) 
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( )  ( )
2

, ,

1

.
ck H

nav vert nav vert z
i i

n k

J k W v n k
=

+

+

= ∑ 	 (8)

Weighting coefficients W• are tuned to set relative priorities between 
each aspect of the mission. A method to tune these coefficients has 
been proposed in [14].

The following two cost functions, ,nav direct
iJ  and ,nav final

iJ , are 
used to make the vehicle fly along a straight-line reference trajectory 
oriented toward the next way-point and to drive it closer to this way-
point. The reference trajectory from the current position pi (k) of vehi-
cle i at time k to the next way-point p is composed of reference points 

( ) ( ), 1,ref
i p pn k n k k H ∈ + + p  located at positions that vehicle i 

would reach at timestep n if moving along a straight line to p at nomi-
nal velocity vn, regardless of any constraints. These reference points 
are defined by (9) and illustrated in figure 1. The resulting definition of 
cost ,nav direct

iJ  is given by (10).

( ) ( ) ( ) ( )
( ), . . 1,. i pref

i p i n p
i p

k
n k k n k t v n k k H

k
 +

−
− ∆ = ∀ +

− ∈ +
p p

p p
p p

	(9)

( )  ( ) ( )
2, ,

,
1

.
pk H

nav direct nav direct ref
i i i p

n k

J k W n k n k
+

= +

= −∑ p p	 (10)

In order to steer the vehicle toward the next way-point by the end 
of the horizon of prediction, let us define a reference ball ( ),

ref
i pB k , 

illustrated in figure 1, as the smallest ball around way-point p that 
vehicle i can hypothetically reach from its current position by mo-
ving directly toward this way-point at nominal velocity vn. It is defi-
ned as ( ) ( )( ){ }, ,

ref ref
i p p i pB k r B k= − ≤x x p , where the radius 

( )( ),
ref
i pr B k is given by:

( )( ) ( )
( ),

0 . .

. .

if 

otherwise
ip p nre

i p
i

f

p p n

d k H t v
B k

d
r

k H t v

≤ ∆

− ∆

= 


	 (11)

where ( ) ( )ip p id k k= p p-  denotes the current distance between 
vehicle i and the way-point p. Using these definitions, the cost 

,nav final
iJ  is defined by

( )  ( )( )( ),
,

2
, . ( | )nav final nav final

i j p p
ref
i pJ k W k H k B kr= + − −p p 	(12)

Finally, the fifth cost function ,nav fleet
iJ  is aimed at making the vehi-

cles remain together as a fleet. Its definition penalizes the predicted 
distance  ( )  ( )  ( )ij j id n k n k n k= −p p  between vehicles i and 
( )j i j≠ :

( )
 ( )( )( )

, ,

1 1
1

1 tanh .

2

p

nav fleet nav fleet
i

f fk HN ij ij ij

j n k
j

J k W

d n k β α+

= = +
≠

+ −
×

=

∑ ∑
	 (13)

where coefficients f
ijα  and f

ijβ  are defined by

( ) ( )( ) 1
6. v v

ij loss des
f d ij d ijα

−
= − 	 (14)

( ) ( )( )1 .
2

v v
ij loss d
f

esd ij d ijβ = + 	 (15)

The coefficient ( )v
desd ij  defines a desired distance between the 

vehicles within the fleet, whereas ( )v
lossd ij  is the maximum distance 

allowed between vehicles of the fleet. Vehicles ( )j i j≠  beyond this 
maximum distance are not considered by vehicle i any more. This re-
presents, for example, limited communication and/or sensing ranges.

The definitions of f
ijα  and f

ijβ  have been chosen in such a way as 
to obtain a nearly constant cost for distances lower than ( )v

desd ij  or 
greater than ( )v

lossd ij  (defined by a derivative lower than 0.05) and a 
symmetric behavior at borders.

The change in ,nav fleet
iJ  with respect to the distance dij is plotted in 

figure 2.
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Safety cost

The safety cost safety
iJ  is aimed at avoiding collisions with obstacles 

and between vehicles within the fleet. It is composed of three cost 
functions:

( ) ( ) ( ) ( ), , ,safety safe veh safe traj safe obs
i i i iJ k J k J k J k= + + 	 (16)

The first two costs deal with collision avoidance between vehicles, by 
respectively penalizing the predicted distance dij between them and 

ensuring that the new predicted trajectory  ( )1
1

pk H
i k k+ −

+p  of vehicle i

remains close to the one transmitted to other vehicles at the previous 

iteration  ( )1
1 1pk H

i k k+ −
+ −p :

( )
 ( )( )( )
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1 1
1

1 tanh .

2
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	 (17)
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. 1
pk H
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i i i

n k

J k W n k n k
+ −

= +

= − −∑ p p	 (18)

The shape parameters of the hyperbolic tangent function of equation 
(17), v

ijα  and v
ijβ  , are defined by

( ) ( )( ) 1
6. v v

ij des sa
v

fed ij d ijα
−

= − 	 (19)

( ) ( )( )1 .
2

v v
ij des s f
v

a ed ij d ijβ = + 	 (20)

where ( )v
safed ij  represents a desired safety distance between the 

vehicles. These shape parameters have been tuned according to the 
same considerations as previously explained for the definition of the 
safety cost. The change in ,safe veh

iJ  with respect to the distance dij is 
plotted in figure 2.

The third cost ,safe obs
iJ  penalizes the predicted distance iod  of vehi-

cle i to any obstacle o. It is defined as:

( )
 ( )( )( )

, ,

1 1

1 tanh .

2

o p

safe obs safe obs
i

o ok HN io io io

o n k

d n k

J k W

β α+

= = +

− −
×

=

∑ ∑
	 (21)

where N° stands for the number of obstacles and the parameters o
ioα  

and o
ioβ  are given by

( ) ( )( ) 1
6. o o

io des sa
o

fed io d ioα
−

= − 	 (22)

( ) ( )( )1 .
2

o o
io des s f
o

a ed io d ioβ = +	 (23)

where ( )o
desd io  and ( )o

safed io  are desired and safe distances to 
obstacles.

Control cost

As traditionally defined in MPC, the control cost ( )u
iJ k  is aimed at 

limiting the control effort and thus the energy consumption of vehicle 
i. It is defined by the following quadratic form:

( ) ( ) ( )
,

,
1

0

0

ck H u v
Tu

i i iu
n k

W
J k n k n k

W ω

+

= +

 
=  

  
∑ u u	 (24)

Online computation of best cost

The MPC optimization problem (1) is a constrained nonlinear pro-
gram, the solution of which cannot be found analytically. Numerical 
optimization must hence be used to approximate the solution.

Global optimization procedures based, for example, on interval analy-
sis [15] or genetic algorithms [16] can be used, but may in practice 
be computationally prohibitive for real-time implementation. Numeri-
cal optimization methods, such as Sequential Quadratic Programming 
(SQP), Active Set or Interior Point methods, are thus generally prefer-
red [17], [18]. Other methods suitable for MPC problems have also 
been developed [19]. Nevertheless, a global solution can be hard to 
find because of potential local minima. The computational time requi-
red for a MPC approach strongly depends on the parameterization 
of the control sequence. Low dimensional parameterizations have, 
for example, enabled successful applications to control systems with 
fast dynamics [20], [21]. Another solution consists in considering a 
finite set of predefined feasible control sequences, from which the 
one minimizing the cost function will be selected [22]. This last solu-
tion is used in this paper for implementation of the MPC strategy, 
based on [14].
This systematic search strategy has several main advantages over 
a traditional optimization procedure. Firstly, the computation load 
necessary to find a control sequence is constant in all situations lea-
ding to constant computation delay. The second advantage is that 
the systematic search strategy can be less sensitive to local minima 
problems, since the entire control space is explored. Finally, the sys-
tematic search requires no initialization of the optimization procedure.

The studied search procedure consists in defining, prior to the mis-
sion, a set S of candidate control sequences that satisfy control 
constraints (4). At each timestep, the control problem (1) is solved 
using the proposed search procedure, as follows:
	 •using a model of the vehicle dynamics, predict the effect of each 
control sequence of the set of candidates S on the state of the vehicle;
	 •remove from S all of the candidate control sequences that lead 
to a violation of constraints on the state of the vehicle (4);
	 •compute the cost Ji corresponding to each remaining candidate 
control sequence;
	 •select the control sequence that entails the smallest cost.

Since all of the candidates in the set S will be evaluated, the computa-
tion load of associated predictions should be as limited as possible. A 
simple parameterization of the control sequence is therefore adopted, 
by considering a control input constant over the control horizon Hc 
and then null over the remainder of the prediction horizon Hp. In addi-
tion, the distribution of the candidate control sequences is chosen 
so as to limit their number, while providing a good coverage of the 
control space.
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The following three rules have been chosen:
	 •the set S of candidates includes the extreme control inputs, to 
exploit the full potential of the vehicles;
	 •the set S of candidates includes the null control input, to allow 
the same angular and linear velocities to be continued with;
	 •candidates are distributed over the entire control space, with an 
increased density around the null control input.

Constraints on the control inputs (4) can be translated into constraints 
on the norm of the horizontal component ( )max

h ha≤a  and on the 
vertical component ( )max max

z z za a a− ≤ ≤  of the acceleration of the 
vehicle. Therefore, it has been chosen to define the set S in terms of 
accelerations as follows:

{ } ( ){ }0,0v zS S S Sω= × ∪ × 	 (25)

where S, Sv and Sz are respectively the sets of directions, modules 
and vertical components of the acceleration, defined by:

2. . 1with to
pS pω ω

ω
π η
η

 
= = 
 

	 (26)

( )
max 0with to
h

v v
pv

aS p η
ς

 
 = = 
 
 

	 (27)

( )
{ }max 0 0with to

z
z z

pz

aS p η
ς

 
 = ± = 
 
 

	 (28)

v and z control the interval between two candidates; the number 
of candidates Nc, N, Nv, and Nz in S, S, Sv, and Sz respectively are 
deduced from , v, and z using (29) to (32).

( ). 1 .c v zN N N Nω= + 	 (29)

Nω ωη= 	 (30)

1v vN η= + 	 (31)

2. 1z zN η= + 	 (32)

The resulting complete set S is illustrated in figure 3. Using this set S, 
a vehicle can be aimed at any arbitrary way-point in some iterations. 
The minimal distance at which the vehicle can approach the way-
point depends on the precision of the control, defined by the values of 
the • and • parameters.

Applications

Applications of the MPC strategy for three different types of mis-
sions are proposed in this section. The first one concerns the gui-
dance of a fleet of quadrotor UAVs toward given objectives repre-
sented by way-points, while avoiding collisions with obstacles and 
between vehicles [14]. Exploration missions are then addressed 
by a cooperative grid allocation approach [23] and a cost-oriented 
approach [24]. The third type of mission is formation flying, for 
which an adaptable virtual structure is proposed along with the MPC 
approach [25].

Guidance of a fleet toward predefined objectives

Many missions consist in making a group of several autonomous 
vehicles successively reach predefined objectives. These objectives 
may be defined in terms of a sequence of way-points, toward which 
the group of vehicles must be guided. Cooperation hence consists 
in sharing information (predicted trajectories) and controlling each 
vehicle of the group in such a way that the fleet as a whole can safely 
reach each of the waypoints.

The proposed cooperative MPC scheme is illustrated in this sec-
tion for such a mission, where a group of N=7 vehicles must 
successively reach three way-points while avoiding collisions with 
obstacles and within the fleet. The vehicles considered are qua-
drotor UAVs, for which true dynamics include an inner loop for 
attitude control. Robustness to model mismatch of the MPC gui-
dance strategy is therefore evaluated, since the prediction model 
used in the MPC guidance scheme consists in a 3D extension of 
(3). The quadrotor model and simulation results are presented in 
the next paragraphs.
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Fig. 3 - Illustration of the set S of candidate control sequences, defined in terms of accelerations 
( )2, 3, 8 3 5, andv z zvN NNωζ ζ= = = = = - Projections on the (x,y)-plane (left picture) and on the (x, z)-plane (right picture)
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Quadrotor model and control strategy 

Four-rotor helicopter models are derived from the description given 
in [26].

The rotors of each quadrotor i are located at the four corners of a 
square, with opposite rotors rotating in the same direction and adja-
cent rotors rotating in opposite directions. The true control inputs of 
the rotors are the signals 1

iu  to 4
iu  , classically defined as:

1
iu  : the resulting thrust of the four rotors (which controls the motion 

along the z-axis of the vehicle);
2
iu  : the difference of thrust between the left and right rotors (which 

controls the roll ϕi and hence contributes to the motion along the y-
axis of the vehicle);

3
iu  : the difference of thrust between the  front and back motors 

(which controls the pitch θi and hence contributes to the motion along 
the x-axis of the vehicle);

4
iu  : the difference of torque between the clockwise and anti-

clockwise rotating rotors (which controls the yaw i of the vehicle).

It is assumed that, at each iteration k, the value of the state com-
posed of the position, attitude angles, and the linear and an-
gular velocities, is available for the computation of vehicle i 
control. The control strategy consists in applying the MPC gui-
dance law based on a simplified 3D version of the prediction 
model (3), described in § "Vehicle model", to compute a desi-

red acceleration vector ( ) ( ) ( ) ( ), , ,,
Tx y z

d i d i d id ik a k a k a k =  a .

This desired acceleration, along with a given desired value d,i for the 
yaw, is then converted into vehicle control inputs (k) to 4

iu (k). 
Note that attitude control of the quadrotor is achieved by using the 
approach proposed in [26].

Illustrations of the response of the controlled vehicle to an accelera-
tion step in the x direction and to a yaw angle step are given in figure 
4. The desired value is shown as a red dotted line, whereas the simu-
lated response is shown as a plain blue line.

Mission set-up and tuning parameters

In the simulated mission, the flock must successively reach three 
way-points, while avoiding obstacles and collisions. The vehicles 
must also travel as a group at nominal velocity vn = 2 m.s-1. Defining 

the z-axis downwards, the coordinate of the ground is z = 0 and the 
altitude of a vehicle is given by -z. At all times, the vehicles must fly 
between the altitudes of 0m (ground) and 25 m. These constraints are 
materialized with two obstacles of infinite dimensions, with a vertical 
safety distance of 2 m.

Initial positions of the vehicles are randomly chosen in the box defined 
by x∈[-205 m; -155 m], y∈[-45 m; 5 m], z∈[-15 m; -5 m]. Their 
initial velocities, attitudes and attitude derivatives are set to zero and 
the desired yaw angle d is also set to zero for all vehicles throughout 
the entire mission. The guidance sampling time is t = 0.5 s.

Values of the constraints on velocity and acceleration are given in 
table I.

max
hv 5 m.s-1

max
zv 1 m.s-1

max
ha 0.5 m.s-2

max
za 0.25 m.s-2

Table I - Velocity and acceleration constraints

Depending on the considered axis (x, y, z), different values can be 
assigned to distances ( )v

safed ij , ( )v
desd ij  and ( )v

lossd ij  introduced 
in § "Navigation cost" and "Safety cost" and respectively defining 
the safety and desired distances between vehicles and the distance 
threshold beyond which other vehicles are no longer considered. 
Corresponding ellipsoids ( )o

safe iε , ( )o
des iε  and ( )v

loss iε  are there-
fore designed, as illustrated in figure 5. Their parameterizations are 
given in table II. The same applies for the distances ( )o

desd io  and 
( )o

safed io  to any obstacle o, to which similar ellipsoids are associa-
ted ( ) ( )( )o o

safe deso oε ε  and whose parameters are also given in table 
II. The parameters of the search procedure used for the MPC strategy 
(lengths of horizons, size of the sets of control sequences and shape 
parameters) are given in table III and, finally, the tuning parameters 
of the objective functions are given in table IV. Let us recall that they 
define the relative importance of each component of the mission. 
Note that the weighting parameters of the control cost are defined 
here in terms of the horizontal and vertical components of the desired 
acceleration ad,i , which is considered as the control input computed 
by MPC for this case study.
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Fig. 4. Step response to a desired acceleration along x of 0.5m.s-2 (left picture) 
and to a desired yaw angle of π/6 rad (right picture)
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Fig. 5 - Safety ( )( )v
safe iε , desired-locations ( )( )v

des iε , 
and remoteness ( )( )v

loss iε  ellipsoids around vehicle i

Fig. 6 - 3D view of the trajectories followed by the vehicles to complete their mission 
(way-points are represented by diamonds and obstacles by cylinders)
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( )v
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( )v
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( )v
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( )v
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( )v
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ellipsoid semi-axis length along x semi-axis length along y semi-axis length along z

safe 10 m 10 m 5 m

v
desε 20 m 20 m 10 m

v
lossε 50 m 50 m 10 m

o
safeε 4 m 4 m 2 m

o
desε 8 m 8 m 4 m

Table II - Parameters of the ellipsoids defining the characteristic distances 
between vehicles and to obstacles

Hc       4 Nv   3

Hp     24 Nz   5

N       8 v   2

Nc     125 z  3

Table III - Parameters of the search procedure

Wu,h              2 Wnav,horiz        10

Wu,z               2 Wnav,vert            2

Wsafe,veh       100 Wnav,direct        10

Wsafe,obs       400 Wnav,final          20

Wsafe,traj           0 Wnav,fleet          50

Table IV - Weighting coefficients of the objective functions

Mission success rate 98.5%

Collision rate 0%

% of loss of a vehicle 1.5%

Mean computation time (std) 18(1) ms

Table V - Performance results of the MPC strategy over the 200 MC simulations
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Simulation results and analysis 

The environment of the mission and the trajectories of the vehicles 
are presented in figure 6 for one realization of the mission (i.e., for 
given initial positions of the vehicles). This realization of the mission 
is considered to be a success, because all way-points have been 
successfully reached and vehicles have remained grouped together, 
while avoiding collisions. The first obstacle is avoided by flying under 
it, whereas the two other obstacles are avoided by turning around. 
Note that since d = 0, all vehicles are oriented along the x axis (i.e.,  
i (k) = 0 for all i and k).

Fig. 7 - Change in the altitudes of the vehicles (the dotted lines represent the 
altitude constraints)

Altitude variations of the vehicles are presented in figure 7 and 
distances between the vehicles and to obstacles are presented in 
figure 8. As can be seen, the vehicles remained tightly grouped 
during the mission, except when they had to avoid obstacles, and 
spread over the vertical axis to form a tighter group while maintai-
ning the desired distance between them. In addition, the vehicles 
always managed to avoid entering the safety ellipsoid of obstacles 
or other vehicles. Constraints on velocity and control inputs of the 
vehicles are satisfied throughout the mission, as can be seen in 
figures 9 and 10.

All of the aforementioned results concern one realization of the 
mission, i.e., one simulation corresponding to given initial posi-
tions of the vehicles. 200 Monte Carlo simulations have been run, 
randomly choosing these initial positions in the box defined by 
x ∈ [-205 m; -155 m], y ∈ [-45 m; 5 m], z ∈ [-15 m; -5 m]. 
Table V provides the rate of success, collision and loss-of-a-vehi-
cle (i.e., when the distance between two vehicles becomes grea-
ter than v

lossd ) over these 200 simulations. The mean value and 
standard deviation of the computation time (using Matlab on a 
standard PC) are also presented, over the 200 simulations. Note 

Fig. 8 - Distances between vehicles (left picture) and to each obstacle (right picture)

Fig. 9 - Constraints on the horizontal and vertical components of the velocity

Fig. 10 - Components of the desired acceleration (control input)
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that, for a given mission, the computation time remains constant 
throughout the whole mission.

Other studies on the influence of search parameters (number of 
control sequence candidates) and comparison to a traditional opti-
mization procedure (SQP) have also been conducted [14], confir-
ming the good performance and robustness of the proposed MPC 
strategy.

Area exploration via cooperative grid allocation

The cooperative exploration problem addressed in this section 
consists in zone surveillance. The zone is described by a value grid, 
as in [27] or [28]. Each point of the grid must be visited at least once 
by one of the vehicles belonging to the fleet.

Adaptation of navigation and objective criteria

 The first step is to allocate the grid points among the vehicles. In 
order to maintain a distributed control design approach, the procedure 
suggested here consists in allocating to each vehicle two grid points 
selected at each iteration step among the remaining points, using the 
following selection criterion. This criterion, denoted { }1 2, ,

attr
i p p

J  , is built 
as the sum of the three following terms:
	 • 

1,
pec

i pJ  estimates the maneuvering cost of the vehicle to reach 
the first grid point of the allocated pair,
	 • 

2 1,
pec

i p pJ  estimates the additional maneuvering cost for the vehi-
cle to reach the second grid point, while progressing to the first allo-
cated point,
	 • { }1 2, ,

dev
i p p

J  estimates the additional cost for the vehicles that

were initially directed to p
1
 or p

2
 and have to be redirected as they are 

allocated to vehicle i.

The first component of the criterion 
1,

pec
i pJ  is determined as a function 

of the distance between the first grid point and the predicted trajectory 
defined over the horizon of prediction. It is expressed as

( )  ( )
11

min
,,

pec
i pi pJ k d k= 	 (33)

 ( )  ( )
1 1

min
,

1,
min

p
i p i p

n k k H
d k n

 ∈ + + 
= −p p	 (34)

The criterion 
2 1,

pec
i p pJ  expression varies, whether the previous grid

point p
1
 is reached before, after half of the duration of the prediction 

horizon, or not reached at all. In the first case, 
2 1,

pec
i p pJ  is defined as

( )  ( )
22 1

min
,,

pec
i pi p pJ k d k= 	 (35)

In the second case, the former expression is transformed into

( )  ( )( ) ( )2 22 1 , ,, 1 . .pec rel
i p p i p pi p pJ k k H d k Hθλ θ= + + + 	 (36)

where  ( )2,i p pd k H+  is the distance between the predicted position 

of the vehicle at Hp and the second grid point, and  ( )2,
rel
i p pk Hθ + is 

the variation of the predicted attitude of the vehicle  ( )i pk Hχ +  and 

the direction of the line of sight arg (  ( )2p i pk H− +p p ).

In the latter case, the criterion is of similar form:

( ) 

1 22 12 1
,,,

1 . .
2

ppec rel
p pi p pi p p

J
H

k k dθλ θ
  

= + +     
	 (37)

where 
1 2,p pd  is the distance between p

1
 and p

2
.

The last component { }1 2, ,
dev
i p p  of the cost { }1 2, ,

attr
i p pJ  requires each vehi-

cle to establish a list of the potential pair of allocated points, to cross-
check with the other vehicles whether they are at risk of being devia-
ted from their initial choice. The list contains the available pairs of grid 
points classified by decreasing order of sum of 

1,
pec

i pJ  and 
2 1,

pec
i p pJ  .

Simultaneously to the selection of objectives, a navigation criterion must 
be computed. The functional developed for this purpose is derived from 
the cooperative MPC strategy presented in § " Guidance of a fleet toward 
predefined objectives". The differences between way-point guidance and 
way-point allocation are, first, that the way-points describing a grid zone 
are closer to each other than the way-points used to indicate a global path 
to the fleet and, second, that the trajectories are defined to be close to 
the grid points instead of being directed towards them. Hence, the navi-
gation criterion ,nav finalJ  must be adapted accordingly. In this context, 

it depends on the minimal distance  ( )
1

min
,i pd k  defined by (34) between 

predicted positions of the vehicle and the way-point that it must explore 
during the prediction horizon. The resulting expression of the criterion is

( )

 ( )( )
( )

 ( ) ( )( )( )

1

1

1

2
, min

,

, ,

2
,

,

. .

,

nav final
i p

nav final i p p n
i

nav final ref
i p i p

W d k

if d k H t v
J k

W d k H B k

otherwise


×


 ≤ ∆

= 
 × +



p

		
	 (38)

Application example

Figure 11 presents the trajectories obtained for an exploration mis-
sion on a grid zone, realized by four vehicles. The duration of the 
mission is 400 s. At the end of the mission, all vehicles must reach 
an exit point of coordinates x =-200, y =250.

Fig. 11 - Trajectories of the vehicles during a grid exploration mission
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of the representation only depends on the parameter dgrid. When a 
vehicle comes at a distance d from the center of square (l, m), the 
exploration level is updated as

( )( ), ,max ,l m l m explG G f d+ =

The exploration index is increased only if the vehicle is close enough. 
The function fexpl is chosen to be continuous and identically 0 for 
d > rsensor. Here,

( )
0

1 1 cos
2

sensor

expl
sensor

sensor

if d r
f d d if d r

r
π

≥
=   + < 

 

Fig. 12 - Illustration of exploration cost: colors reflect the exploration level

The cost function rewards trajectories that cooperatively increase the 
global level of exploration of the map. It is defined as

( ) ( )( )
( ) ( )( )

, ,,

. .

expl expl
i l m p l ml m

expl T
p

J W G k H G k

W G k H G k

= − + −

= − + −

∑
1 1

	 (41)

where G(k + Hp) is the predicted exploration map associated to the 
vehicle trajectory and 1 is the vector whose components are all 1. This 
cost function represents the total increase of the global exploration 
level resulting from a predicted trajectory. Since the vehicles share 
information, flying in already explored zones is therefore penalized.

Exit point (re)allocation

Two cases are studied. In the first one, the number of vehicles N is 
identical to the number of exits nt and a given exit point cj can shel-
ter at the most one vehicle. In the second, the number of vehicles 
exceeds the number of exits and at most nmax vehicles can reach a 
given exit point.

Case nt = N

 The aim is to define a cost that balances the distance to the exit and 
the cost in the control inputs (in other words, penalizes deviations 
from the trajectory to an exit point cj of position pcj ). This cost will 
serve as a measure of the interest for a given vehicle to go to an exit 
and will support the decision of dispatching the vehicles to the exits. 
Therefore, it must discriminate efficiently between different vehicles 
aiming for the same exit.

For each pair {vehicle, exit point}, the cost function

( ) ( )( ) ( )
1

2
, ,

pk H
af d
i j i i i cj

t k

J k k W t
+ −

=

= −∑u x p p 	 (42)

It illustrates some of the effects of the approach described. At the be-
ginning, the vehicles separate to reach a different row of grid points. 
While the number of remaining grid points remains high enough to 
limit multiple allocations, the vehicles follow straight lines. When allo-
cation is sparse, the trajectories may present oscillations, since the 
evaluation and comparison of costs require increased communica-
tions and the updating of allocated grid points.

Area exploration via a cost-oriented approach

Zone watching is defined in this section as a cooperative problem, 
where a number of autonomous vehicles must explore a wide area in 
a limited amount of time without any way-point defined in advance. In 
addition to zone coverage, the dynamical allocation of exit locations 
is considered.

Each vehicle defines its own trajectory online to achieve the coopera-
tive mission objectives:
	 • maximize the cumulated area covered,
	 • allocate and reach exit points at the end of the mission,
while respecting the constraints:
	 • collision avoidance,
	 • limited mission time,
	 • limited number of vehicles at a given exit.

The choice of optimal control entries should thus take into account 
four main aspects: collision avoidance, minimum control energy, map 
exploration and exit point assignment. The associated global cost 
function for this application is

,safety u expl nav direct
i i i i iJ J J J J= + + + 	 (39)

The costs safety
iJ  to avoid collisions and u

iJ  to limit the energy spent 
by the vehicles are those defined respectively in § "Safety cost" and 
"Control cost". The cost expl

iJ  is specific to the exploration problem 
considered (see next §). The cost ,nav direct

iJ  (defined in § "Navigation 
cost") is used to guide the vehicle to its allocated exit point, which is 
computed online, as indicated in § "Exit point (re)allocation". A dyna-
mic weight gives more importance to this last cost when the mission 
time approaches its limit (§ "Weighting of the functions").

Zone coverage

The cost function expl
iJ  should reflect the gain in terms of map explo-

ration for a potential trajectory. Each vehicle is assumed to have a 
seeker capability, described by a function fexpl of the relative position 
between the observed point and the vehicle.

The cooperatively explored area at time k is:

( )
1,...,
1,...,

i
t k
i N

t
=
=

Ω =  D 	 (40)

where Di(t) is the sensing footprint of vehicle i at timestep t. Since 
this representation is impractical, the mission field is approximated 
as a grid with spacing dgrid. A matrix G stores the level of exploration 
of each square of the grid. Each element Gl,m (where l, m are the 
integer coordinates of the square in the grid) ranges between 0 when 
no vehicle has explored this location and 1 when it has been entirely 
observed. Each vehicle stores a copy of this exploration map and 
updates it with the information from the rest of the fleet. The precision 

sensor footprint
Exploration grid

dgrid

r sensor
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is minimized and an assignment cost matrix ( ) 1,...,
1,..., t

i Nij
j n

R r =
=

=  
is obtained.

( )min ,
i

af
ij ij i ir J=

u
u x

The optimal assignment is obtained by the Hungarian algorithm [29].

Case nt < N

In this case, at the most nmax vehicles can go to the same exit point at 
the end of the mission. The (N×nt) matrix R is built. A basic consen-
sus mechanism is used to find a good admissible assignment: each 
vehicle forms a list of wishes based on its cost evaluations. These 
costs are centralized and whether no more than nmax vehicles aim for 
each exit is checked. In case of conflict, the admissible alternative 
exits are considered. The minimizing costs among these are chosen 
for each conflicting vehicle, consecutively.

In these two cases, the construction of the cost matrix is decen-
tralized but information must be centralized to perform the actual 
assignment.

The vehicles are now able to explore a zone and reach an exit at 
the end of the allocated time. The final constraints on the positions 
require a terminal allocation at all times, merely to ensure satisfac-
tion of the constraints on the maximal number of vehicles for each 
exit. Nevertheless, if enough time remains, the vehicles should 
focus on exploration. Therefore, the initial assignment could be 
reconsidered after some time: a reallocation of the vehicle may 
prove beneficial. One option is to repeat the assignment procedure 
presented in the previous subsection during the mission. Howe-
ver, it could lead to an undesirable situation where, in order to 
decrease the total cost, the global optimization assigns to a vehi-
cle an exit that cannot be reached before the end of the mission. 
Consequently, a penalty linking the time needed to reach the exit 
and the remaining mission time is added. It is expressed as fol-
lows:

2

0 if

if

safe

ij safe
safe

safe danger

T T

s T T
T T

T T

≥
=   −

<  − 

	 (43)

where T is the remaining time, 
i cj

danger
n

T
v
−

=
p p

 and

Tsafe = fsafeTdanger + Tmargin, pcj is the position of the exit, and Tmargin and 
fsafe are predefined parameters. The matrix used for the global assign-

ment is ( ) 1,...
1,..., t

i Nij
j n

R r =
=

′ = ′  with r′ij = rij + sij . The continuous variation of

the penalty prevents vehicles from choosing unreachable exit points, 
provided that the reallocation is performed often enough. Repeating 
the allocation procedure frequently represents a large computatio-
nal load, therefore instead of using the nonlinear dynamical model 
a simple linear model (double integrator) is used to approximate the 
dynamics. This does not significantly deteriorate the performance, 
because only estimates of the costs to go are required in order to 
choose a reasonable assignment. The linear approximation and the 
constraint translation is based on [13] and the reallocation can only 
be repeated at large time intervals.

Weighting of the functions

Each penalty function and its subcomponents are weighted with 
a coefficient W• = k•.w•, with k• a normalization coefficient 
and w• a weighting coefficient. The k• (Table VI) coefficients are 
chosen so that without weighting, the worst case cost would be 
around 1.

ksafety                                     
2

pH
kexpl               

1
2 . .sensor n p

grid

r v H
d

−
 
  
 

ku                        

( )2max max

1
. .cH v ω

knav                               

2
1

dist

Table VI - Renormalization coefficients

Note that knav is chosen so that exit allocation can be fairly performed 

between the vehicles: 
1 1

1
.

t

j

nN

i c
t i j

dist
n N = =

= −∑∑ p p  is the average

distance between vehicles and exits.

Since the total time allocated for the mission is known, it is prefe-
rable to rejoin the exit point only when the vehicles run out of time. 
A dynamic weighting procedure is proposed: the exploration and exit 
rejoining costs are weighted with respect to the difference between 
the estimated time to reach the exit and the actual remaining time. A 
scheme based on [30] is adopted: the exploration of the map is initially 
favored in the cost function, whereas exit points progressively take 
more importance in the cost function as the remaining time decreases. 
This translates into the algorithms by means of balancing coefficients 
Cexpl, Cu which multiply Wexpl, Wu as reported in Algorithm 1.

Algorithm 1: Calculation of the weighting coefficients

1) Compute d = dist(pi, pci) distance between vehicle i and its exit 
point.

2) Compute danger
n

dT
v

=  , the estimated minimal time to reach the

exit assuming a straight path and nominal speed. Compute 
Tsafe = fsafe.Tdanger + Tmargin , an overestimate of Tsafe considered as 
comfortable to reach the exit.

3) Compute:

exp

0

1

if

if

if

danger

dangerl
danger safe

safe danger

safe

C

T T

T T
T T T

T T

T T

 ≤


−
= < ≤ −
 >

( )min

min

1 if

if

if

danger

danger safeu
danger safe

safe danger

safe

C

T T

C T T T T
T T T

T T

C T T

≤


− + −= < ≤ −
 >
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Simulation results

Simulation parameters are grouped in table VII. The various require-
ments of the mission are first illustrated individually and quantitative 
simulation results are then given.

Collision avoidance and exit rejoining

The vehicles are positioned so that they have to cross paths to reach 
their exit points. No reallocation is allowed and map exploration is 
not taken into account. The dashed lines denote the past trajectories 
of the vehicles, whereas the dotted short lines depict the predicted 
trajectories at the current time. The circles denote the danger zones 
around the vehicles. Figure 13 shows that vehicles can reach agree-
ments, even in complex situations, to cross ways without endange-
ring themselves or the other vehicles.

	 vmin  	 0.3 	 vn
	 0.7 	 vmax 	 1.0

	 max
	 0.1 	 vmax

	 0.1 	 max 	 0.5

	 dsafe
v  	 4 	 ddes

v  	 8 	 wsafety	 5

	 wu	 0.5 	 wnav,horiz	 1 	 wexpl	 2

	 wd	 2 	 fsafe
	 1.1 	 Cmin

	 0.2

	 Hc
	 3 	 Hp 	 21 	 rmax

	 5

	 Tmargin
	 15 	 fsafe

	 1.1 	 dgrid
	 2.5

Table VII - Simulation parameters for area exploration by cost-oriented ap-
proach

   
Fig. 13 - Illustration of the collision avoidance

Map exploration and exit assignment

(a) Weighting factors are dynamic: exploration is favored first and the exiting 
cost progressively prevails

(b) Weighting factors are constant
Fig. 14 - Comparison of different exploration strategies: the colors of the vehi-
cles correspond to the assigned target

Map exploration and exit assignment are illustrated with a 4-vehicle 
scenario presented in figure 14. Exits are chosen randomly for each 
vehicle and no reallocation is allowed. It compares the behavior of 
the vehicles in two different settings: (a) dynamic weighting of explo-
ration and exit assignment with respect to remaining time versus (b) 
constant weights. The main difference is that, in case (a), the vehicles 
can go far away from their exit point as long as time remains and, 
consequently, it is easier for them to find new zones to explore, while 
in case (b) vehicles tend to stay close to their exit point.

Dynamic reallocation

Dynamic reassignment is illustrated in figure 15. The current assign-
ment in the figures is depicted by matching colors. In this particular 
instance, the vehicle beginning in the top left corner keeps his initial 
assignment during the mission, whereas the two others do not. One 
of them first changes its exit, whereas the last one also changes its 
plan later on.

  

  
Fig. 15 - Online reassignment of the exit points: the colors of the vehicles 
correspond to the assigned target

Performances

To evaluate the performance of the strategies, a set of 70 missions 
was simulated with different configurations. The settings were:
	 • No exploration is considered: each vehicle chooses an exit and 
rejoins it as soon as possible (A)
	 • Exploration is considered, but weightings of exploration and exit 
rejoining in the cost function are fixed throughout the mission (B)
	 • Exploration is valued at the beginning of the mission and exit 
reaching progressively becomes the dominant cost (C)
	 • Configuration is identical to (C) but reassignment is granted (D)

In each mission, a 78 m x 78 m field is explored by 4 vehicles, 
with a mission time of 300s. The position of the vehicles and the 
4 exit locations are chosen randomly for each run. The mission 
is performed for the 4 configurations and the results are given in 
table VIII. Expl(%) is the portion of the map that has been explored 
during the mission. It takes into account both the number of squares 
explored and their respective level of exploration. Danger(%) gives 
the ratio between the time during which a dangerous situation has 
occurred and the mission duration, that is, when 2 vehicles come 
closer than a distance of dv safe at some point during the mission. dexit 
gives the average distance of the vehicles to their exit targets at 
the end of the mission. We can observe that map exploration costs 
allow a better exploration and dynamic weighting increases the effi-
ciency of the exploration even more, as expected. However, it also 
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increases the number of dangerous situations: adding the explora-
tion cost increases the chances of several vehicles coming into the 
same zone and therefore increases the collision risks. Furthermore, 
dynamical reallocation does reduce these risks significantly, while 
preserving the exploration efficiency. The results presented show 
that a global complex mission can be satisfactorily fulfilled by using 
a short-sighted and distributed control architecture. The proposed 
method renders the problem tractable and allows the actions to be 
taken online to be chosen.

Expl (%) danger (%) dexit (m)

A 20.9 (3.0) 1.4 4.2 (0.2)

B 44.4 (5.0) 5.7 8.4 (2.7)

C 58.3 (3.2) 11.4 6.2 (1.7)

D 59.1 (3.3) 8.5 6.5 (2.5)

Table VIII - Simulation results (standard deviations are given in brackets)

Formation flying using an adaptable virtual structure

Another guidance law is derived in this section to achieve formation 
flight toward a way-point for a fleet of autonomous vehicles. The for-
mation is now defined by a virtual geometrical structure - here, an el-
lipse - that can modify its shape and orientation to avoid collision with 
obstacles in the environment. The proposed guidance law is divided 
into two layers, with a MPC scheme at each level. The higher layer 
controls the structure itself, to fulfill the goals and constraints of the 
required mission. The trajectory of the fleet is built on-line using this 
layer, as well as the adaptation of the structure to the environment. 
The lower layer controls the vehicles, so as to attract and keep them 
within the structure without side collision.

Virtual structure control

The first layer of the guidance law generates the change in the virtual 
structure and adapts its shape so that it does not collide with the 
obstacles on its way to a way-point. It has been chosen to describe 
the formation shape as an ellipse, represented only by its center and 
characteristic matrix (this description can be steadily extended to that 
of an ellipsoid in 3D).

Model of the virtual structure

An ellipse with center pc = [xc yc]
T and characteristic matrix M is 

defined by all points p = [x y]T such that

( ) ( )1 1T
c c

−− − ≤p p M p p 	 (44)

The characteristic matrix M of the ellipse can be written as

2

2

cos sin cos sin0
sin cos sin cos0

T
e e e e

e e e e

a

b

χ χ χ χ
χ χ χ χ

 − −   
    
     

M = 	 (45)

where the parameters of the ellipse are:
	 • e , the angle between the first principal axis and the horizontal;
	 • a , the length of the first principal axis of the ellipse;
	 • b , the length of the second principal axis of the ellipse;
	 • A , the area of the ellipse, equal to πab.

The dynamical evolution of the ellipse is modeled by

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 . .cos

1 . .sin

1 .

1 .

1 .

1 .

1 .

c c c c

c c c c

c c v

c c

e e X

a

b

x k x k t v k k

y k y k t v k k

v k v k t u k

k k t u k

k k t u k

a k a k t u k
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where xc, yc, e, a, b are the aforementioned parameters of the ellipse, 
vc is the speed of the center and c is its orientation (see figure 16). 
The control inputs uv, u

 govern the movement of the center of the 
ellipse pc by acting on its speed and angular velocity, while the 
control inputs u


, u


; ub modify the characteristic matrix M (shape 

and orientation).

Fig. 16 - Ellipse parameterization

This dynamical model should be related to the dynamics of the UAVs 
so that it does not scatter the formation. The control inputs must thus 
be selected within a suitable range and suitable dynamics. This is 
yet a clear advantage over methods that abruptly modify the virtual 
structure and, as a result, do not take into account UAV constraints.

Guidance law design

The cost function Jz associated with the motion and shape of the vir-
tual structure is composed of terms dealing with the mission objec-
tives and the constraints on the structure itself. The optimal control 
inputs at time k should minimize the cost function Jz , such that

* * * * *, , , , arg min

,
, ,

z
a b v

v

a b

u u u u u J

u u
u u u

χ α

α

χ

=

	 (48)

Where

, ,z nav direct nav horiz v abmin cJ J J J J J= + + + + 	 (49)

The components of Jz are designed in such a way that
	 • Jnav,direct drives the ellipse to a way-point and Jnav,horiz constrains 
its speed to a desired value (costs defined in § "Costs used for all 
types of missions" and applied here to the ellipse center and velocity);

b

a
χe
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y
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	 • Jv keeps the ellipse area close to the initial one, A;
	 • Jabmin maintains a and b greater than a boundary value, so as to 
avoid the flattening of the ellipse along one of its axes;
	 • Jc modifies the matrix M to avoid obstacles.

Costs related to ellipse constraints

( ) ( )
1

ˆ 1
pH

v
v

t

J w â k t b k π
=

= + + −∑ A 	 (50)

( )( ) ( )( ){ }1, 2 1 2
1

ˆ, , ,
pH

abmin
abmin

t

J w f â k t l l f b k t l l
=

= + + +∑	 (51)

where

f(â(k + t), l
1
, l

2
) is a continuous function, and l

1
 and l

2
 are user-defi-

ned parameters, such that
	 • f takes the value 1 when â(k + t) ≤ l

1
,

	 • f takes the value 0 when â(k + t) ≥ l
1
 + l

2
,

	 • f undergoes a continuous change between these two extreme 
values.

For example, an appropriate choice for f is the function presented in 
figure 17, which is related to the one used in § "Applications".

Fig. 17 - Function f

Costs related to obstacle avoidance

Fig. 18 - Ellipse-obstacle intersection

The structure should maneuver to avoid collision with obstacles in the 
environment. Assuming that the obstacles are described as convex 
surfaces (volumes in a 3D case), the intersection area between the 
virtual structure and the obstacles is computed to detect and quantify 
potential collisions (figure 18). Using this value as a penalization in 
the criterion makes it possible to find a path that minimizes this inter-
section and thus the risk of possible collision.

The collision avoidance term Jc uses the intersection area Al
inter(k+t) 

at time k+t for each obstacle l (No being the number of obstacles in 
the neighborhood). The weight is chosen to give greater importance 
to the first prediction steps rather than the future ones.

( )
1 1

1
.

pH N
pc inter

c l
pt l

H
J w k t

H

°

= =

−
= +∑∑ A 	 (52)

UAV control

The UAV control layer computes the motion of each vehicle so that it 
remains within the ellipse and avoids collision with the other vehicles. 
It thus has three goals:
	 • to attract the UAV inside the area;
	 • to allocate each UAV inside the area;
	 • to avoid collision between UAVs (using the cost defined in § 
"Safety cost").

This control is decentralized (each UAV determines its own control 
inputs), yet it uses the prediction of the future state of the virtual struc-
ture, which is available using the developments from § "Virtual struc-
ture control". MPC is used again, since allocation and collision avoi-
dance may benefit from a prediction of the impact of control inputs on 
the future states of the vehicles.

The fleet is still composed of N identical UAVs that are assumed to 
have instantaneous access to the state of all the other vehicles, which 
is xi = [xi, yi, vi, i]

T for the i-th vehicle.

For each UAV, the control inputs uv
i and u

i are determined at each 
time k in such a way that

,

, arg min
vu ui i

v
i i iu u J

ω

ω∗ ∗ = 	 (53)

where for this application

,safe veh u t e
i i i i iJ J J J J= + + + 	 (54)

The components of Ji are designed in such a way that
	 • Ji

safe,veh  modifies the direction and the speed to avoid collision 
with other UAVs (§ "Safety cost"),
	 • Ju

i minimizes the energy consumption in terms of control inputs 
(defined in § "Control cost"),
	 • Jt

i drives the UAV within the area,
	 • Je

i keeps the speed and orientation of the UAV close to those of 
the center of the structure.

Attraction and allocation of the UAVs within the structure

The Mahalanobis distance [31] evaluates the norm between a point 
p = [x y]T and the center pc = [xc yc]

T of an ellipse, weighted by a 
function of the length of its main axis (see figure 19):

( ) ( ) ( )T
M c cd = − −p p p M p p 	 (55)

where M is the characteristic matrix of the ellipse.

The term Ji
t is used to lead the UAVs within the virtual structure. 

The Mahalanobis distance is used to reflect the shape of the 
ellipse.
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where the function g is defined as
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p p
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The weight (Hp - h)/Hp is meant to give more importance to the first 
predictions than the later ones. The function g(i, h) is built on the 
basis of the Mahalanobis distance of the UAV position to the ellipse 
center. This function introduces a potential field that guides the UAV 
within the area. A discontinuity has been added, to make a stron-
ger difference at the boundary of the virtual structure. A projection of 
function g is provided in figure 20.

Fig. 19 - Mahalanobis distance to an ellipse (in red) over the position space

Fig. 20 - Shape of the function g (2D projection)

Formation consistency

The cost Ji
e is used to keep the speed and orientation of the UAV close 

to those of the ellipse vc and c.

[ ( )( ) ( ))

( ) ( )( )

2

1
2

2
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e t
i n ni i c

t

n i c

J w w v k t v k t

w k t k tχ α
=
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+ + − + 

∑ 	 (58)

The weights wn
t depend on the Mahalanobis distance between the 

UAV and the ellipse. When the distance is less than a value l3, wn
t 

is equal to one and when it is greater than l4, wn
t is equal to 0. The 

function f (figure 17) is used again.

( )( )( )3, 4,t
n M iw f d t l l= p 	 (59)

Simulation results

A simple scenario has been defined to test the guidance law. The 
formation should reach a predefined way-point ptarget starting from 
p

0
, with an initial orientation of the ellipse perpendicular to the motion 

direction. Two rectangular obstacles cross the trajectory of the for-
mation. In order to avoid collision with these obstacles, the virtual 
structure must modify its shape so as to pass the obstacles safely. 
Only the deformation is considered here (uχ = 0), but an additional 
rotation of the structure could be handled similarly.

The initialization parameters of the simulation are given in table IX. 
Note that the virtual structure has a longer prediction horizon than the 
UAVs, since it holds more information on the final destination and the 
target.

wnav = 10-2 wv = 10-4 wab = 10 wabmin = 10-3

N = 8 vn = 4 vmin = 2 vmax = 6

dmax = 0.3 dt = 1 d v
safe

 = 6 d v
des

 = 6

Hp,uav = 10 Hc,uav = 5 Hp,ell = 30 Hc,ell = 5

l
1
 = 70 l

2
 = 90 l

3
 = 5 l

4
 = 10

a0 = 200 b0 = 100 vc = 4 N° = 2

0 = π/2 p0 = [100 0] ptarget = [2000 0]

Table IX - Simulation parameters

An example of gathering of the UAVs within the virtual structure is 
shown in figure 21.

    
Fig. 21 - Gathering of UAVs within the ellipse structure

The complete scenario is illustrated by the sequence in figure 22. 
The ellipse modifies its shape accordingly when approaching the obs-
tacles and no collision has been reported. The UAVs were initially in 
a vertical formation inside the ellipse. When the ellipse changes, the 
formation is modified to keep all of the UAVs within the structure. It 
can be seen that, since the range of the ellipse control inputs has been 
chosen to cope with the UAV dynamics, the vehicles have sufficient 
time to remain within the virtual structure when it is modified. The area 
of the ellipse is also kept close to its initial value. Figure 23 shows the 
values of the control inputs ua and ub that govern the deformation of 
the structure over time. These input values modify the length of the 
two principal axes simultaneously and almost symmetrically, to cope 
with the area constraint.
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Fig. 23 - Control inputs for ellipse deformation

The proposed method thus makes it possible to maintain the 
UAVs within an elliptical virtual structure with collision avoidance, 
using the two-layer guidance law. The higher layer modifies the 
characteristics of the virtual structure with only knowledge of the 

obstacles and target, while the lower layer modifies the formation 
and distribution of the UAVs in a decentralized way, based only on 
the knowledge of the actions from the upper layer. Other shapes 
for the virtual structure could be taken into account within this gui-
dance scheme by modifying the dynamical model of the structure 
and the criteria that govern the shape modification.

Conclusions and perspectives

In this paper, the design of distributed cooperative control laws 
for a fleet of autonomous vehicles has been presented using 
Model Predictive Control. This approach proves very flexible for 
taking into account mission objectives and safety and reliability 
constraints. The use of an ‘any-time’ optimization procedure gua-
rantees that a control value will be obtained in a given amount 
of time, depending on the computational ability of the vehicles. 
Future developments include detection and rejection of outlying 
data, definition of suitable observers taking the cooperativeness 
of the vehicles into account and demonstration of robustness pro-
perties of the resulting control laws 

Fig. 22 - Obstacle avoidance by deformation
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